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Abstract

Applications of algebraic microlocal analysis in symplectic geometry and representation theory

James Mracek

Doctor of Philosophy

Graduate Department of Mathematics

University of Toronto

2017

This thesis investigates applications of microlocal geometry in both representation theory and symplectic

geometry. Accordingly, there are two bodies of work contained herein.

The first part of this thesis investigates a conjectural geometrization of local Arthur packets. These

packets of representations of a p-adic group were invented by Arthur for the purpose of classifying the

automorphic discrete spectrum of special orthogonal and symplectic groups. While their existence has

been established, an explicit construction of local Arthur packets remains difficult. In the case of real

groups, Adams, Barbasch, and Vogan showed how one can use a geometrization of the local Langlands

correspondence to construct packets of equivariant D-modules that satisfy similar endoscopic transfer

properties as the ones defining Arthur packets. We classify the contents of these “microlocal” packets

in the analogue of these varieties for p-adic groups, under certain restrictions, for a plethora of split

classical groups.

The goal of the second part of this thesis is to find a way to make sense of the Duistermaat-Heckman

function for a Hamiltonian action of a compact torus on an infinite dimensional symplectic manifold.

We show that the Duistermaat-Heckman theorem can be understood in the language of hyperfunction

theory, then apply this generalization to study the Hamiltonian T ×S1 action on ΩSU(2). The essential

reason for introducing hyperfunction theory is that the local contribution to the Duistermaat-Heckman

polynomial near the image of a fixed point is a Green’s function for an infinite order differential equation.

Since infinite order differential operators do not act on Schwarz distributions, we are forced to use this

more general theory.
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Chapter 1

Introduction

1.1 Microlocal geometry

This thesis studies applications of algebraic microlocal geometry in the representation theory of p-adic

groups and symplectic geometry. Microlocal geometry, in a rough sense, provides us with analytic

objects that arise as solutions to a very broad class of differential equations. Our perspective on the

theory originates from the work of Sato [Sat59] and his descendents. For the reader uninitiated with

hyperfunctions and microfunctions, one can imagine that the level of generalization is akin to using

distributions to study solutions to differential equations instead of analytic functions. For example, it is

well known that the equation xf(x) = 0 has no non-trivial solutions in the space of analytic functions,

but it has δ(x) as a distributional solution.

Hyperfunctions and microfunctions are analytic objects which admit solutions to equations of the

form Pf = u which are broader than the theory of distributions can accomodate. For example, the

differential operator:

P =

∞∑
j=0

2πi

j!(j + 1)!

dj

dxj

cannot act on distributions. For example, if we tried to take Pδ(x), the result would have to be

supported at zero, and it is well known that any such distribution is a finite sum of δ and its derivatives.

Hyperfunctions were originally invented to provide a space which contains Schwarz distributions, but

allows for the action of infinite order differential operators (satisfying certain convergence criteria). The

insight of Sato was to realize that distributions can be thought of as boundary values of holomorphic

functions. For example, the distribution δ(x) is defined by the property 〈δ, ϕ〉 = ϕ(0) for any compactly

supported real valued smooth function ϕ. Sato noticed the similarity between this expression and the

Cauchy integral formula:

ϕ(0) =
1

2πi

∫
C

ϕ(z)

z
dz

and so he set out to realize distributions as being boundary values of holomorphic functions. He defined

a hyperfunction on Ω ⊆ R to be a holomorphic function on V \Ω, where V ⊆ C is an open set such that

V ∩ R = Ω, but modulo the relation that any function which extends analytically across Ω is zero. If

φ(z) is a holomorphic function on C\R, we will denote its equivalence class as a hyperfunction by [φ(z)].

1
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With the idea that δ(x) = [1/z], we can see that as a hyperfunction:

Pδ(x) = [exp(−1/z)]

so we have accomodated the action of an infinite order differential operator. Chapter five of this thesis

adapts the Duistermaat-Heckman theorem of symplectic geometry to the language of hyperfunctions, to

the end that certain generalizations of those theorems to infinite dimensional manifolds necessitate the

study of solutions to infinite order differential operators.

While functions (and even hyperfunctions) are objects that are sections of sheaves on X, microfunc-

tions are sections of a sheaf over the cotangent bundle T ∗X. Microfunctions are obtained from the sheaf

of hyperfunctions by modding out by those hyperfunctions which extend analytically across the real axis

when we approach it along a fixed direction. One can see this relocation as a necessary, in light of the

method of characteristics for solving linear systems of partial differential equations; we know that this

method only applies to Cauchy problems where the initial surface’s conormal bundle avoids the zero set

of the principal symbol of a partial differential operator. In fact, the fundamental theorem of Sato (and

its extension by Kawai) tells us that differential operators P (which comprise a special class of microlocal

operators) have inverses on any open set in T ∗X which does not intersect the principal symbol of P .

In his M.Sc. thesis, Kashiwara demonstrated how one can turn differential equations into algebraic

objects of study [Kas95], and in doing so, opened the field to the application of a breadth of techniques

from homological algebra and category theory. Instead of directly studying differential equations of the

form Pu = 0, with P a differential operator, one instead introduces the ring of all differential operators

D, and then constructs a sheaf of D-modules (the introduction of sheaf theory can be seen as essential,

and arises from the local nature of solutions to differential equations):

M :=
D

AnnD u

The differential operator P is a generator for the left ideal AnnD u. Various invariants and homological

operations one can perform on this module turn out to have relevance to the solutions of the differential

equation Pu = 0. For example, its solutions (in any sheaf C, such as algebraic functions, holomorphic

functions, distributions, or hyperfunctions) are represented by the set of module homomorphimsM→ C.

Sol(P ) = HomD-mod(M, C) = {u ∈ C |Pu = 0}

One can then consider the higher derived functors as a sort of “higher solution” to Pu = 0, and this

notion was eventually connected to the theory of perverse sheaves (which of course are by now ubiquitous

in geometric representation theory). For the class of regular holonomic D-modules on X, Sol(P ) restricts

to a local system on an open subset of X.

In light of the existence of microfunctions, the algebraization above was taken one step further by

Sato, Kashiwara, and Kawai [KKS], who introduced a ring of “microlocal operators” which acts on

the sheaf of microfunctions. In a similar manner as above, one may consider modules over the ring of

microlocal operators as algebraic replacements for systems of microdifferential equations, and morphisms

in this module category as representing solutions to those equations. The sheaf of microfunction solutions

to a regular holonomic microlocal operator equation restricts to a local system on an open subset of a

Lagrangian subvariety of T ∗X. These local systems, or rather, their ranks, are a central object of study
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in chapters three and four of this thesis.

1.2 The local Langlands correspondence

Let G be a quasi-split reductive group over a p-adic field, and let the cardinality of its residue field be q.

The local Langlands correspondence asserts that there is a surjection from the set of equivalence classes

of irreducible admissible representations of G(F ) to the set of equivalence classes of L-parameters, which

are essentially group homomorphisms from the Galois group of F into the Langlands dual group that

satisfy a list of properties (see Chapter three for more details). The fibers of this surjection are called

L-packets, and their contents are conjecturally parameterized by the irreducible representations of a

finite group associated to each parameter.

L-packets have a number of other properties, but there are two which are important to contextualize

the historical discussion which follows. The first property is that when the image of an L-parameter

is relatively compact (i.e. the parameter is tempered), it allows us to build a “stable distribution” on

G. The second property is that maps between dual groups induce maps on Langlands parameters by

pullback, and one would hope that there is some relationship between the representations in the original

packet and the transfered one. The theory of endoscopy (and its generalization twisted endoscopy),

developed by a number of people [LS87, KS99b], yields character relations between stable distributions

built from tempered parameters of “endoscopic” subgroups and invariant distributions on G.

The analogue of these relationships in the non-tempered setting was examined by Arthur in his

work on the classification of the automorphic discrete spectrum of groups over global fields. In an early

paper [Art89], Arthur conjectured the existence of a new class of local parameters (now known as A-

parameters), as well as a new type of packet (now known as an A-packet), that would satisfy a list of

properties that enable a similar type of endoscopic transfer of distributions in the non-tempered setting.

He later proved these conjectures for quasi-split special orthogonal and symplectic groups [Art13].

There is a history of geometric methods being used to prove and study the local Langlands correspon-

dence. The earliest of which is probably the work of Kazhdan and Lusztig, who constructed the simple

modules of the affine Hecke algebra associated to G(F ) using the module structure of the equivariant

K-theory of Springer fibers [KL87]. They showed that the classification of representations is given by

triples (u, s, ρ), where u is a unipotent element in the Lie algebra of the dual group, s is a semisimple

element such that sus−1 = qu, and ρ is a representation of the component group of the centralizer of u

and s that appears in the Springer correspondence.

The work of Kazhdan and Lusztig motivated the study of the varieties of unipotent elements such that

sus−1 = qu, for some fixed semisimple element s. Very soon thereafter it was noticed that Kazhdan and

Lusztig’s classification theorem harkens one to the classification theorem of simple equivariant perverse

sheaves by a pair of an orbit and a local system on that orbit. Vogan investigated the categories

of simple, equivariant perverse sheaves on the variety of unipotent elements satisfying the previous

condition (for fixed s), and made a number of conjectures about how quantities of representation theoretic

interest are expected to be reflected in the geometric properties of these perverse sheaves [Vog93].

In particular, Vogan conjectured that the composition factors of standard modules associated to an

irreducible admissible representation should be related to the Euler characteristics of perverse sheaves

on the various strata contained in its support. He also realized that one can build “microlocal” packets

of perverse sheaves on these varieties by grouping together those perverse sheaves whose characteristic
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cycles contain a fixed Lagrangian cycle, and that these packets share certain features in common with

A-packets; for instance, the L-packets include into these “microlocal” packets, but may contain more

perverse sheaves. What is important about these observations is that the perverse sheaf is giving some

interesting representation theoretic information beyond which its underlying local system might be able

to tell us about. The geometry and singularities of orbits in these varieties would then seem to have

interesting and important connections to representation theory.

Around the same time as Vogan’s work, Lusztig studied the gradings that arise on Lie algebras from

the adjoint action of the torus generated by a semisimple element s, and also the categories of equivariant

perverse sheaves that arise from the action of the centralizer of s on the degree d part of the grading

[Lus95b]. Lusztig’s focus in this paper was on showing how to decompose the categories of perverse

sheaves on these varieties using a geometric analogue of cuspidal support. To that end, he introduced

a parabolic induction functor for the categories of perverse sheaves on these varieties. These parabolic

induction functors factor heavily into the discussion in chapter four.

The first body of work in this thesis is primarily concerned with investigating the conjectures of

Vogan in the p-adic setting through a classification of the microlocal packets associated to a restricted

class of varieties. In this sense, the work contained in this thesis can be understood as progress towards

a fuller understanding of the geometric side of Vogan’s conjectures.

1.3 The Duistermaat-Heckman theorem

Let (X,ω) be a symplectic manifold with the Hamiltonian action of a compact torus T . Denote the

moment map by µ : X → t∗. From this data, one can take the measure on M arising from the Liouville

form ωn/n! and push it forward by µ to get a measure on t∗. The Duistermaat-Heckman theorem tells

us about the properties of the pushforward measure µ∗(ω
n/n!) [DH82]:

1. Its Radon-Nikodym derivative (called the Duistermaat-Heckman function, which we will denote

η(x)) is described by a polynomial on each connected component of the regular values of µ - i.e.

it exhibits piecewise behaviour on the images of fixed point sets of rank one subtori.

2. The value of the Duistermaat-Heckman function at ξ ∈ t∗ is equal to the volume of the symplectic

reduced space at ξ.

3. The inverse Fourier transform of this measure has an exact expression as a sum over the fixed points

of the group action, where the summands are described using properties of the local geometry of

the action near the fixed points.

Later on, it was discovered by Jeffrey and Kirwan (who were mathematically formalizing observations

of Witten from physics) that η serves as a generating function for the ring structure on the cohomology

ring of the symplectic reductions [JK95b, Wit92]. The cohomology ring structure of the symplectic

reductions is determined entirely by the Duistermaat-Heckman function.

Our attention was redrawn to this observation after having studied hyperfunctions and microfunctions

while carrying out the first body of work in this thesis. One of our original goals was to realize the

Duistermaat-Heckman localization formula as a consequence of adjunction formulas between the D-

module pushforward and pullback functors. Given the Hamiltonian action of T on M , we obtain a Lie

algebra homomorphism t→ Γ(TM) by taking Hamiltonian vector fields. The condition that the action
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is symplectic can be succinctly expressed by the differential equation:

Lξ#(ωn) = 0 for every Hamiltonian vector field ξ#

One might then be led to study the corresponding (right) D-module on X obtained as the quotient:

M =
DX

(ξ# : ξ ∈ t∗)DX

By construction we have that Hommod−DX (M,ΩX) contains the element ωn. On the other hand, the

Duistermaat-Heckman measure gives us a distribution on t∗, and therefore a Dt∗ -module by taking the

cyclic submodule of the sheaf of hyperfunctions generated by η; we let this module be denoted by Dt∗ ·η.

Recall also that we have a notion of Fourier transform of DX -modules. In local coordinates, the functor

F : DX −mod→ DX −mod is obtained as a twisting of DX by the automorphism:

DX → DX

x 7→ −∂

∂ 7→ x

We are then led to the following conjecture:

Conjecture 1.3.1. Let (X,ω) be a symplectic manifold with a Hamiltonian action of a compact torus

T , and let the moment map be µ : X → t∗. If µ : X → t∗ is proper, then there is a quasi-isomorphism:∫
µ

F−1(M)→ F−1(Dt∗ · η)

We had hoped to realize the Duistermaat-Heckman localization formula as arising from a proof of

this conjecture, together with the adjunction formula of [HTT08, Corollary 2.7.3]. Furthermore, we

expected the relations in the cohomology ring structure to somehow be encoded in the coordinate ring

of the irreducible components of the characteristic variety of these D-modules. Unfortunately, we have

not made progress on either of these (admittedly abstract) conjectures.

In order to provide some concrete understanding to provide a stable base for attacking these con-

jectures, we were motivated to transplant the theory of hyperfunctions onto the Duistermaat-Heckman

theorem. The reader unaccustomed to hyperfunctions might argue that the introduction of this theory is

unecessarily complicated, and that the theory of Schwarz distributions suffices for studying this theorem.

To that suspicious reader, we would offer the following justifications.

Firstly, there has been recent interest in application of microlocal geometry to studying other prob-

lems in symplectic geometry such as Lagrangian non-displaceability, Legendrian knots, and Fukaya

categories [STZ16, NZ09, Tam08], but we were not aware of any such application to Hamiltonian group

actions. The second reason is arguably more compelling. The Duistermaat-Heckman function can be

expressed as a sum of local contributions from each vertex of the moment map image η(x) =
∑
vi
ηvi(x).

Each of these functions is itself a Green’s function; that is, it solves a differential equation:

Dλ1
Dλ2

. . . Dλk(ηvi) = δ(x)
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Where the Dλj are constant coefficient differential operators obtained from the isotropy representation

of T on the tangent space to the fixed point corresponding to vi. If we were to allow X to become

an infinite dimensional symplectic manifold, then the tangent spaces become infinite dimensional, and

we would instead be forced to consider a differential operator of infinite order. As we have previously

discussed, such operators act more naturally on hyperfunctions (and not on distributions). Therefore

any analogue of the Duistermaat-Heckman theorem in the setting of infinite dimensional Hamiltonian

group actions would be forced to use hyperfunction theory in place of the theory of distributions.

The work in chapter five outlines the constructions that would be involved in a hyperfunction version

of the Duistermaat-Heckman formula, and then applies them to study a Hamiltonian group action on

an infinite dimensional manifold. We associate to any Hamiltonian group action with proper moment

map, a hyperfunction on t which we call the Picken hyperfunction, named after R. Picken who also

studied applications of the localization formula for infinite dimensional symplectic manifolds [Pic89].

By example, we show that in the finite dimensional setting one can recover a hyperfunction analogue

of the Duistermaat-Heckman distribution by Fourier transforming the Picken hyperfunction. We then

construct the Picken hyperfunction of ΩSU(2) with its standard Hamiltonian group action [PS86].



Chapter 2

Foundational results on D-modules

2.1 Introduction

In this chapter we review some of the properties of equivariant D-modules that will be needed for this

thesis. In section two we recall the basic definitions of the principle objects of study of chapter four.

Section three provides a modern viewpoint on equivariant D-modules, following [BD91]; the main aim

is to describe a pushforward functor for D-modules along equivariant maps. Finally, in section four we

review the notion of a characteristic cycle of a D-module. The characteristic cycle of an equivariant

D-module is an invariant valued in Lagrangian chains in T ∗X. It will factor heavily into chapters three

and four. We assume that all D-modules are quasi-coherent.

2.2 A classical description of equivariant D-modules

In this chapter we suppose that we have an action of a complex linear algebraic group G on a smooth

variety X. Let us denote the action morphism by aG : G×X → X. We will let µ : G×G→ G denote the

morphism of group multiplication, and pG×X : G×G×X → G×X the projection (g1, g2, x) 7→ (g2, x).

The action of G on X yields an action of G on the sheaf DX of differential operators on X. If P is a

differential operator on X, then for any g ∈ G the action is (g · P )(f) = g · (P (g−1 · f)) for all f ∈ OX .

Definition 2.2.1. A G-equivariant DX-module is a pair (M, α) where M is a DX-module and

α : p∗XM→ a∗GM is a chosen isomorphism of DG×X-modules satisfying the cocycle condition:

pr∗G×X(α) ◦ (idG × aG)∗(α) = (µ× idX)∗(α)

A morphism g : (M, αM ) → (N , αN ) of G-equivariant DX-modules is a morphism g : M → N of

DX-modules such that the following diagram commutes:

p∗XM
αM //

p∗X(g)

��

a∗GM

a∗G(g)

��
p∗XN

αN // a∗GN

The above definition, while succinct and useful for formal manipulations in proofs, obscures the

7
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intuition of what we would like an equivariant D-module to be. The chosen isomorphism α can be

identified with, for any invariant open set U , a map G×M(U)→M(U). Tracing the cocycle condition

through the necessary identifications yields the usual associativity condition for G-modules. Further,

the condition that α be an isomorphism of DX -modules translates to the compatibility of the G-module

structure on M(U) with the action of differential operators on U ; for any P ∈ DX(U), g ∈ G, and

m ∈M(U) we have:

g · (Pm) = (g · P )(g ·m) (2.1)

A morphism of equivariant DX -modules is then simply a morphism of sheaves of DX -modules which

respects this G-module structure.

Example 2.2.1. Equivariant D-modules arising from local systems on orbits

The following construction comprises the main source of examples of equivariant D-modules con-

sidered herein. Let G be an algebraic group acting on a complex algebraic variety X. We let O(x)

denote the orbit of G through the point x, Sx = StabG(x) the G stabilizer of x, and S◦x the connected

component of the identity. Then there exists a covering map:

Õ(x) = G/S◦x → O(x)

[g] 7→ g · x

with fibers the component group Sx = Sx/S
◦
x. Every irreducible representation χ : Sx → GL(V ) yields

an equivariant vector bundle with flat connection on O(x) because as a group of deck transformations,

Sx is a quotient of the fundamental group of O(x). The total space of the vector bundle is Õ(x)×χ V ; G

acts on the total space by its action on Õ(x), which induces the required action on sections. By minimal

extension we get an equivariant DX -module [HTT08, Section 11.6].

Definition 2.2.2. Let X be a G-variety and Y an H-variety, and fix a homomorphism ϕ : G→ H. We

say that f : X → Y is ϕ-equivariant if and only if the following diagram commutes:

G×X

ϕ×f
��

aG // X

f

��
H × Y aH // Y

Throughout, when we say that a morphism f : X → Y is ϕ-equivariant we are presupposing the

existence of all the necessary structure.

2.3 The Equivariant Derived Category of D-modules on X

The bulk of the information in this section seems to be well known to experts, yet is not written down

in the context we require. Some of the necessary theory appears in [BL06], and otherwise in [BD91].

Recall that a (semi)simplicial object of a category C is simply a contravariant functor [X]• : ∆op
inj → C,

where ∆inj is the category whose objects are the sets {0, . . . , n} and whose morphisms are increasing

injections. A morphism of simplicial objects is a natural transformation of such functors. If µ : [n]→ [m]

is a morphism in ∆, we will also denote [X]•(µ) : [X]m → [X]n simply by µ. We will henceforth assume

that when [X]• is a simplicial scheme that all the morphisms µ are smooth.
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Definition 2.3.1. A D-module M• on the simplicial space [X]• is the data of:

1. For every j ∈ N, a D-module Mj ∈ Mod[X]j

2. For every morphism µ : [X]j → [X]k, a choice of morphism αµ : µ∗Mk →Mj

Subject to the axiom that if ν : [X]i → [X]j and µ : [X]j → [X]k, then αµ◦ν = αν ◦ ν∗(αµ).

A morphism κ : M• → N• of sheaves on a simplicial space [X]• is a collection of morphisms

κj :Mj → Nj such that for any morphism µ : [X]j → [X]k the following diagram commutes:

µ∗Mk

αµ //

µ∗(κk)

��

Mj

κj

��
µ∗Nk

βµ // Nj

Strictly speaking, the above definition doesn’t make sense until one has chosen an isomorphism of

functors (µ◦ν)∗ → ν∗◦µ∗. For categories of D-modules this will simply come from the usual isomorphism

of transfer modules [HTT08, Proposition 1.5.11].

Let Mod[X•] denote the category of sheaves of D-modules on the simplicial space [X]•, and let

Mod◦[X•] denote the full subcategory of Mod[X•] consisting of sheaves (M•, αµ) such that every αµ is

an isomorphism.

2.3.1 An important example of a simplicial space

Let X be a smooth complex variety with an action of a complex algebraic group G. For every n ∈ N,

define the complex variety [X/G]n = Gn ×X. Define maps di : [X/G]n → [X/G]n−1 by:

d0(g1, . . . , gn, x) = (g2, . . . , gn, x)

di(g1, . . . , gn, x) = (g1, . . . , gigi+1, . . . , gn, x) 0 < i < n

dn(g1, . . . , gn, x) = (g1, . . . , gn−1, gn · x)

In the other direction, define maps si : [X/G]n−1 → [X/G]n by:

si(g1, . . . , gn−1, x) = (g1, . . . , gi, e, gi+1, . . . , gn−1, x)

Proposition 2.3.1. The datum ([X/G]•, si, di) is a simplicial space

Proof. This is a routine check that that the simplicial identities hold.

In what follows, we will forget the degeneracy maps, si, and think of [X/G]• as a semisimplicial

space.

Lemma 2.3.1. If f : X → Y is a ϕ-equivariant map, then there is a corresponding morphism of

simplicial spaces f̃ : [X/G]• → [Y/H]•

Proof. It suffices to prove that for any n ∈ N and for any j ∈ {0, . . . , n}, the following diagrams are
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commutative:

Gn ×X
ϕn×f //

dj
��

Hn × Y

dj
��

Gn−1 ×X
ϕn−1×f

// Hn−1 × Y

For j = n, this follows from the condition that f is ϕ-equivariant, for 0 < j < n it follows from the fact

that ϕ is a group homomorphism, and for j = 0 it is trivial.

The following theorem of Deligne identifies the category Mod◦[X/G] with the classical category of

equivariant D-modules on X.

Theorem 2.3.1. [Del74] There is an equivalence of categories Mod◦[X/G]• → ModG(DX)

2.3.2 Pushforwards and pullbacks in the equivariant derived category

Definition 2.3.2. The bounded equivariant derived category of D-modules on X is the full subcategory

of Db(Mod[X/G]•) consisting of bounded complexes of sheaves on [X/G]• such that for all i, Hi(M•) ∈
Mod◦[X/G]•. We denote this category by Db

G(X).

By construction, there is a canonical functor:

ForG : Db
G(X)→ Db(X)

M·• 7→ M·0

These categories are equipped with the usual t-structure consiting of complexes concentrated in

either positive or negative degree. The heart of these t-structures can be identified as the category of

(regular holonomic) G-equivariant D-modules on X, by Theorem 2.3.1. Alternatively, one can obtain

the t-structure on Db
G(X) by pulling back the usual t-structure on Db(X) via the functor ForG.

We will define a pushforward functor in the special case that the map ϕ : G→ H is an isomorphism.

A more general construction exists in several other forms. For instance, instead of using the category

of D-modules on the simplicial space, we could have equivalently chosen to work in the category of

quasi-coherent sheaves on the deRham space of the functor of points corresponding to the quotient stack

[X/G]• (see [GR14] for details on this approach). While powerful in its generality, this approach would

take us much too far afield, and the breadth of its applicability is not required for the work herein.

The following proposition will be what allows us to push forward equivariant sheaves.

Proposition 2.3.2. If ϕ : G → H is an isomorphism of groups, and f : X → Y is a ϕ-equivariant

map, then for every i ∈ N, and for every 0 ≤ j ≤ n, the following is a pull-back diagram:

Gi ×X
ϕi×f //

dj
��

Hi × Y

dj
��

Gi−1 ×X
ϕi−1×f

// Hi−1 × Y

Proof. For any i, and for any of the degeneracy maps dj , the fiber product (Gi−1×X)×Hi−1×Y (Hi×Y ) is

isomorphic toH×Gi−1×X. Under this identification, the universal morphism ψ : Gi×X → H×Gi−1×X
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is one of the following three maps:

ψ(g1, . . . , gi, x) = (ϕ(gi), g2, . . . , gi, x) when j = 0

ψ(g1, . . . , gi, x) = (ϕ(gi), g1, . . . , gjgj+1, . . . , gi, x) when j < i

ψ(g1, . . . , gi, x) = (ϕ(gi), g1, . . . , aG(gi, x)) when j = i

As ϕ is invertible, all of the above are invertible maps.

We may now define a pushforward functor between the equivariant derived categories, but we must

restrict to the case where ϕ : G → H is an isomorphism, as in Proposition 2.3.2. This happens, for

instance, if f : X → Y is an equivariant map between two G-varieties.

Proposition 2.3.3. If f : X → Y is a ϕ-equivariant morphism and ϕ : G → H is an isomorphism,

then there exists a functor: ∫ •
f

: DG(X)→ DH(Y )

which is right adjoint to f !
•. Furthermore, the following diagram commutes:

Db
G(X)

∫ •
f //

ForG
��

Db
H(Y )

ForH
��

Db(X) ∫
f

// Db(Y )

Proof. The proof is outlined in [MV88]; we add only a few more details. For brevity of notation, we

denote fj = ϕj×f . Given a complexM·•, we need to construct a complex of sheaves of modules

∫ •
f

M·•

on [Y/H]•, which is the data of a chain complex of D-modules on the [Y/H]j = Hj × Y for every j,

together with isomorphisms:

αµ̃ : µ̃∗
(∫ •

f

M
)
j

→
(∫ •

f

M
)
i

for every µ̃ : Yi → Yj , which satisfy the required compatibility conditions. We pushforward “level-wise”;

for every j ∈ N, we let: (∫ •
f

M·•
)
j

=

∫
fj

M·j

where

∫
fj

is the usual pushforward of D-modules from Xj to Yj .

To µ : Xi → Xj (this is intended to be the same composition of face maps as µ̃; the lack of a

tilde is meant only to distinguish between being a map of Xi and not the Yi), we have an isomorphism

αµ : µ∗M·j →M·i. Consider the following map:∫
fi

(αµ) :

∫
fi

◦µ∗M·j →
∫
fi

M·i
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By 2.3.2, we have a pullback diagram:

Gi ×X
ϕi×f //

µ

��

Hi × Y

µ̃

��
Gj ×X

ϕj×f
// Hj × Y

so by an application of base change [HTT08, Theorem 1.7.3], we deduce there is a canonical isomorphism:∫
fi

◦µ∗M·j ' µ̃∗ ◦
∫
fj

Mj

so by composition of the aforedescribed isomorphisms we have produced, for any µ̃, an isomorphism

αµ̃ : µ̃∗
∫
fj

Mj →
∫
fi

Mi

That these isomorphisms satisfy the cocycle identity αµ̃◦ν̃ = αν̃ ◦ ν̃∗αµ̃ follows from the corresponding

fact for the isomorphisms αµ and that f is a morphism of simplicial spaces.

The fact that

∫ •
f

is an adjoint to f !
• follows from the corresponding fact about classical D-modules,

applied level wise. Finally, the statement about commuting with the forgetful functor is clear from the

construction.

2.4 Characteristic cycles of D-modules

In this section we introduce an invariant of D-modules called the characteristic cycle. It is a Z-valued

cycle of irreducible closed subvarieties in T ∗X. Roughly speaking, the characteristic cycle of M tells us

about the directions in our manifold in which local solutions the of the system of differential equations

underlying M cannot be extended. One of the main theorems of this thesis groups together those

equivariant D-modules on a fixed variety whose characteristic cycles contain a common irreducible cycle.

2.4.1 Filtrations on the ring of differential operators and D-modules

The ring of differential operators on a variety X is filtered. The order zero differential operators are

simply functions on X. The sheaf of differential operators of order k is defined inductively as the subsheaf

of DX consisting of differential operators such that for any f ∈ OX , [P, f ] is an order k − 1 differential

operator. In a local coordinate system, the differential operators of order less than or equal to k are

given by those differential operators that can be expressed as a sum:

P =
∑
|α|≤k

aα(x)
∂α

∂xα

Let FkDX denote the sheaf of differential operators of order less than or equal to k. The associated

graded of DX with respect to this filtration is a sheaf of commutative rings on X, and there is a canonical
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isomorphism:

grDX =

∞⊕
k=0

Fk+1DX/FkDX ' π∗OT∗X

where π : T ∗X → X is the bundle projection.

To each level of this filtration, we define a symbol map:

σk : FkDX → FkDX/Fk−1DX

If P is a differential operator defined in a local corrdinate system as above, then its symbol σk(P ) ∈
π∗OT∗X is given by:

σk(P ) =
∑
|α|=k

aα(x)ξα

Here, (x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn) are local coordinates on T ∗X.

Similarly, if M is a D-module, then for fixed filtration

· · · ⊆ Fl−1M⊆ FlM⊆ Fl+1M⊆ . . .

there is a corresponding (surjective) symbol map µl : FlM→ FlM/Fl−1M. These symbol maps make

grM into a sheaf of modules over π∗OT∗X . Explicitly, for sections µl(m) ∈ grM and σk(P ) ∈ grDX ,

we have σk(P ) · µl(m) = µl+k(P ·m). It is easy to show that this is independent of the choice of lifts m

and P .

Definition 2.4.1. Let M be a filtered DX-module, as above. We say that the filtration on M is good if

and only if grFM is a coherent sheaf of π∗OT∗X-modules.

Remarks:

1. The definition has other equivalent formulations [HTT08, Prop. 2.1.1], but in practice, the one we

have cited is the easiest to check.

2. A DX -module admits a good filtration if and only if it is coherent [HTT08, Theorem 2.1.3].

2.4.2 Singular support and the characteristic cycle

Suppose that we give M a good filtration. As grM is a sheaf of modules over π∗OT∗X , using the

(π∗, π
∗)-adjunction we can make π∗grM into an OT∗X -module.

Definition 2.4.2. The singular support of a DX-module M, SS(M) ⊆ T ∗X is the sheaf theoretical

support of the OT∗X-module π∗grM.

Remark : SS(M) does not depend on the choice of good filtration.

On an affine open set, the OT∗X -module π∗grM restricts to the sheaf associated to a module N over

OT∗X(U). The singular support is then locally cut out by the ideal V (
√

AnnN). Writing
√

AnnN =⋂m
i=1 pi as an intersection of prime ideals gives a decomposition of SS(M) =

⋃m
i=1 Ci into its irreducible

components. The stalk of π∗grM at the generic point of Ci is an Artinian module over OT∗X(U)pi . We

denote the length of this module mCi(M) and call it the multiplicity of M along Ci.
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Definition 2.4.3. Let M be a DX-module, and let V (pi) = Ci be the irreducible components of its

singular support. The characteristic cycle of M is:

CC(M) =
∑
Ci

mCi(M)Ci

Recall that aDX -module is called holonomic if and only if its singular support is a union of Lagrangian

subvarieties of T ∗X. In what follows, we will assume that whenever M is a holonomic DX -module, for

every irreducible component of the singular support Ci, there exists a smooth subvariety Zi ⊆ X such

that Ci = T ∗ZiX.

The following two lemmas will be used in chapter three.

Lemma 2.4.1. If i : X → Y is a closed embedding of smooth varieties and M is a DX-module such

that:

CC(M) =
∑
j

mZj (M)[T ∗ZjX]

then:

CC

(∫
i

M
)

=
∑
j

mZj (M) [T ∗ZjY ]

Proof. For details of the specific constructions surrounding characteristic cycles, see [KS13, chap. 9,

sect. 3]. By [KS13, Prop. 9.3.2], the closed embedding i : X → Y induces a linear map between the

global sections of the sheaves of Lagrangian cycles:

i∗ : H0(T ∗X,LX)→ H0(T ∗Y,LY )

and by [KS13, Prop. 9.4.2] we have:

CC

(∫
i

M
)

= i∗CC(M)

=
∑
j

mZj (M)i∗[T
∗
ZjY ]

so we are reduced to proving that i∗[T
∗
Zj
Y ] = [T ∗ZjX]. This follows from [KS13, ex. 9.3.4(iii)].

Lemma 2.4.2. If π : X → Y is a smooth morphism of smooth varieties and M is a DY -module such

that

CC(M) =
∑
j

mZj (M)[T ∗ZjY ]

then:

CC (π∗M) =
∑
j

mZj (M) [T ∗π−1(Zj)
X]

Proof. This proof is similar to the previous one. Smooth morphisms of smooth varieties are submersions,

and in particular, are vacuously non-characteristic for every sheaf. By [KS13, prop. 9.3.2], the smooth

morphism π : X → Y induces a linear map between the global sections of the sheaves of Lagrangian

cycles:

π∗ : H0(T ∗Y,LY )→ H0(T ∗X,LX)
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and by [KS13, Prop. 9.4.3] we have:

CC (π∗M) = π∗CC(M)

=
∑
j

mZj (M)π∗[T ∗ZjY ]

so we are reduced to proving that π∗[T ∗ZjY ] = [T ∗π−1(Zj)
X]. This follows from [KS13, ex. 9.3.4(iv)].

If M is a DX -module and N is a DY -module, then we recall external direct product [HTT08, p.38],

which is the DX×Y -module M�N . Suppose that:

CC(M) =
∑
i

mi[Λi]

CC(N ) =
∑
j

nj [Λ
′
j ]

then we define:

CC(M) � CC(N ) =
∑
i,j

minj [Λi × Λ′j ]

Proposition 2.4.1. Let X and Y be smooth varieties over C, letM be a regular holonomic DX-module,

and let N be a regular holonomic DY -module. Then,

CC(M�N ) = CC(M) � CC(N )

Proof. This follows immediately from [Sai17, Theorem 2.2(2)], together with the Riemann-Hilbert cor-

respondence.

2.4.3 Calculating characteristic cycles

The following three examples of D-modules on C, together with Proposition 2.4.1, will allow us to

compute the general characteristic cycles of the D-modules appearing in this thesis.

Example 2.4.1. M(C) = C[x]

Throughout, it suffices to consider the global sections, which we again denote byM. Let C[x] denote

the ring of polynomial functions in the variable x. We give this the structure of a DC-module using the

usual action of differentiation and multiplication by polynomial functions. Consider the filtration:

FiM =

{
0 i < 0

C[x] i ≥ 0

for which the associated graded (as a graded C-vector space) is:

grM' C[x]

with the factor C[x] concentrated in degree zero. We now describe the π∗OT∗X(C) ' C[x, ξ]-module

structure on grM, recalling that x has degree zero and ξ has degree one. We will denote an element of
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degree i in grM by [m]iThe action on the associated graded factors through the symbol maps:

x · [f(x)]0 = [xf(x)]0

ξ · [f(x)]0 = [∂xf ]1 = 0

so ξ annihilates every element, while x just acts by multiplication on grM. This shows that grM is

generated by the element 1, so in particular, our filtration was good.

We recall that if Y = SpecR is an affine scheme and F is the quasi-coherent sheaf of OY -modules

associated to the R-module M , we have:

supp F = V (AnnM)

We had just computed that AnnM = (ξ), so:

SS(M) = V (ξ) = T ∗CC := Λ

that is, the singular support is exactly the zero section of the conormal bundle.

We now compute the multiplicity of M along Λ. We need to compute the length of the C[x, ξ](ξ)-

module gotten by localizing C[x] at the prime (ξ). We claim that C[x](ξ) is a simple module over

C[x, ξ](ξ). Notice we always have:
f(x)

g(x, ξ)
∼ f(x)

g(x, 0)

in C[x](ξ) because we may write g(x, ξ) = g̃(x) + ξh(x, ξ) for some polynomials g, h, and:

g(x, 0) · f(x)− g(x, ξ) · f(x) = g̃(x) · f(x)− (g̃(x) + h(x, ξ)ξ) · f(x) = 0

since ξ · f(x) = 0. We also notice that 1/1 is a generator of C[x](ξ). Suppose that N ⊆ C[x](ξ) is a

non-zero submodule, so that there is some non-zero f(x)/g(x) ∈ N . Then,

1 =
g(x)

f(x)
· f(x)

g(x)
∈ N

so N = C[x](ξ). This completes the proof that mΛ(M) = 1, and:

CC(C[x]) = [T ∗CC]

Example 2.4.2. Mα = DC · xα, α /∈ Z

Consider the DC-submodule of the holomorphic functions on C generated by the function xα, with

α /∈ Z. We have an isomorphism:
DC

DC(x∂ − α)
→ DC · xα

[P ] 7→ P · xα

which is well defined since xα solves the differential equation:

x
df

dx
− αf = 0
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We can give Mα a filtration by setting Mi
α = (FiDC) · xα for all i. With respect to this filtration, the

associated graded is:

grMα = C[x]xα ⊕ Cxα−1 ⊕ Cxα−2 ⊕ . . .

with the first summand in degree zero, the second summand in degree one, and so forth. The action of

C[x, ξ] on grMα is as follows. In degree zero, we have:

ξ · [a0x
α + a1x

α+1 + . . . ]0 =
[
a0αx

α−1 + a1(α− 1)xα + . . .
]
1

= [a0αx
α−1]1

x · [a0x
α + a1x

α+1 + . . . ]0 = [a0x
α+1 + a1x

α+2 + . . . ]0

while in degree k > 0 we have:

ξ · [akxα−k]k = [ak(α− k)xα−(k+1)]k+1

x · [akxα−k]k = [akx
α−k+1]k = 0

From the above computations, we can see that (xξ) ⊆ Ann grMα. It is clear to see that this is actually

an equality, because any polynomial not in (xξ) must have a non-zero x term or a non-zero ξ term,

but no element containing these terms can be in the annihilator. We have computed that the singular

support has two irreducible components. One of them is the zero section in T ∗C, and the other is the

fiber of T ∗C above x = 0:

SS(Mα) = V (xξ) = V (x) ∪ V (ξ) = T ∗CC ∪ T ∗{0}C

A similar computation to Example 2.4.1 shows that Mα has multiplicity one along each of these irre-

ducible components, so:

CC(Mα) = [T ∗CC] + [T ∗{0}C]

Example 2.4.3. M = C[∂]

This computation is very similar to Example 2.4.1, so we omit most of the details. We list the result

of the computation here for future reference:

CC(M) = [T ∗{0}C]

In other words, the characteristic cycle ofM is the cotangent fiber above x = 0. One could alternatively

observe that C[∂] is the D-module Fourier transform of C[x] and apply [KS13, Theorem 5.5.5].



Chapter 3

The microlocal conjecture on

A-packets

3.1 Introduction

The purpose of this chapter is to give an outline of the microlocal conjecture on the structure of local

Arthur packets. These packets consist of collections of irreducible representations of a p-adic group. The

microlocal conjecture will assert that, through a geometrization of the local Langlands correspondence,

we can explicitly construct these packets using microlocal invariants associated toD-modules on a smooth

algebraic variety. For real reductive groups, the microlocal conjecture (although not spoken of by this

name) was examined in the book of Adams, Barbasch and Vogan [ABV12]. We study the analogous

problem for reductive groups over p-adic fields, extending the work of Vogan in [Vog93].

In section two we review the main properties of the local Langlands correspondence. In order to

accomplish this, we quickly survey the relevant structures involved in the correspondence (the Wei-

Deligne group, L-groups, pure inner forms, etc.). Section three outlines the geometrization of the local

Langlands correspondence, as envisioned by Vogan and Lusztig [Vog93, Lus95b]. In this geometrization,

the space of L-parameters is identified with a the variety of SL2-triples in the Langlands dual group,

with the notion of equivalence of L-parameters being represented by an orbit equivalence for a group

action. In section four, we review Arthur’s work on endoscopic character formulas for non-tempered

L-parameters. In this work, Arthur introduces a more general class of parameters called A-parameters.

From these A-parameters, he builds a new packet of representations, which we call an A-packet. In

section five, we motivate how one can realize some of the natural properties Arthur packets satisfy

using purely geometric constructions. One is then led to the notion of a micropacket, and we conjecture

that these correspond to A-packets through the local Langlands conjecture. Finally, in section six we

introduce a wide range of issues that arose during our work which are directions of future study.

18
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3.2 The local Langlands correspondence

3.2.1 L-groups

Let G be a quasi-split reductive algebraic group over a non-archimedean local field F of characteristic

zero. The ring of integers of F will be denoted OF and its unique maximal ideal will be denoted by p.

The residue field kF = OF /p is a finite field; we will denote its cardinality by q. The Galois group of F

in its algebraic closure F will be denoted Γ = Gal(F/F ). There is an exact sequence:

1→ IF → Γ→ Gal(Fq/Fq)→ 1

The subgroup IF is called the inertia subgroup; we give it the subspace topology inherited from Γ. The

Weil group of F , WF , is the preimage of Z under the map Γ → Gal(Fq/F). We do not give WF the

subspace topology. Instead, we give it a topology by insisting that IF is a compact open neighbourhood

of the identity. We fix Fr ∈WF , a lift of the Frobenius automorphism.

If G is a reductive group defined over an algebraically closed field F , then G is uniquely characterized

by its root datum Ψ = (X∗, R,X∗, R
∨). Here,

· X∗ and X∗ are the weight and coweight lattices, respectively

· R ⊆ X∗ and R∨ ⊆ X∗ are the set of roots and coroots, respectively

More generally, if G is defined over F (maybe not algebraically closed), then G is uniquely characterized

by the root datum Ψ of the base change to the algebraic closure, together with a group homomorphism:

µG : Γ→ Aut Ψ

One recovers G(F ) by first building G(F ) from the root datum, then taking the fixed points of the action

of Γ on G(F ) induced by the homomorphism µG.

To every reductive algebraic group G defined over F we associate its L-group LG as follows [Lan79,

Bor79]. From the root datum Ψ we construct a new root datum Ψ̂ = (X∗, R
∨, X∗, R) by swapping

the role of the roots and coroots. The root datum Ψ̂ yields a reductive group Ĝ/C which we call the

Langlands dual group. We get a homomorphism WF → Aut Ĝ by composing the natural maps:

WF ↪→ Γ→ Aut Ψ→ Aut Ψ̂→ Aut Ĝ

The L-group of G is then defined to be the semidirect product:

LG = ĜoWF

We will say that an element x ∈ LG is semisimple if and only if its image in any representation of LG is

semisimple.

3.2.2 Galois cohomology and the zoo of forms

Let G be a reductive group defined over F . We say that G′ is a rational form of G if and only if after

base change to F , G and G′ become isomorphic as algebraic groups over F . Rational forms of G are
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classified by elements of a Galois cohomology group. A good reference for Galois cohomology is Serre’s

book [Ser13].

Suppose that we have two groups Γ and A, together with a homomorphism Γ→ Aut(A). This data

allows us to build a semidirect product group Ao Γ. We define the 1-cocycles to be:

Z1(Γ, A) = {ϕ : Γ→ Ao Γ |ϕ is a group homomorphism, ϕ(g) = (α(g), g)}

Stated slightly differently, 1-cocycles are simply the possible splittings of the exact sequence:

1→ A→ Ao Γ→ Γ→ 1

We will refer to α as the cocycle. Two 1-cocycles α and β are called cohomologous when there exists a

b ∈ A such that β(g) = (g · b)α(g)b−1 for all g ∈ Γ. We then denote H1(Γ, A) = Z1(Γ, A)/ ∼.

We now suppose that Γ is the Galois group of F in its algebraic closure. We will describe three

different notions of isomorphism classes of forms of G. When A = AutG the set H1(Γ, A) parameterizes

the rational forms of G. When A = Gad, elements of H1(Γ, Gad) are called inner forms. Finally, when

A = G we call the elements δ ∈ H1(Γ, G) pure inner forms. The maps G→ Gad and Gad = Inn(G) ↪→
AutG descend to maps on cohomology:

H1(Γ, G)→ H1(Γ, Gad)→ H1(Γ,AutG)

Using these maps we can associate a rational form to any pure inner form, although this association is

in general neither injective or surjective. If δ is a pure inner form of G, then we will denote G(F, δ) the

rational form of G so obtained.

Kottwitz has given an alternative characterization of pure inner forms which will turn out to be more

convenient for our exposition of Vogan’s work [Kot84]. There exists a canonical commutative square:

H1(Γ, G) //

∼
��

H1(Γ, Gad)

∼
��

Irrπ0(Z(Ĝ)Γ) // Irrπ0(Z(Ĝsc)Γ)

In the above diagram, the vertical maps are bijections, Ĝsc is the simply connected covering group of

Ĝad, and Z(Ĝ)Γ denotes the invariants for the Galois action of Γ on the center of Ĝ. The Kottwitz

isomorphism allows us to think of pure inner forms as being parameterized by characters. If δ is a pure

inner form, then we will denote its image under the Kottwitz isomorphism by χδ : π0(Z(Ĝ)Γ)→ C∗.
A representation of a pure inner form of G is a pair (π, δ) where δ is a pure inner form and π is an

admissible representation of G(F, δ). We will denote the set of equivalence classes of representations of

pure inner forms of G by Π(G/F ).

3.2.3 The Langlands correspondence for pure inner forms

For brevity of notation, we let LF = WF × SL2(C).

Definition 3.2.1. Let G be a reductive algebraic group over F . A Langlands parameter for G (or simply

L-parameter) is a continuous homomorphism φ : LF → LG satisfying:
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1. If p : LG→WF and q : WF × SL2(C) are the projection morphisms, then p ◦ φ = q

2. The restriction of φ to SL2(C) is a morphism of algebraic varieties

3. The image of φ|WF
consists of semisimple elements

The group Ĝ acts on the set of all Langlands parameters by conjugation; we denote the set of

Langlands parameters for G by Φ(G/F ).

For any w ∈WF , we denote by dw ∈ SL2(C) the element:

dw =

(
|w|1/2 0

0 |w|−1/2

)
(3.1)

where |·| : WF → R is a fixed norm homomorphism, trivial on IF and sending Fr to q. When φ ∈ Φ(G/F )

is an L-parameter, we can associate its infinitesimal parameter, which is the homomorphism λ : WF → LG

defined by the conditin λ(w) = φ(w, dw) for all w ∈WF .

If G′ is any quasi split pure inner form of G, then there is an identification LG ' LG′, and an inclusion

Φ(G/F ) ↪→ Φ(G′/F ) [Bor79]. To any Langlands parameter for G, we may associate its L-component

group:

Aφ = π0(ZĜ(φ(LF ))) = ZĜ(φ(LF ))/ZĜ(φ(LF ))◦

Every central element z ∈ Z(LG)Γ gives a way to twist Langlands parameters. Write φ(w, x) = ϕ(w, x)o
w for a cocycle ϕ ∈ H1(LF , Ĝ), then z · φ(w, x) = (zϕ(w, x)) o w. Furthermore, every such central

element naturally yields an unramified character of G(F, δ) [SZ14]. For example, when G(F ) = GLn(F )

and z = diag(qa, . . . , qa), a ∈ C, we have χz : GLn(F )→ C∗ is the character χz(g) = |det(g)|a.

Every equivalence class of Langlands parameters for G is conjectured to have an associated packet

of representations of pure inner forms, satisying a list of properties [Vog93, Bor79]:

Conjecture 3.2.1. (Local Langlands conjecture for pure inner forms) Let G be a connected reductive

group over F , and let LG be an L-group for G. For every φ ∈ Φ(G/F ), there exists an L-packet

Πφ ⊆ Π(G/F ) satisfying the following list of properties:

1. Π(G/F ) =
∐

φ∈Φ(G/F )

Πφ

2. There exists a bijection Πφ → IrrAφ

3. If δ is a pure inner form of G, then then Πφ(δ) = {π ∈ Π(G(F, δ)) | (π, δ) ∈ Πφ} is finite. If δ

corresponds to the quasi-split rational form of G, then Πφ(δ) is non-empty.

4. For every α ∈ H1(LF , Z(LG)), if φ′ = α · φ then Πφ′ = {πα ⊗ φ |π ∈ Πφ}

5. The following conditions on Πφ are equivalent:

(a) Πφ contains a discrete series representation

(b) Every representation in Πφ is a discrete series representation

(c) φ(LF ) is a discrete set

6. The following conditions on Πφ are equivalent:
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(a) Πφ contains a tempered representation

(b) Every representation in Πφ is tempered

(c) φ(LF ) is bounded

7. Other properties that will not be relevant for this thesis. See [Bor79] for the complete list.

The bijection Πφ → IrrAφ and the Kottwitz isomorphism give a decomposition of the packets Πφ by

pure inner forms:

Πφ =
∐

δ∈H1(Γ,G)

Πφ(δ)

Indeed, the injection Z(Ĝ)Γ ↪→ ZĜ(φ(LF )) induces a map ζ : π0(Z(Ĝ)Γ) → Z(Aφ). If ψ ∈ IrrAφ has

central character zψ : Z(Aφ) → C∗, then ζ∗(zψ) : π0(Z(Ĝ)Γ) → C∗ corresponds through the Kottwitz

isomorphism to a pure inner form δ.

3.3 Geometrization of the local Langlands correspondence

3.3.1 Vogan varieties

It was soon thereafter noticed that the characterization of objects in an L-packet by irreducible repre-

sentations of the finite group Aφ closely resembles the characterization of simple, equivariant perverse

sheaves on an algebraic variety [Vog93, Lus95b]. When a linear algebraic group acts on a variety, the

simple objects in the category of equivariant D-modules are classified by pairs (O,L), where O is an

orbit and L is an equivariant, irreducible local system on O. The category of equivariant local systems

on O is equivalent to the category of representations of the deck transformations of a covering associated

to O using the group action. To each pair (O,L), there is a corresponding simple equivariant perverse

sheaf, and further, all such simple equivariant perverse sheaves are obtained from some (O,L).

Vogan set out to construct a complex variety Xλ for which many of the properties of Conjecture 3.2.1

will arise from purely geometric considerations. The points in Xλ are to be in bijection with Langlands

parameters, and the notion of equivalence of Langlands parameters should arise as an orbit equivalence

for an action of Ĝ on Xλ. Therefore, the representations in an L-packet Πφ must correspond to the

representations of a finite group attached to the orbit corresponding to xφ. If xφ ∈ S is a representative

basepoint of some orbit, then we may define:

Aφ = π0(StabGλ(xφ))

By our previous remarks, the category of irreducible representations of Aφ (modulo conjugacy) is equiv-

alent to the category of Ĝ-equivariant local systems on S. By minimal extension, these local systems

give Ĝ-equivariant D-modules on Xλ.

With these geometric constructions in place, packets of irreducible representations of pure inner forms

can now be thought of as packets of simple Ĝ-equivariant D-modules. The representations of rational

forms corresponding to each δ - i.e. the elements of Πφ(δ) - are to be distinguished by the central

character of the equivariant D-module.

Vogan’s construction works as follows. Since every Langlands parameter has a unique infinitesimal

character, it suffices to construct, for every λ : WF → LG, a complex variety Vλ whose points correspond
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to Langlands parameters with infinitesimal character λφ = λ. We restrict our attention to the set

of φ whose corresponding infinitesimal character is some fixed morphism λ : WF → LG. Since λ is

continuous and IF has the profinite topology, λ must factor through a finite quotient of the inertia

subgroup. As such, the image λ(IF ) is a discrete set; thus, ĜIF = ZĜ(λ(IF )) is a reductive subgroup of

Ĝ. Furthermore, since IF is normal in WF , λ(Fr) must normalize ĜIF , and therefore acts as a semisimple

automorphism on the Lie algebra ĝIF .

The restriction of φ to SL2(C) is a morphism of algebraic groups, so we get a corresponding map

of Lie algebras dφ : sl2 → ĝ. In other words, every Langlands parameter yields a sl2-triple for ĝ in a

natural way. Since λφ(w) = φ(w, dw) for all w ∈WF , we require:

dφ(h) = dφ

(
1/2 0

0 −1/2

)
=

log λ(Fr)

log q
∈ ĝIF

recalling that q is the cardinality of the residue field of F . With this restriction, φ is determined by

the value of dφ(e), where e is the standard generator of the positive root space of sl2. It is not difficult

to show that [dφ(h), dφ(e)] = 2 dφ(e) if and only if Adλ(Fr)(dφ(e)) = q dφ(e). Then, points in Vλ -i.e.

homomorphisms φ : LF → LG with infinitesimal character λ - correspond bijectively with points in the

q-eigenspace for the action of Ad(λ(Fr)) on ĝIF . We define:

Vλ =
{
X ∈ ĝIF |Adλ(Fr)(X) = qX

}
The group Ĝλ = ZĜ(λ(WF )) acts on Vλ through the restriction of the adjoint action.

We now let O ⊆ Ĝ denote a fixed semisimple conjugacy class. Define the set:

P (O, LG) =
{
φ : LF → LG |λφ(Fr) ∈ O

}
Clearly, Ĝ acts on P (O, LG) by conjugation. Vogan’s construction yields the following theorem:

Theorem 3.3.1. [Vog93] There is a Ĝ-equivariant bijection:

T : P (O, LG)→ Ĝ×Ĝλ Vλ := Xλ

The orbits of Ĝ on P (O, Ĝ) are in bijection with the orbits of Ĝλ on Vλ. Furthermore, there is an

isomorphism:

Aφ ' π0(StabĜ(T (φ))

Consequently, if φ ∈ P (O, Ĝ), then the simple Ĝ-equivariant perverse sheaves on Xλ are in bijection

with the irreducible admissible representations in Πφ.

By induction equivalence [BL06], the category of Ĝ-equivariant D-modules on Xλ is equivalent to

the category of Ĝλ-equivariant D-modules on Vλ. Since the variety Vλ and its orbit stratification are

much simpler, we will always study the latter category of D-modules. Throughout this thesis, we will

refer to Vλ as a Vogan variety.
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3.3.2 A selection of examples

It will be helpful to keep a number of examples in mind. In what follows, we say that Vλ is unramified

if λ : WF → LG is trivial on IF ; otherwise, we say that Vλ is ramified.

Example 3.3.1. Unramified, regular Vogan varieties for split classical groups

The following class of examples will constitute the main objects of study of chapter three. When

G(F ) is split, its corresponding L-group is simply the direct product Ĝ × WF . This means that L-

parameters are simply group homomorphisms φ : LF → Ĝ. We say that an infinitesimal parameter

λ : WF → Ĝ is regular and unramified when λ is trivial on inertia and λ(Fr) is a regular semisimple

element. By conjugating λ, we may as well assume that λ(Fr) is contained in a fixed maximal torus T̂ .

By the restriction that λ(Fr) is regular semisimple we have that Ĝλ = T̂ , and by the restriction that λ

is unramified we have that Vλ ⊆ ĝ is the q-eigenspace for the adjoint action of λ(Fr).

Since λ(Fr) ∈ T̂ , Vλ can be written as a product of root spaces. Letting Rλ = {α ∈ R |α(λ(Fr)) = q},
we have:

Vλ =
∏
α∈Rλ

Eα

The maximal torus T̂ acts on Vλ by its action on the corresponding root spaces, and the orbits of this

action are clearly in bijection with subsets J ⊆ Rλ (J simply determines which coordinates can be

non-zero). Stated slightly differently, the orbit SJ is determined by the unipotent class in ĝ determined

by dφ(e). The study of equivariant D-modules on these varieties will be taken up in details in chapter

3, so at the moment we will say no more about it other than it is possible to explicitly present these

modules by generators and relations. We will make a comment about which representations should be

in the packets Πφ corresponding to these orbits (c.f. section 10.4, [Bor79] and Example 4.9, [Vog93]).

Let δ be the pure inner form whose corresponding rational form is G. The element λ(Fr) ∈ T̂

corresponds to an unramified character of T (F, δ) in a natural way. When Ĝ is a matrix group, then

we can write λ(Fr) = diag(qa1 , . . . , qan) for some complex numbers a1, . . . , an ∈ C. The corresponding

unramified character is obtained as follows:

χFr : T (F, δ)→ C∗

χFr(t1, . . . , tn) = |t1|a1 |t2|a2 . . . |tn|an

Where here | · | : F → R is the norm on F coming from its p-adic valuation. Normalized parabolic

induction through any Borel subgroup containing T (F, δ) gives a representation:

PS(χFr) = iGB(χFr)

The composition factors of this representation are in bijection with the subsets of Rλ [Cas80]. For an

orbit SJ ⊆ Vλ, there is always a trivial representation of the component group AJ , and having trivial

central character, it corresponds to a representation of the split form of the group. This representation

should be the composition factor corresponding to the subset J ⊆ Rλ.

Example 3.3.2. Unramified Vogan varieties in GLn as spaces of quiver representations

An unramified inifinitesimal parameter λ : WF → GLn(C) is completely determined by where the

homomorphism sends a lift of the Frobenius element. The element λ(Frob) is semisimple, so we may as
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well assume that it lies in the subgroup of diagonal matrices:

λ(Frob) = diag(qa1 , . . . , qan)

For some choice of complex numbers a1, . . . , an. We use this data to construct a quiver as follows: Build

a graph whose vertices vai correspond to the distinct ai. There is an edge joining vai → vaj if and only

if ai − aj = 1. The quiver Q is obtained by associating Vai , the qai-eigenspace of λ(Frob), to the vertex

vai . The variety of quiver representations RepQ is acted on by
∏
i

GL(Vai) = ZGLn(λ(Frob))

Example 3.3.3. A ramified example for PGL4(F )

The simplest class of ramified Vogan varieties are those which are “tamely ramified” - i.e. their

infinitesimal parameter factors through the tame inertia subgroup PF . Let iF denote a lift of the

generator of IF /PF . The infinitesimal parameter is determined by a choice of two semisimple elements,

f = λ(Frob) and τ = λ(iF ), satisfying fτf−1 = τ q. For PGL4(F ), an infinitesimal parameter is a map

λ : WF → SL4(C). We make the choices:

τ =


ζ 0 0 0

0 ζ 0 0

0 0 ζq 0

0 0 0 ζq



f =


0 0 q1/2 0

0 0 0 q−1/2

q1/2 0 0 0

0 q−1/2 0 0


Where ζ is a both a q2 − 1’th root of unity and a 2q + 2’th root of unity. The former condition ensures

that fτf−1 = τ q, while the latter ensures τ ∈ SL4(C).

The Vogan variety is the q-eigenspace of Frobenius acting on LieZSL4
(τ). It is easy to see that this

consists of all matrices of the form:

Vλ =




0 x 0 0

0 0 0 0

0 0 0 x

0 0 0 0




The group ∨Gλ = ZSL4
(f) acts on Vλ. Notice that f can be decomposed as a commuting product:

f = fefh =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




q1/2 0 0 0

0 q−1/2 0 0

0 0 q1/2 0

0 0 0 q−1/2


and an element commutes with f if and only if it commutes with both of these matrices. So Ĝλ is

the disconnected group consisting of diagonal matrices t = diag(t1, t2, t1, t2) subject to the condition



Chapter 3. The microlocal conjecture on A-packets 26

(t1t2)2 = 1, and it acts on Vλ by the restriction of the adjoint action. For this example, the Vogan

variety can be identified Vλ ' C with the action (t1, t2) · x = t1t
−1
2 x.

Example 3.3.4. Two examples in SO7(F )

When G(F ) = SO7(F ) we obtain a Langlands dual group Ĝ = Sp6(C). We use the symplectic form:

J =



0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

−1 0 0 0 0 0


and fix a maximal torus consisting of matrices t = diag(t1, t2, t3, t

−1
3 , t−1

2 , t−1
1 ). Consider the following

two unramified infinitesimal parameters:

λ1(Fr) = diag(q1/2, q1/2, q1/2, q−1/2, q−1/2, q1/2)

λ2(Fr) = diag(q3/2, q1/2, q1/2, q−1/2, q−1/2, q−3/2)

For λ1, we get an action of the group Ĝλ1
= GL3(C) on the variety which is the product of the

following root spaces in sp6: 

0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


The entries in the above matrix are not all independent; if X is the 3 × 3 matrix corresponding to the

top right block in the above matrix, then it must give a symmetric bilinear form if the corresponding

point of Vλ is to be an element of sp6. Raicu has classified the GL3-equivariant D-modules on the space

of 3 × 3 symmetric matrices and computed their characteristic cycles [Rai16]; actually, his result is far

more general, in that he characterizes the equivariant D-modules on any space of symmetric matrices.

These spaces will arise as Vogan varieties for infinitesimal parameters in higher rank Sp2n.

For λ2, we get an action of the group GL1(C)×GL2(C) on the Vogan variety Vλ2
' C5. A point in

Vλ can be written:

xφ =



0 u v 0 0 0

0 0 0 z y 0

0 0 0 x −z 0

0 0 0 0 0 −v
0 0 0 0 0 u

0 0 0 0 0 0
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We can use different coordinates to write xφ = (ω,X), where ω = (u, v) and:

X =

(
z y

x −z

)

The action of GL1(C)×GL2(C) is given by:

(t, g) · (ω,X) = (tdet(g)ωg−1,det(g)gXg−1)

There are seven orbits for this group action. They are:

1. (0, 0)

2. (ω, 0), with ω 6= 0

3. (0, X) with X 6= 0 and detX = 0

4. (ω,X) with X 6= 0, detX = 0 and ωX = 0

5. (0, X) with X 6= 0 and detX 6= 0

6. (ω,X) with X,ω 6= 0 and ω is an eigenvector of X

7. (ω,X) with X,ω 6= 0 and ω is not an eigenvector of X

The point of this example is to show that the geometry of the singularities of these orbits can become

quite complicated. The equivariant D-modules on Vλ arise from minimal extension of local systems on

these orbits, and should be presentable as modules over C〈u, v, x, y, z, ∂u, ∂v, ∂x, ∂y, ∂z〉. It is unclear to

the author how to present the minimal extensions by generators and relations, or how to compute the

characteristic cycles directly using D-module theory. It is for this reason that in this thesis we have

focused our attention on the case that λ(Fr) is a regular semisimple element. Regardless, these kinds of

examples can be investigated using other methods. For details see a forthcoming paper [CFM+17b].

3.4 Character relations coming from the theory of endoscopy

In this section we briefly review Arthur’s work on endoscopic character formulas for non-tempered L-

packets. This section is not intended to be a comprehensive review, but is meant to capture the essential

structural elements of Arthur’s work that will allow us to motivate some geometric constructions. Let

G be a quasi-split classical group over F . When φ ∈ Φ(G) is a tempered parameter (i.e. its image is

bounded), there is a bijection between pairs (G′, φ′)↔ (φ, s), where:

• G′ denotes an endoscopic datum for G [Art06]

• φ′ ∈ Φ(G′)

• s ∈ ZĜ(φ)

This bijection can be used to relate linear combinations of the Harish-Chandra characters of the rep-

resentations in Πφ to certain stable distributions on G′. The study of invariant distributions on G in
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terms of these so called stable distributions on endoscopic subgroups is called endoscopy, which we will

now describe in more detail, following [Art06].

Recall that an element γ ∈ G(F ) is called strongly regular if the stabilizer of γ under conjugacy is

a torus. Denote the set of strongly regular elements by Γ(G(F )). A stable conjugacy class is a disjoint

union of conjugacy classes in G(F ) which become identified upon passing to the algebraic closure. The

set of all stable, strongly regular conjugacy classes is denoted SΓ(G(F )). We will denote orbital integrals

by O(γ, f), for f ∈ C∞c (G(F )) and γ ∈ Γ(G(F )) a strongly regular conjugacy class. An orbital integral

is an expression of the form

O(γ, f) =

∫
G/Gγ

f(xγx−1) dµ(x)

for a chosen invariant measure µ on G/Gγ . Recall that a function on G(F ) is called invariant if it is

in the closed linear span of the orbital integrals, and we denote the subspace of invariant functions by

I(G). The dual space Î(G) is the space of invariant distributions. Similarly, we recall that stable orbital

integrals SO(δ, f) are given by expressions:

SO(δ, f) =
∑
γ→δ

O(f, γ)

where f ∈ C∞c (G(F )), δ ∈ SΓ(G(F )) is a stable, strongly regular conjugacy class, and the sum above

is taken over those conjugacy classes γ which become identified over F . The stably invariant functions

SI(G) are the closed linear span of the stable orbital integrals. A stable distribution is an element of

the dual space ŜI(G).

The theory of endoscopy developed by Langlands, Shelstad, and Kottwitz [LS87, KS99b] allows one

to express certain invariant distributions on G(F ) in terms of stable distributions on an endoscopic group

G′(F ).

TransGG′ : ŜI(G′)→ Î(G)

This transfer mapping arises as the pullback on distributions of a map I(G) → SI(G′), which we now

describe.

The Langlands-Shelstad transfer mapping for the endoscopic group G′ is a function:

∆ : SΓ(G′)× Γ(G)→ C

For a fixed endoscopic datum, ∆ is canonically determined up to scalar multiplication by a complex

number of norm one. This function has the property that for any fixed δ′ ∈ SΓ(G′), there are only

finitely many strongly regular conjugacy classes in G such that ∆(δ′, γ) 6= 0. The function ∆ allows one

to transfer invariant functions on G to functions on G′ by using ∆ as a kernel:

f 7→ f ′(δ′) =
∑
γ

∆(δ′, γ)O(γ, f)

It is a consequence of the fundamental lemma [Ngô10, Wal97] that the image of the Langlands-Shelstad

transfer is contained in SI(G′) - i.e. there exists a g ∈ C∞c (G′) such that:

SO(δ′, g) = f ′(δ′)
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The transfer mapping TransGG′ arises as the dual map on distributions. The takeaway message is that

stable distributions on an endoscopic group yield invariant distributions on G.

An important property of L-packets is that that to each tempered Langlands parameter φ′ ∈ Φbdd(G′)

there exists a corresponding stable distribution:

Dφ′(g) =
∑

π′∈Πφ′

trπ′(g) (3.2)

which is a sum of the Harish-Chandra characters of the representations in the L-packet determined by

φ′. This stable distribution on G′ can be transfered to an invariant distribution on G, as described

above. The resulting distribution is then a linear combination of orbital integrals, as described by the

following theorem [She79, LL79]:

Theorem 3.4.1. For any φ ∈ Φbdd(G) and for any s ∈ ZĜ(φ), there exists an endoscopic group G′ and

a Langlands parameter φ′ ∈ Φ(G′) such that the endoscopic transfer of the stable distribution Dφ′ (as in

Equation 3.2) on G′ can be expressed by the following character formula:

TransGG′(Dφ′)(f) =
∑
π∈Πφ

〈s, π〉 trπ(f) (3.3)

The coefficients 〈s, π〉 and representations appearing in an L-packet for G are therefore implicitly

determined by the transfer factors when one varies over endoscopic subgroups.

It is natural to attempt to expand the theory of endoscopy to deal with the L-parameters which

correspond to non-tempered representations. Unfortunately, the naive attempts to carry out this gener-

alization fail because the sum of the Harish-Chandra characters for the representations in a non-tempered

packet fails to be stable. Arthur came across this when attempting to classify discrete series automorphic

representations [Art89], as non-tempered irreducible representations arise as local constituents of such

automorphic representations. To remedy this problem, he invented a new class of local parameters.

Definition 3.4.1. Let G be a reductive group over F , and LG an L-group for G. An Arthur parameter

(or A-parameter) for G is a homomorphism:

ψ : WF × SL2(C)× SL2(C)→ LG

(w, x, y) 7→ ψ◦(w, x, y) o w

such that:

1. The restriction of ψ|WF×SL2
is a Langlands parameter for G

2. The restriction of ψ◦ to the last copy of SL2 is a morphism of algebraic groups

3. ψ◦|WF
has bounded image in the complex topology on Ĝ

The collection of all A-parameters for G will be denoted Ψ(G).

To an A-parameter ψ, we associate the Arthur component group:

Sψ =
ZĜ(ψ)

ZĜ(ψ)◦ Z(Ĝ)Γ
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and denote Ŝψ the collection of irreducible representations of Sψ.

Recall the element dw ∈ SL2(C) given by Equation 3.1. There is a natural way to associate a

(non-tempered, in general) L-parameter to ψ. To every ψ, we may associate the L-parameter:

ψ 7→ φψ(w, x) = ψ (w, x, dw)

The Jacobson-Morozov theorem implies that the correspondence ψ 7→ φψ is an injection. Going one step

further, we may also associate an infinitesimal parameter to ψ:

ψ 7→ λψ(w) = ψ(w, dw, dw)

We will denote the set of Arthur parameters whose corresponding infinitesimal parameter is λ by

Ψ(G/F, λ).

To develop an analogue of Theorem 3.4.1 in the non-tempered setting using Arthur parameters,

certain features of the theory need to be reconsidered. First, a bijection between pairs (ψ, s) ∈ Ψ(G)×
ZĜ(ψ) and endoscopic subgroups with an Arthur parameter (G′, ψ′) must be established. We must also

suitably reinterpret the objects on both the left and the right hand sides of equation 3.3.

The left hand side of 3.3 needs to be the Langlands-Shelstad transfer of a stable distribution from

the endoscopic group G′. When G′ is a special orthogonal or symplectic group, Arthur has constructed

this stable distribution [Art13]. We have the following three mappings:

1. Since G′ is an endoscopic group, one has a map LG′ ↪→ GLN (C), and we may use this map to get

an injection Ψ(G′) ↪→ Ψ(N), where here Ψ(N) is referring to a certain class of representations of

WF × SL2(C)× SL2(C) in GL(N,C).

2. By the above discussion, we have an injection Ψ(N) ↪→ Φ(N), where Φ(N) denotes the the

collection of Langlands parameters for GL(N,F )

3. The local Langlands correspondence, established by Henniart, Harris, Sholze, and Taylor [Sch13,

Hen86, Har98, HT01] yields a bijection Φ(N) → Π(N), where Π(N) denotes the irreducible ad-

missible representations of GL(N,F ).

Tracing through the composition:

Ψ(G′) ↪→ Ψ(N) ↪→ Φ(N)→ Π(N)

to each Arthur parameter ψ′ one may attach a representation πψ of GL(N,F ).

When the endoscopic group is simple, the necessary stable distribution attached to ψ is constructed

as follows. The Kottwitz-Shelstad twisted endoscopic transfer of functions from GL(N,F ) to G′(F ) is

surjective. Furthermore, if we lift a function f ∈ G′(F ) through the twisted endoscopic transfer to a

function f̃ , the value of trπψ(f̃) only depends on f . The distribution Dψ(f) = tr (πψ(f̃)) is stable. When

the endoscopic group is not simple, but is a product of simple groups, the necessary stable distribution

is obtained as a product of the aforementioned distributions over each simple factor. One of Arthur’s

primary results is the following theorem:

Theorem 3.4.2 (Arthur, Thm. 2.2.1). (a) Suppose that G′ is a quasi-split special orthogonal or sym-

plectic endoscopic group of GL(N,F ) and that ψ′ ∈ Ψ(G′). There exists a unique stable linear form on
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H(G′):

f 7→ Dψ′(f)

with the properties:

1. Dψ′(f) = trπψ(f̃) for all f ∈ H(G′)

2. If G′ = GS × GO, ψ′ = ψS × ψO, and f = fS × fO, (i.e. G′ is a product of simple endoscopic

groups) then Dψ′(f) = DψS (fS)DψO (fO).

(b) If G is a simple elliptic endoscopic group of GL(N,F ), then for every ψ ∈ Ψ(G) there exists a finite

set Πψ of unitary representations of G, together with a mapping:

Πψ → Ŝψ

π 7→ 〈 · , π〉

such that if s ∈ ZĜ(ψ) and (G′, ψ′) is the pair corresponding to (ψ, s), then:

TransGG′(Dψ′)(f) =
∑
π∈Πψ

〈sψx, π〉 trπ(f)

Where x is the image of s in Sψ, and sψ is the canonical central element in Sψ.

We will refer to the packets Πψ in the statement of Theorem 3.4.2 as A-packets. Arthur’s theorem

gives the analogue of the endoscopic character relations for classical groups in the non-tempered set-

ting. Supposing we are interested in character relations for G, the first part of the theorem should be

understood as describing how to use twisted Kottwitz-Shelstad transfer to build stable distributions on

G′, an endoscopic group of G. The second part of the theorem tells us how the transfer of that stable

distribution to G can be written as a sum of Harish-Chandra characters for representations in the packet

Πψ.

A fundamental problem of interest is to explicitly determine the packets Πψ and the association

π 7→ 〈· , π〉. When ψ is trivial on the second factor of SL2(C), the corresponding L-parameter is tempered

and one recovers the usual theory of endoscopy; in this case, the L-packet should be exactly equal to

the A-packet. When ψ is non-trivial on the second factor, one only obtains an inclusion of packets

Πφψ ↪→ Πψ. One would like to have some way of understanding which “extra” representations need to

be in the packet in order to get endoscopic character formulas.

3.5 Arthur parameters and Vogan’s geometrization: The p-adic

microlocal conjecture

It is natural to ask how Arthur’s work on endoscopic character formulas should fit into Vogan’s ge-

ometrization of the local Langlands correspondence. In the case of real groups, the work of Adams,

Barbasch, and Vogan [ABV12] demonstrates that microlocal geometry gives a natural setting in which

to understand endoscopic character formulas for non-tempered Arthur parameters. In their book, they

prove an analogue of part (b) of Theorem 3.4.2 using purely geometric constructions. Packets of simple

perverse sheaves are built by grouping together those simple perverse sheaves whose D-modules contain
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a common irreducible component in their characteristic cycle. Furthermore, the characters 〈·, π〉 are

constructed using microlocalization. They do not prove that these packets are equal to Arthur packets,

however, because they do not address the issues in part (a) of Theorem 3.4.2. While the structure of the

varieties Vλ is somewhat different in the archimedean setting, the essence of their constructions carries

over to p-adic groups. We expose these ideas in this section.

With a view towards incorporating representations of pure inner forms of G, instead of using the

group Sψ, we will instead consider the group:

Aψ = ZĜ(ψ)/ZĜ(ψ)◦

If ψ ∈ Ψ(G/F ) and φψ ∈ Φ(G/F ) is the associated Langlands parameter, then imφψ ⊆ imψ. This gives

an inclusion:

ZĜ(ψ) ↪→ ZĜ(φψ)

which descends to a morphism of component groups:

Aψ → Aφψ

What is required is a natural geometric construction of both:

1. The packet Πψ

2. The association π 7→ 〈 , π〉 ∈ Âψ

Furthermore, we would like to maintain the interpretation of representations of Aψ as local systems,

and we would also like there to be some natural way to obtain these local systems from the existing

D-modules which represent local systems on Ĝλ-orbits on Vλ.

Following Ginzburg [Gin86], we will see how to accomodate all of the above requirements. Suppose

that M is a D-module on a complex variety X. Write its characteristic cycle:

CC(M) =
∑
α∈I

mα(M) [Λα]

where the collection {Λα} is the set of Lagrangian subvarieties of T ∗X which appear in the singular

support of M. Let:

Λreg
α = Λα\

⋃
β 6=α

Λβ

be the regular part of a component of the singular support. Recall from chapter one that if M is a

D-module on a variety X, then by choosing a good filtration of M and taking the associated graded

grM we obtain a sheaf of OT∗X -modules. In fact, grM|Λreg
α

is a local system [Kas83, Theorem 3.2.1,

p.70]. The functor which takes D-modules on a variety X and outputs objects over T ∗X (which restrict

to local systems on the appropriate regular locus) is called the functor of microlocalization. We will

denote this functor by:

Qαmic : D-modĜλ(Vλ)→ Loc(Λreg
α )

Microlocalization gives the correct framework in which we may construct packets having the requisite

properties. Let M(π, δ) be a simple, Ĝλ-equivariant D-module on Vλ which corresponds to a represen-

tation π of a pure inner form δ under the local Langlands correspondence. SinceM(π, δ) is equivariant,
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its characteristic cycle can be written as a sum of the closures of Lagrangian conormals to orbits:

CC(M(π, δ)) =
∑
S

mS(M(π, δ)) [T ∗SVλ]

Definition 3.5.1. Let S ⊆ Vλ be an orbit. The micropacket associated to S is defined to be the set of

simple, Ĝλ-equivariant D-modules on Vλ satisfying the following condition:

Πmic
S =

{
M(π, δ) : QSmic(M(π, δ)) 6= 0

}
Remarks:

1. The rank of the local systemQSmic(M(π, δ)) is equal to multiplicitymS(M(π, δ)); so, the coefficients

in the characteristic cycle give us information about which D-modules microlocalize non-trivially

on the regular part of T ∗SiVλ. As such, an equivalent definition of the micropacket Πmic
S is as the

collection of D-modules whose characteristic cycles contain [T ∗SVλ].

2. IfM(π, δ) is equal to the minimal extension of a local system on the orbit S, then [T ∗SVλ] is always

a non-zero summand of CC(M(π, δ)). The other components of the characteristic cycle come from

strata S′ ≤ S. As such, if the orbit S corresponds to an equivalence class of Langlands parameters

represented by φ, then we have an inclusion Πφ ↪→ Πmic
S .

The second remark above says that the microlocal packet attached to an orbit contains the corre-

sponding L-packet, but it might contain more D-modules. The extra D-modules that get added to the

packet are exactly those whose microsupport contains T ∗SVλ. This should be compared to requirement

that an A-packet Πψ must contain the L-packet Πφψ , but can also contain additional representations.

To make this comparison more concrete, the remainder of this section will be devoted to explaining how

Arthur parameters can be thought of as points in a conormal variety to an orbit.

Since Ĝλ acts on Vλ (for a fixed g ∈ Ĝλ, call the action map ag : Vλ → Vλ), we also get a corresponding

action on T ∗Vλ:

ãg : T ∗Vλ → T ∗Vλ

g · (x, ξ) = (ag(x), a∗g−1(ξ))

Let x ∈ Vλ, S = Ĝλ · x be the orbit through x, and Ĝλ(x) = StabĜλ(x). By restriction of ã we get a

representation of Ĝλ(x) on the cotangent fiber T ∗xVλ. What is more, is that since the isotropy represen-

tation of Ĝλ(x) on TxVλ preserves TxS, we get a well defined representation of Ĝλ(x) on TxVλ/TxS, and

therefore on the conormal fiber T ∗S,xVλ by duality.

Definition 3.5.2. We define the microlocal component group by:

Amic
ξ = π0

(
StabĜλ(x)(ξ)

)
where the pair (x, ξ) ∈ T ∗SVλ are as in [ABV12, Lemma 24.3(f)].

Remark : Conjecturally, for every S, T ∗SVλ has an open orbit for the action of Ĝλ. We will show in

Proposition 3.5.2 that the conormals to strata which have associated Arthur parameters have an open

orbit. It suffices to take (x, ξ) a representative point of the open orbit in T ∗SVλ.
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Supposing that x = xφ for some Langlands parameter φ ∈ Φ(G/F ), the inclusion

StabĜλ(xφ)(ξ) ↪→ Ĝλ(xφ)

maps the identity component into the identity component, and therefore descends to a group homomor-

phism:

Amic
ξ → Aφ

In what follows, we will assume that λ : WF → LG is an unramified infinitesimal parameter. The

theorems that follow will also be true for arbitrary infinitesimal parameters, but the arguments are

complicated by an “unramification” procedure. The general arguments can be found in [CFM+17a], but

they obfuscate the simplicity of the construction and are not needed for this thesis, so we omit them1.

We choose a non-degenerate, Ad-invariant, symmetric bilinear form (·, ·) : ĝ× ĝ→ C. Such a form exists,

as one can extend the Cartan-Killing form on [ĝ, ĝ] to a form on ĝ by choosing any non-degenerate form

on z(ĝ) and insisting that z(ĝ) and [ĝ, ĝ] are orthogonal. Let λ : WF → LG be an infinitesimal parameter

and consider the grading induced by λ:

ĝ '
⊕
µ∈C

ĝµ

where Adλ(Fr)(x) = qµx for all x ∈ ĝµ.

Lemma 3.5.1. For every eigenvalue qµ of Adλ(Fr), the non-degenerate, Ad-invariant, symmetric bilinear

form (·, ·) : ĝ× ĝ→ C induces a non-degenerate, Ad-invariant, bilinear pairing:

(·, ·)µ : ĝµ × ĝ−µ → C

Proof. If x ∈ ĝµ, y ∈ ĝν , then

(x, y) =
(
Adλ(Fr)(x),Adλ(Fr)(y)

)
= qµ+ν (x, y)

so by invariance of the pairing we have (x, y) 6= 0 if and only if µ+ ν = 0. If the restricted pairing were

degenerate, then so too would be the original pairing on ĝ. The invariance of the restricted pairing is

trivial.

In light of the previous lemma, we define the dual Vogan variety :

V †λ =
{
x ∈ ĝ |Adλ(Fr)(x) = q−1x

}
The next proposition will allow us to view the cotangent bundle to a Vogan variety as also being a

subvariety of ĝ.

Proposition 3.5.1. There exists a canonical Ĝλ-equivariant isomorphism of varieties Vλ×V †λ → T ∗Vλ

Proof. Being an affine space, there exist canonical isomorphisms TVλ ' Vλ × Vλ and T ∗Vλ ' Vλ × V ∗λ ,

1The unramification procedure works by considering the decomposition of λ(Fr) as a product of commuting elliptic and
hyperbolic semisimple elements. Setting J0

λ to be the connected component of the centralizer of the hyperbolic part of
λ(Fr), one then defines an unramified parameter λnr : WF → J0

λ ×WF by sending a lift of Frobenius to the elliptic part
of λ(Fr). One may then relate the categories of equivariant perverse sheaves on Vλ and Vλnr
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with V ∗λ the dual vector space to Vλ. Define the map

Vλ × V †λ → T ∗Vλ ' Vλ × V ∗λ

(x, ξ) 7→ (x, (ξ, ·)1)

This map is an isomorphism because of the non-degeneracy of the restricted pairing, as in Lemma 3.5.1.

Equivariance of the map follows from invariance of the pairing. The isomorphism is canonical because

Vλ ⊆ [ĝ, ĝ], so the pairing above only depends on the Cartan-Killing form of [ĝ, ĝ].

Let ψ ∈ Ψ(G/F ) be an Arthur parameter, and φψ the associated Langlands parameter. To φψ we

can also associate a point xψ ∈ Vλ, where λ(w) = φψ(w, dw) = ψ(w, dw, dw). Denoting ψr = ψ|SL2×SL2
,

we have that:

xψ = dψr

((
0 1

0 0

)
,

(
0 0

0 0

))
We will also let:

ξψ = dψr

((
0 0

0 0

)
,

(
0 0

1 0

))

Let us show that if λ(w) = ψ(w, dw, dw), then ξψ ∈ V †λ . We must compute:

Adλ(Fr)(ξψ) = Adψ(Fr,dFr,dFr)

(
dψr

((
0 0

0 0

)
,

(
0 0

1 0

)))

= dψr

((
0 0

0 0

)
,

(
q1/2 0

0 q−1/2

)(
0 0

1 0

)(
q−1/2 0

0 q1/2

))

= dψr

((
0 0

0 0

)
,

(
0 q−1

0 0

))

= q−1 dψr

((
0 0

0 0

)
,

(
0 1

0 0

))

This computation has shown that to any Arthur parameter ψ ∈ Ψ(G/F ), we may associate a point

(xψ, ξψ) ∈ T ∗Vλ ' Vλ × V †λ . Something more is actually true. The image of dψr must consist of a pair

of commuting sl2-triples. This implies that we also have [xψ, ξψ] = 0. Let Sψ denote the Ĝλ-orbit of xψ

in Vλ. By Proposition 22.2 of [Lus95b], we have

T ∗SψVλ =
{

(x, ξ) ∈ Vλ × V †λ | [x, ξ] = 0
}

This means that not only is the pair (xψ, ξψ) ∈ T ∗Vλ, but it is actually a point in T ∗SψVλ.

Proposition 3.5.2. The Ĝλ(xψ) orbit of ξψ is open and dense in T ∗Sψ,xψVλ

Proof. The author is thankful to Bin Xu for explaining the proof. To show that the orbit is open, it

suffices to prove that the tangent space to the Ĝλ(xψ)-orbit of ξψ in T ∗Sψ,xψVλ is equal to T ∗Sψ,xψVλ

(denseness follows, since we are considering an algebraic action of an algebraic group). Recall from

Proposition 3.5.1 that the identification T ∗Vλ → Vλ×V †λ is equivariant, so we can identify the action of

Ĝλ(xψ) on T ∗Sψ,xψVλ with the restriction of the adjoint action on V †λ . The tangent space to the orbit of



Chapter 3. The microlocal conjecture on A-packets 36

ξψ is:

Tξψ

(
Ĝλ(xψ) · ξψ

)
=
{

[X, ξψ] ∈ V †λ |X ∈ Lie Ĝλ(xψ)
}

and we are required to prove that this set is equal to T ∗Sψ,xψVλ.

The morphism ψr : SL2(C) × SL2(C) → Ĝ, combined with the adjoint action, gives us a pair of

commuting sl2-representations on ĝ. This commuting pair gives us a bigrading of ĝ by weight spaces.

We write

ĝ =
⊕
n∈Z

ĝn

where we have denoted

ĝn =
⊕
n=r+s

ĝr,s

for r, s ∈ Z. Notice that ĝ0 = Lie Ĝλ, and V †λ = ĝ−2. We are done if we can show that:

[ĝ0 ∩ LieZĜ(xψ), ξψ] = ĝ−2 ∩ LieZĜ(xψ)

Let r + s = 0 and consider the following diagram:

ĝr,s

ad(ξψ)

��

ad(xψ) // ĝr+2,s

ad(ξψ)

��
ĝr,s−2

ad(xψ)
// ĝr+2,s−2

The Jacobi identity and [xψ, ξψ] = 0 implies that the diagram is commutative. We have:

[ĝ0 ∩ LieZĜ(xψ), ξψ] =
⊕
r+s=0

[ker ad(xψ)|ĝr,s , ξψ]

ĝ−2 ∩ LieZĜ(xψ) =
⊕
r+s=0

ker ad(xψ)|ĝr,s−2

We need to check that these two sets are equal. By sl2-representation theory, ad(xψ) is injective when

r < 0, in which case the claim is trivial. We may assume then that r ≥ 0 so that s ≤ 0 and ad(ξψ) is

surjective.

The first containment is easy. Suppose that y = [X, ξψ] for X ∈ ker ad(xψ)|ĝr,s , then

[xψ, y] = [xψ, [X, ξψ]] = [[xψ, X], ξψ] + [X, [xψ, ξψ]] = 0

So y ∈ ker ad(xψ)|ĝr,s−2
.

Now suppose that we have y ∈ ĝr,s−2 such that [xψ, y] = 0, so y is a highest weight vector for an

irreducible representation V of the first SL2. Since ad(ξψ) is surjective, choose a lift ỹ ∈ ĝr,s and consider

W the SL2-representation generated by ỹ. We have a map of SL2 representations:

ad(ξψ) : W → V

which we can split, since V is irreducible and the category of finite dimesional SL2 representations is
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semisimple. Let T : V → W denote the splitting, then T (y) ∈ ker ad(xψ) and y ∈ im ad(ξψ). This

completes the proof.

As a consequence of these computations and Proposition 3.5.2, we have arrived at the following

theorem:

Theorem 3.5.1. For every ψ ∈ Ψ(G/F, λ), the Ĝλ(xψ)-orbit of (xψ, ξψ) ∈ T ∗SψVλ is open

The theorem above allows us to define a microlocal Arthur component group. To any Arthur pa-

rameter ψ ∈ Ψ(G/F ), we associate a point in the conormal fiber T ∗Sψ,xψVλ whose orbit is open. Using

Definition 3.5.2 we have a corresponding microlocal component group Amic
ψ , together with a map:

Amic
ψ → Aφψ

We have successfuly completed the required geometrization. Arthur parameters give rise in a natural

way to conormal varieties of orbits. Given any Arthur parameter ψ ∈ Ψ(G/F, λ), we can make a packet

of representations from ψ in two ways. The first packet is Arthur’s A-packet Πψ. The second packet is

gotten by considering the representations that correspond to the D-modules in the micropacket Πmic
Sψ

.

Both packets contain the L-packet Πφψ , but might contain more representations. The exception, of

course, is that the open orbit in Vλ will always satisfy Πψ = Πφψ = Πmic
Sψ

; the first equality follows from

the fact that the corresponding A-parameter is tempered, while the second equality follows from Remark

2 following Definition 3.5.1. Furthermore, the condition that Amic
ψ is the component group of the open

orbit means that the image of the microlocalization functor:

Qψmic : D-modĜλ(Vλ)→ Loc((T ∗SψVλ)reg)

gives us a collection of local systems on (T ∗SψVλ)reg, and therefore representations of its fundamental

group. These representations of π1 descend to representations of Amic
ψ . In summary, we have a chain of

correspondences:

Π(G/F ) // D-modĜλ(Vλ) // Loc((T ∗SψVλ)reg) // Âmic
ψ

(π, δ) � //M(π, δ) � // L(π,δ)
� // 〈·, π〉

where the restriction of 〈·, π〉 to Z(Ĝ)Γ is the character corresponding to the pure inner form δ under

the Kottwitz isomorphism. We are then led to the following conjecture:

Conjecture 3.5.1. (The microlocal conjecture) Let G be a p-adic group. If ψ ∈ Ψ(G/F ) is any A-

parameter, then:

Πψ = Πmic
Sψ

and the association Πψ → Âψ agrees with the geometric construction coming from microlocalization.

The main goal of the third chapter of this thesis is to take a step towards understanding this con-

jecture. In chapter three we will characterize the micropackets Πmic
Sψ

in the case that the infinitesimal

parameter associated to ψ is unramified, and the image of a lift of Frobenius is a regular semisimple

element. In fact, for a such a Vλ, we will use the characteristic cycle condition to associate a micropacket
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to any orbit. In the case of real groups, Adams, Barbasch, and Vogan use the regular semisimple case in

a reduction step using a so called, “translation datum” [ABV12]. It’s possible that a similar reduction

is possible in the p-adic setting.

3.6 Wild speculation

The intent of this section is to draw attention to several peculiarities about the constructions we have

made, and what the underlying cause of these peculiarities might be.

3.6.1 Geometric endoscopy

Understanding the D-modules on a Vogan variety whose corresponding infinitesimal parameter is un-

ramified seems to be very difficult, in general, and computing the micropackets is even more difficult.

We will see in chapter 3 that for a regular, unramified Vogan variety the micropackets are given by an

explicit combinatorial formula. Since we can solve the problem in the latter case, but not the former,

we might ask whether or not we can use information about packets for regular Vogan varieties to obtain

information about packets for the non-regular ones.

The element λ(Fr) may not be a regular semisimple element in Ĝ, but it can still be a regular

semisimple element for endoscopic subgroups. Consider again the second part of Example 3.3.4. We had

an unramified infinitesimal parameter such that λ(Fr) = diag(q3/2, q1/2, q1/2, q−1/2, q−1/2, q−3/2). While

this is not a regular semisimple element in Sp6, it is a regular semisimple element in the endoscopic

subgroup Sp2 × Sp4:

Sp2 × Sp4 =





∗ ∗ 0 0 ∗ ∗
∗ ∗ 0 0 ∗ ∗
0 0 ∗ ∗ 0 0

0 0 ∗ ∗ 0 0

∗ ∗ 0 0 ∗ ∗
∗ ∗ 0 0 ∗ ∗


∈ Sp6


We can solve the problem of computing the micropackets easily in the latter case. It is forthcoming work

to determine how the micropackets for the endoscopic subgroup with a regular parameter can be used

to calculate the micropackets of a non-regular parameter [CFM+17b]

Another problem of interest is whether these geometric constructions can be used to say anything

about the transfer factors. The microlocal constructions give conjectural explicit constructions for both

the packet Πψ, as well as the map Πψ → Aψ. This data completely determines the right hand side of

the formula in part (b) of Theorem 3.4.2. Then the left hand side, which gives information about the

transfer factors for an endoscopic subgroup, can be determined in terms of the right hand side, which

is determined purely geometrically. This seems to provide further substance to some remarks of Arthur

[Art06, Remark 8, p. 211].
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3.6.2 Twisting by unramified characters

As we have seen, when z ∈ Z(Ĝ)Γ and φ : LF → LG is a Langlands parameter, we can obtain a new

Langlands parameter φ′ ∈ Φ(G/F ) by twisting our old one with respect to this central element:

φ′(w, x) = zord(w)φ(w, x)

where ord(w) is the integer defined by [w] = [Frord(w)] ∈WF /IF . To every such element z ∈ Z(Ĝ)Γ, we

can also associate an unramified character χz, as in Example 3.3.1 where we identified elements of the

dual torus with unramified characters. The Langlands correspondence posits that the packets Πφ and

Πφ′ should be related to one another in the following way:

Πφ′ = {χz ⊗ π |π ∈ Πφ}

It is not clear what the analogue of twisting by unramified characters should be in Vogan’s ge-

ometrization of the local Langlands correspondence. We would like a geometrization of twisting to be,

for every fixed λ : WF → LG, a collection of functors:

Fz : D-modĜλ(Vλ)→ D-modĜλ(Vλ) z ∈ Z(Ĝ)Γ

Satisfying the property Fzz′ ' Fz ◦Fz′ .

As our current constructions stand, it is impossible for such a collection of functors to exist. Consider,

as a counter-example, any unramified Vogan variety. Let the corresponding infinitesimal parameter

be λ : WF → LG. In Example 3.3.1, we discussed which representations should correspond to the

simple equivariant D-modules on Vλ. These were the irreducible components of the principal series

representation corresponding to the element λ(Fr). If {φi} ⊆ Φ(G/F ) are the L-parameters such that

φi(w, dw) = λ(w) for all i, then we can see that the infinitesimal parameter associated to z · φi is given

by z · λ. The key observation here is that twisting does not preserve the infinitesimal character, yet

we will still have Vλ = Vz·λ. Should the D-modules on Vλ = Vz·λ be associated through our geometric

correspondence to the composition factors of χλ, or of χz·λ?

One possible remedy to this problem is to simply keep track of the central twist by considering the

varieties:

V[λ] =
∐

z∈Z(Ĝ)Γ

Vz·λ ' Z(Ĝ)Γ × Vλ

The group Ĝλ acts on V[λ] through its action on each of the Vz·λ, and Z(Ĝ)Γ acts by permuting the

connected components of V[λ]. One could then try to implement the twisting functors on the category

of D-modules on V[λ].

The origin of this problem seems to be the attempt to directly interpret the D-modules appearing

Vogan’s varieties as representations of the group G(F ); or equivalently, as representations of the affine

Hecke algebra H(G,K), where K ⊆ G(F ) is the Iwahori subgroup. In [Lus88, Lus95a], Lusztig studies

how the category of equivariant perverse sheaves on Vλ relates to the category of modules over H(G,K).

In his work, the semisimple element λ(Fr) gives a character of the Bernstein center by evaluation:

χλ : Z(H) ' C[T̂ × C∗]W → C
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χλ(f) = f(λ(Fr), 1)

We have an ideal Iλ = kerχλ ⊆ Z(H), which we can use to produce an Iλ-adic filtration on H(G,K):

H(G,K) ⊇ IλH(G,K) ⊇ I2
λH(G,K) ⊇ . . .

The associated graded algebra grλH(G,K) is called the graded Hecke algebra (for details on these

constructions, see [Lus89]). Lusztig proves that there is an equivalence of categories:

Mod grλH(G,K)→ ModH(G,K)Iλ

where ModH(G,K)Iλ denotes the subcategory of representations of H(G,K) on which the ideal Iλ is

contained in the annihilator. Lusztig also proves an equivalence of categories:

PervĜλ(Vλ)→ Mod grλH(G,K)

In summary, we have a chain of correspondences:

Equivariant perverse sheaves on Vλ Modules over a graded Hecke algebra

Modules over the affine Hecke algebra G(F ) representations

As we can see, in Lusztig’s work the connection between modules on Vλ and representations of G(F )

is rather indirect. From a geometric perspective, the most important equivalence above is the one passing

between the affine Hecke algebra and its graded version. In Lusztig’s words [Lus88]:

The connection between an affine Hecke algebra and its graded version is analogous to

the connection between a reductive group and its Lie algebra... (In fact this is more than

an analogy).

Passing from the category ofH(G,K)-representations to the category of representations of the graded

Hecke algebra is to be thought of as a categorical analogue of linearization. We might then try to imitate

this linearization directly on some category of D-modules.

Question: Is there an H-variety X whose D-module category is equivalent to H(G,K)? Further, for

every χλ : Z(H)→ C, there should be a “linearization” functor:

Lλ : D-modH(X)→ D-modĜλ(Vλ)

compatible with the equivalences in Lusztig’s work.
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3.6.3 Refining the microlocal conjecture

Our version of the microlocal conjecture states that the A-packet Πψ is equal to the packet of simple,

equivariant D-modules whose characteristic cycles contain the the conormal to the orbit Sψ. It is strange

that the conjecture seemingly makes no use of the fact that the D-modules under consideration are

equivariant (other than to regulate the number of simple objects in the category). In some examples, it

can happen that the forgetful functor to the category of D-modules on Vλ (without equivariant structure)

is not faithful.

In fact, this is the case in Example 3.3.3. The group Ĝλ acting on Vλ in this example was disconnected,

and accordingly, there are multiple equivariant structures allowed on a fixed D-module. The category

of equivariant D-modules on Vλ has six objects, but there are only three D-modules underlying these

equivariant D-modules. This is happening because π0(Ĝλ) = Z2 in this example, so there are two

distinct equivariant structures on any fixed module. They are distinguished by the character of the

π0(Ĝλ) action on global sections. The characteristic cycle of the equivariant D-module is not affected

by the equivariant structure, and so we see that the micropackets are forced to contain multiple copies

of the same D-module (with different equivariant structure), but with multiplicity corresponding to the

number of characters of π0(Ĝλ).

The theory of descent tells us that G-equivariant D-modules on a variety X are secretly D-modules

on the quotient stack [X/G]. Accordingly, the characteristic cycle of an equivariant D-module should

not be a Lagrangian cycle in T ∗X, but a Lagrangian cycle in T ∗[X/G]. This observation might be useful

if one needs to modify the microlocal conjecture in the event that it is proven false.

3.6.4 What are the extra packets

The inclusion Ψ(G/F ) ↪→ Φ(G/F ) is not a surjection. While some of the orbits in Vλ have Arthur

parameters attached to them, many orbits do not. This is best demonstrated by example when λ is a

regular, unramified infinitesimal parameter. For concreteness, let’s take λ : WF → SL4(C) given by:

λ(Fr) =


q3/2 0 0 0

0 q1/2 0 0

0 0 q−1/2 0

0 0 0 q−3/2


Let’s classify the possible Arthur parameters ψ such that λ(w) = ψ(w, dw, dw). As a 4-dimensional

representation of WF × SL2(C)× SL2(C), ψ must take one of the following forms:

ψ =


| · |a ⊗ ν4 ⊗ ν1

(| · |a ⊗ ν3 ⊗ ν1)⊕ (| · |b ⊗ ν1 ⊗ ν1)

| · |a ⊗ ν2 ⊗ ν2

| · |a ⊗ ν1 ⊗ ν4

where a and b are complex numbers, |·| is the norm homomorphismWF → C∗, and νk is the k dimensional

representation of SL2(C). In order for ψ(Fr, dFr, dFr) to have distinct eigenvalues, only the first and last

cases above are possible (with a = 0). This happens more generally as well. For any regular, unramified

Vogan variety there are at most two distrinct Arthur parameters whose corresponding infinitesimal
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parameter is λ. However, there are 2|Rλ| orbits in a regular, unramified Vogan variety.

Never the less, it is still possible to attach microlocal packets to orbits which do not correspond to

any Arthur parameter. It is a question of interest to determine how these “extra” packets, which are

purely geometric, can be understood in a representation theoretic context.



Chapter 4

Computing regular microlocal

A-packets for split classical groups

4.1 Notation

Throughout this chapter we will use the following notation. If F is a p-adic field, we let q be the

cardinality of its residue field. We will always be dealing with split groups over F in this chapter,

so their corresponding L-groups can be identified as the direct product LG = Ĝ × WF , with Ĝ the

complex Langlands dual group. We will accordingly think of infinitesimal parameters as homomorphisms

λ : WF → Ĝ. If G is a reductive group, R will be its roots, ∆(G) will be its simple roots, and for an

infinitesimal parameter λ : WF → Ĝ, we letRλ ⊆ R denote the set of roots such that Adλ(Fr)(Eα) = q Eα,

where Eα is a root vector corresponding to the root α. When λ is regular and unramified, we are free

to assume that Rλ ⊆ ∆(G). The orbits of a regular unramified Vogan variety are indexed by subsets

J ⊆ Rλ, which we will find occasion to identify as subsets of {1, . . . , n} by having chosen a fixed labelling

of the simple roots. If χ : π1(SJ)→ C∗ is a character, we denote by kerχ ⊆ Rλ the set of roots for which

the monodromy of the local system corresponding to χ is trivial around the corresponding coordinates.

If J ⊆ Rλ we will write:

C[xJ ] = �j∈JC[xj ]

and similarly,

C[∂J ] = �j∈JC[∂j ]

If SJ denotes the orbit in Vλ corresponding to J , we will simply denote:

T ∗SJVλ = T ∗JVλ

If J ⊆ Rλ indexes an orbit in Vλ, then we will denote the corresponding micropacket simply by ΠJ ,

instead of Πmic
SJ

.

We will always be denoting nilpotent orbits by O ⊆ ĝ, and orbits in Vogan varieties will be denoted

using S (or SJ , if we wish to make a specific reference to the subset J ⊆ Rλ). If x ∈ O, the component

43
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group of a nilpotent orbit is the finite group:

A(O, x) = π0

(
StabĜ(x)

)
while if S ⊆ Vλ is an orbit, we will also denote the component group:

A(S, x) = π0

(
StabĜλ(x)

)
The notation should cause no confusion, as S is always an orbit in Vλ, while O is always a nilpotent

orbit. If J ⊆ Rλ indexes the orbit S := SJ , then we will sometimes write the component group of S as

AJ .

4.2 Introduction

We will begin this section by describing an example computation of some microlocal packets for PGL4(F ),

where F is a p-adic field. The structure of the general arguments is heavily reflected in the structure of

this specific example. Consider the unramified infinitesimal parameter given by:

λ : WF → SL4(C)

Frob 7→ diag(q3/2, q1/2, q−1/2, q−3/2)

The corresponding Vogan variety Vλ is seen to be the product of the simple root spaces.

Vλ =




0 x1 0 0

0 0 x2 0

0 0 0 x3

0 0 0 0


 ⊆ sl4(C)

Henceforth, we use the coordinates x1, x2, and x3 to identify Vλ ' C3. The T -action is given by the

adjoint action, and may be written:

a : T × C3 → C3

(t1, t2, t3, t4) · (x1, x2, x3) 7→ (t1t
−1
2 x1, t2t

−1
3 x2, t3t

−1
4 x3)

Remembering that the relation t1t2t3t4 = 1 holds. The orbits of this group action are easily seen to

correspond bijectively with subsets J ⊆ {1, 2, 3}; they are:

SJ = {(x1, x2, x3) : j ∈ J ⇒ xj 6= 0, j /∈ J ⇒ xj = 0}

These are locally closed subvarieties whose boundaries are normal crossing divisors in their closures.

We now give a description of the simple, T -equivariant D-modules on Vλ. All of these D-modules

arise from minimal extension of an equivariant vector bundle with flat connection on some stratum SJ .

To describe such an object, we only need to specify the corresponding monodromy representation. To

each T -orbit in Vλ we can canonically associate a covering map whose covering group is isomorphic to

the component group of the stabilizer of a point in the orbit. In order for the vector bundle so obtained
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to be T -equivariant, we allow only those monodromies which arise from irreducible representations of

these covering groups.

Let’s look at how this arises in this particular example. For the stratum J = {1, 3} we can take a

representative point xJ = (1, 0, 1). The stabilizer of this point is the subtorus:

StabT (xJ) =
{

(t, t, s, s) ∈ T : (ts)2 = 1
}

This is not connected, but has the two connected components consisting of points
{

(t, t, t−1, t−1)
}

and{
(t, t,−t−1,−t−1)

}
, with the former set of points determining the connected component of the identity.

The component group of the stratum is therefore AJ = Z2. Explicitly, the covering map is given by:

pJ : S̃J = T/StabT (xJ)◦ → SJ

tStabT (xJ)◦ 7→ t · xJ = (t1t
−1
2 , 0, t3t

−1
4 )

The theory of covering spaces gives an isomorphism:

AJ '
π1(SJ)

(pJ)∗(π1(S̃J))

We fix a splitting of the exact sequence (this can be done, for instance, by finding a basis of X∗(T )

containing (1, 1,−1,−1)):

1→ StabT (xJ)◦ → T → S̃J → 1

So that S̃J can be identified with a subtorus isomorphic to (C∗)2:

S̃J =
{

(1, t, st−1, s−1) : s, t ∈ C∗
}

With these identifications, the map pJ is:

pJ(t, s) = (t−1, 0, s2t−1)

On fundamental groups, the induced map is:

(pJ)∗ : Z2 → Z2

(
1

0

)
7→

(
−1

−1

)
(

0

1

)
7→

(
0

2

)

The lattice (pJ)∗(π1(S̃J)) is spanned by these two elements, and e1 = (1, 0) is a representative of the

non-trivial element of AJ = Z2. The component group AJ has two irreducible representations; the two

corresponding simple, T -equivariant D-modules on SJ are determined by their monodromies. We should

say what the monodromy does on e2 = (0, 1), the second generator of π1(SJ). Notice that if χ is an

irreducible representation of π1(SJ) induced from an irreducible representation of AJ , then χ is trivial
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on (pJ)∗(π1(S̃J)). Applying this to the example under consideration, it must be that:

1 = χ(e1 + e2) = χ(e1)χ(e2)

So χ(e1) = χ(e2)−1. This relation completely determines the monodromy.

We have calculated that there are two simple, T -equivariant D-modules on SJ . The monodromy

determines them uniquely. As OSJ -modules, they are both isomorphic to the sheaf associated to

C[x1, x
−1
1 , x3, x

−1
3 ]. The difference between them is in the flat connection. For the trivial character,

the ring elements ∂i act as they usually do on functions; however, for the non-trivial character, ∂i acts

through the flat connection as the operator:

∂i = xi
∂

∂xi
− 1

2

We will let M̃1 denote the DSJ -module corresponding to the trivial character, and M̃−1 the DSJ -module

corresponding to the non-trivial character.

Recall that if i : U → X is an inclusion of a locally closed subvariety, the minimal extension of a

DU -module M is characterized as the unique irreducible submodule of
∫
i
M, extended by zero to give

a DX -module. When the morphism i is the inclusion of an affine open set, then the pushforward
∫
i
M

is simply the DX -module obtained by restricting differential operators to the open set U .

Let i : SJ → SJ denote the inclusion of the stratum into its closure; this is an affine, open immersion.

Pushing forward gives two modules over C[x1, ∂1, x3, ∂3].
∫
i
M̃−1 is a simple module; however,

∫
i
M1

contains a unique irreducible submodule consisting of polynomials with positive degree. Extending by

zero simply adjoins the derivatives in the x2 direction. The minimal extensions are therefore:

M(SJ , χ1) = C[x1] � C[∂2] � C[x3]

M(SJ , χ−1) =
C[x1, ∂1]

(x1∂1 − 1/2)
� C[∂2] �

C[x3, ∂3]

(x3∂3 − 1/2)

By Proposition 2.4.1 and Examples (2.4.1, 2.4.2, 2.4.3) the characteristic cycles are:

CC(M(SJ , χ1)) = [T ∗S13
Vλ]

CC(M(SJ , χ−1)) = [T ∗S∅Vλ] + [T ∗S1
Vλ] + [T ∗S3

Vλ] + [T ∗S13
Vλ]

An identical analysis can be performed on the other strata. The result of the computation would

be the following table, which summarizes all of the simple T -equivariant D-modules on Vλ and their

characteristic cycles:
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J AJ Mχ
J CC(M(J, χ))

123 Z4

C[x1, x2, x3] [T ∗S123
Vλ]

C[x1,∂1]
(x1∂1+1/4) ⊗C

C[x2,∂2]
(x2∂2+1/2) ⊗C

C[x3,∂3]
(x3∂3+3/4)

∑
J⊆{1,2,3}[T

∗
SJ
Vλ]

C[x1,∂1]
(x1∂1+1/2) ⊗C C[x2]⊗C

C[x3,∂3]
(x3∂3+1/2) [T ∗S2

Vλ] + [T ∗S12
Vλ] + [T ∗S23

Vλ] + [T ∗S123
Vλ]

C[x1,∂1]
(x1∂1+3/4) ⊗C

C[x2,∂2]
(x2∂2+1/2) ⊗C

C[x3,∂3]
(x3∂3+1/4)

∑
J⊆{1,2,3}[T

∗
SJ
Vλ]

13 Z2

C[x1]⊗C C[∂2]⊗C C[x3] [T ∗S13
Vλ]

C[x1,∂1]
(x1∂1−1/2) ⊗C C[∂2]⊗C

C[x3,∂3]
(x3∂3−1/2) [T ∗S∅Vλ] + [T ∗S1

Vλ] + [T ∗S3
Vλ] + [T ∗S13

Vλ]

Else 1 C[xJ ]⊗C C[∂Jc ] [T ∗SJVλ]

For a stratum I ⊆ Vλ, we may simply read off the geometric A-packet ΠI for this example from

the table above; however, we would like to describe the packets using a simple combinatorial formula

involving J , χ, and I. One can simply notice that in the above example, the packets are given by:

ΠI = {M(J, χ) | kerχ ⊆ I ⊆ J}

Where kerχ indexes the coordinates for which the local system underlying M(J, χ) has trivial mon-

odromy. In fact, this simple combinatorial formula will hold for a broad collection of classical groups.

Theorem 4.2.1. Let G = SLn,PGLn,Sp2n,SO2n+1. If SI ⊆ Vλ is the stratum in an unramified, regular

Vogan variety of G corresponding to the subset I ⊆ Rλ, then the micropacket associated to SI is:

ΠI = {M(J, χ) | kerχ ⊆ I ⊆ J}

Our efforts in this chapter will be devoted to proving this theorem, and will proceed on a case by

case basis.

4.3 Stabilizer coverings of regular, unramified Vogan varieties

Let λ : WF → Ĝ be an unramified infinitesimal parameter. Such a parameter is determined by the

image of the Frobenius element. We make the simplifying assumption that λ(Fr) is a regular semisimple

element in ∨G, which we may as well assume lies in a fixed maximal torus T . Vogan originally defined,

for any choice of infinitesimal parameter, a variety:

Vλ =
{
X ∈ ĝ : Adλ(Fr)(X) = qX

}
Where q is the characteristic of the residue field of F . When the image of Frobenius is a regular

semisimple element, we will call Vλ a regular, unramified Vogan variety.

Under our simplifying assumption, the variety Vλ can be written using the root space decomposition

of g. Letting Rλ = {α ∈ R : α(λ) = q} and Eα ⊆ g be the root space corresponding to the root α, then,

Vλ =
∏
α∈Rλ

Eα

Since we are only going to care about infinitesimal parameters λ up to conjugacy, we are free to assume
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that Rλ ⊆ ∆(G). The torus T = Z∨G(λ) acts on Vλ by the adjoint action on the root spaces:

a : T × Vλ → Vλ

t · (xα)α∈Rλ = (α(t)xα)α∈Rλ

The T action stratifies Vλ by its orbits, which are easily seen to be labelled by subsets J ⊆ Rλ. Let SJ

be the stratum corresponding to a subset J ⊆ Rλ; a point (xα) ∈ SJ if and only if xα = 0 for all α /∈ J .

Choose a basepoint xJ ∈ SJ ; we may as well assume that (xJ)α = 0 for α /∈ J and (xJ)α = 1 for

α ∈ J . Letting S̃J = T/Stab0
T (xJ), such a choice yields a covering of the stratum:

pJ : S̃J → SJ

tStab0
T (xJ) 7→ (α(t))α∈J

Characters of the group of deck transformations yield T -equivariant vector bundles with flat connections

on SJ , which then give D-modules on Vλ by minimal extension.

The D-modules so obtained are therefore prescribed by their monodromies around a generating set

for π1(SJ); however, only monodromies induced from characters of these coverings are permitted. It

is therefore crucial to determine the sublattice pJ∗ (π1(S̃J)) ⊆ π1(SJ). Every stratum SJ is a product

(C∗)|J|, whose fundamental group is π1(SJ) ' Z|J|. We let [γα(s)] ∈ π1(SJ) denote the path whose

coordinates are xα′(s) = 1 for α′ 6= α, xα(s) = eis. The collection [γα] is a basis for π1(SJ).

Lemma 4.3.1. Let Ĝ be a complex reductive group corresponding to the root datum (X,R,X∨, R∨),

choose an unramified, regular, infinitesimal parameter λ : WF → Ĝ, and consider the associated variety

Vλ equipped with its stratification into T -orbits. For any stratum SJ ⊆ Vλ,

pJ∗ (π1(S̃J)) = spanZ

〈∑
α∈J

(α, λ)[γα] : λ ∈ X∨
〉

where (α, λ) denotes the perfect pairing between X and X∨.

Proof. First we find a generating set for π1(S̃J). The long exact sequence of homotopy groups for the

fibration Stab0
T (xJ) ↪→ T → S̃J yields an exact sequence:

1→ π1(Stab0
T (xJ))→ π1(T )→ π1(S̃J)→ 1

So π1(T ) surjects onto π1(S̃J) and every element [γ] ∈ π1(S̃J) can be written as [λ] for some λ ∈ X∨ '
π1(T ). The statement of the lemma now follows directly from the definition of pJ∗ :

pJ∗ ([λ(s)]) = [pJ(λ(s))] = [(α(λ(s)))α∈J ]

= [(s(α,λ))α∈J ]

=
∑
α∈J

(α, λ)[γα]

Remark : In fact, the map π1(Stab0
T (xJ)) → π1(T ) is an injection. This can be seen by choosing a
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complementary torus to Stab0
T (xJ), then the associated projection map T → Stab0

T (xJ) is a continuous

retraction. The long exact sequence of homotopy groups splits into a short exact sequence on π1, and

gives an isomorphism π1(S̃J) ' X∨/
⋂
α∈J kerα. By choosing a complement to

⋂
α∈J kerα ⊆ X∨ one

can obtain a minimal, finite generating set for pJ∗ (π1(S̃J)). This fact is useful when one needs to actually

compute a basis for these types of sublattices.

4.4 Induction functors for D-modules on Vogan varieties

An unramified infinitesimal parameter λ : WF → LG is determined by a choice of semisimple element

in LG. For any parabolic subgroup P = MN of LG containing λ, we can consider the Vogan variety

associated to λ, but with λ thought of as an element of any of M , P , or LG:

V Gλ = {X ∈ g : Adλ(X) = qX}

V Pλ = {X ∈ p : Adλ(X) = qX}

VMλ = {X ∈ m : Adλ(X) = qX}

The groups HM = ZM (λ), HP = ZP (λ) and HG = ZG(λ) act on VMλ , V Pλ and V Gλ , respectively.

The projection π : P → P/N ' M induces a map on Lie algebras, which we will also call π, and

therefore also a map π : V Pλ → VMλ . Similarly, the closed embedding i : P ↪→ G induces a closed

embedding i : V Pλ ↪→ V Gλ . We will say that a parabolic subgroup P is relevant for λ if HG and P

contain a common maximal torus in LG; this condition is meant to ensure that if p = mn ∈ P and

p ∈ ZG(λ), then m ∈ ZG(λ). If P is relevant for λ, then there are also maps φi : ZP (λ) → ZG(λ) and

φπ : ZP (λ)→ ZM (λ) induced by i and π, respectively.

Lemma 4.4.1. Let P be a parabolic subgroup with is relevant for λ. There is an equivariance condition

on the following maps:

1. i : V Pλ → V Gλ is a φi-equivariant map

2. π : V Pλ → VMλ is a φπ-equivariant map

Proof. The equivariance of item one is the property that the following diagram commutes:

HP × V Pλ
(φi,i)

��

aP // V Pλ

i

��
HG × V Gλ

aG // V Gλ

Where aG and aP are the respective action maps coming from the adjoint actions. The diagram com-

mutes because HP is a subgroup of HG, and V Pλ is an HP stable subvariety of V Gλ .

For the second item, we decompose the Lie algebra of the parabolic as p = m ⊕ n and write X =

XM+XN according to this decomposition. We also write elements p = mn using the Levi decomposition.

The map φπ is equivariant if and only if Adm(XM ) ≡ Admn(XM ) mod n; or stated slightly differently,

if Adn(XM ) ∈ XM + n. The follows from the relation between the Lie group/algebra adjoint actions:

Adexp(X) = exp(adX)
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and the fact that n is an ideal of p.

For the following definition we recall the functors of equivariant pushforward and pullback from

chapter one.

Definition 4.4.1. Let P = MN be a parabolic subgroup of G which is relevant for λ. The geometric

parabolic induction functor iGP : ModHM (VMλ )→ ModHG(V Gλ ) is the composition of functors given by:

iGP =

∫ •
i

◦π•

The geometric restriction functor rGP : ModHG(V Gλ )→ ModHM (VMλ ) is defined by:

rGP =

∫ •
π

◦i•

The definitions of geometric parabolic induction and restriction are abstract enough as to be prac-

ticially uncomputable, but they simplify in our situation of interest. The main use for the following

proposition is that it allows us to essentially ignore the equivariant structure for the purposes of com-

puting the microlocal packets.

Proposition 4.4.1. If λ : WF → LG is an unramified infinitesimal parameter such that the image of

Frobenius is regular semisimple and P = MN a parabolic subgroup which is relevant for λ, then:

1. HG = HP = HM = T is a maximal torus in LG.

2. If M• is any T -equivariant D-module on VMλ , then:

ForT ◦ iGP (M•) =

∫
i

◦π∗(M0)

Proof. The proof of the first item follows since HG is the unique maximal torus containing λ, thus must

be contained in both HM and HP by the assumption that P is relevant for λ. The second item follows

from Proposition 2.3.3.

Theorem 4.4.1. Suppose that λ : WF → LG is a regular, unramified infinitesimal parameter and

P = MN ⊆ Ĝ is a parabolic compatible with λ. If M is an equivariant D-module on VMλ such that:

CC(M) =
∑
S

mS(M)[T ∗SV
M
λ ]

then,

CC(iGP (M)) =
∑
S

mS(M)[T ∗π−1(S)Vλ]

Proof. The map π : V Pλ → VMλ is a submersion so it is non-characteristic for M, and i : V Pλ → Vλ is a
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closed embedding so it is proper. By Proposition 4.4.1 and Lemmas 2.4.2 and 2.4.1 we have that:

CC(iGP (M)) = CC

(∫
i

◦π∗M
)

= i∗ ◦ π∗CC(M)

=
∑
S

mS(M) [T ∗π−1(S)Vλ]

The previous theorem gives a very simple way to understand the combinatorics of how induction

affects the characteristic cycles of D-modules on regular unramified Vogan varieties.

4.5 Cuspidal D-modules on Vogan varieties

We are going to compute the Arthur-Vogan packets for a selection of split reductive groups over F . The

reduction to split groups will simplify several aspects of the computation and allow our work to tie into

the existing literature; foremost, it allows our theory to tie in to Lusztig’s work on the classification

of cuspidal local systems on nilpotent orbits [Lus85, Lus95b, Lus88]. The other benefit to making this

simplification is that complications in the L-group arising from non-trivial Galois actions are not present

when G(F ) is a split group. This observation allows us to replace the complex group LG with the simpler

complex reductive Langland’s dual Ĝ.

The computation of the Arthur-Vogan packets will proceed according to the following observations:

1. In analogy with Lusztig’s work, we can define a notion of cuspidal support for D-modules on Vλ

2. The cuspidal support indexes a decomposition of the category of D-modules on Vλ; in particular,

when λ is regular then every simple equivariant D-module on Vλ is equal to the parabolic induction

of a cuspidal D-module on a Levi subgroup

3. The characteristic cycles of the cuspidal objects will be easy to compute, and we can use simple

formulas to observe how the characteristic cycle commutes with induction

4. The formula so obtained will allow us to deduce exactly when a given module contains a fixed

conormal in its characteristic cycle.

The next few sections will follow the same logical structure to prove the observations we have listed

above. The reason that a case by case analysis is required is that Lusztig’s classification of cuspidal

local systems varies by type (e.g. SLn, Sp2n, SO2n+1, etc.), making a uniform treatment of the results

difficult to express. It is for this reason that we proceed on a case by case. Before proceeding to the

specific computations for each type, we will give a more specific outline of our plan of attack.

We recall the definition of a cuspidal local system from [Lus88]. Any reductive group G acts on its

Lie algebra g via the adjoint action. Let O be the orbit of an ad-nilpotent element, and let E be a

G-equivariant local system on O. If p ⊆ g is a parabolic subalgebra, we will write p = m ⊕ n for its

splitting according to the Levi decomposition. Here, m is the Lie algebra of a Levi subgroup M in G,

and n is the nilradical of p.
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Definition 4.5.1. A G-equivariant local system E on O is called cuspidal if and only if for every parabolic

subalgebra p = m⊕ n, and any y ∈ p we have, for every i:

Hi
c((y + n) ∩ O, E) = 0

We call (O, E) a cuspidal pair.

If E is a cuspidal local system on O, then IC(O, E) = j!E = j∗E , where j : O ↪→ N is the inclusion

into the nilpotent cone. This implies that the simple, cuspidal perverse sheaves on a nilpotent orbit are

exactly equal to their extensions by zero.

While Lusztig’s definitions apply to local systems on nilpotent orbits, we require something slightly

different. We are considering the collection of simple equivariant D-modules on the varieties Vλ. These

are in bijection with pairs (A(Gλ, x), χ) where χ is an irreducible representation of A(Gλ, x). Of course,

χ can be thought of as a Gλ-equivariant local system on the orbit Gλ · x.

Notice that g decomposes as a direct sum of eigenspaces for the adjoint action of the Frobenius

element:

g '
⊕
µ∈C

gµ

Where AdFr(x) = qµx. By definition, we have Vλ = g1. For any x ∈ gµ and y ∈ gν , we have

that [x, y] ∈ gµ+ν , so in particular, there is an inclusion of the Vogan variety into the nilpotent cone,

Vλ ↪→ N . This inclusion is equivariant for the action of Gλ on Vλ, and G on N , with respect to the

inclusion Gλ ↪→ G. As such, for every orbit S ⊆ Vλ, there exists a unique orbit O ⊆ N such that

S ⊆ O ∩ Vλ.

Proposition 4.5.1. Let x ∈ Vλ be a representative point of a Gλ orbit S ⊆ Vλ, and a nilpotent adjoint

orbit N ⊆ g. The inclusion StabGλ(x) ↪→ StabG(x) induces an isomorphism A(S, x)→ A(O, x).

Proof. The stabilizer of x ∈ O can be expressed as a semidirect product StabG(x) = UxoGφ, where Ux

is a connected unipotent group whose Lie algebra is ux = Zg(x)∩ [x, g], and Gφ is stabilizer of the unique

sl2-triple containing x and log λ(Fr) [CM93]. But by definition, an element of Gφ centralizes λ(Fr) and

x ∈ S, so Gφ = StabGλ(x). Since Ux is connected, the component group of StabG(x) is determined by

Gφ. This completes the proof.

The inclusion of orbits and the corresponding isomorphism of component groups will allow us to

define cuspidal D-modules on the variety Vλ.

Definition 4.5.2. Let S ⊆ Vλ be an orbit, and let O be the nilpotent orbit containing S. We say that

M(S, χ) is cuspidal if and only if there exists a cuspidal local system E on O such that Lχ = E|S.

The cuspidal local systems of the classical and exceptional groups have been completely determined

by Lusztig and Spaltenstein [LS85, Spa85]. Let A(G, u) denote the component group of the stabilizer of a

unipotent class u ∈ N . Since Z(G) ↪→ StabG(u), then we get a natural map ζ : Z(G)/Z(G)◦ → A(G, u).

Cuspidal G-equivariant local systems on nilpotent orbits correspond with representations ρ ∈ A(G, u)∨,

which can be pulled back along ζ. We set χ = ζ∗ρ and call it the central character of the local system.

We recall the classification of cuspidal local systems from [Sho88, Lus84].

Theorem 4.5.1. Let G be an almost simple, simply connected complex group. For every character

χ : Z(G)/Z(G)◦ → C∗, there exists a unique cuspidal local system (Eρ,O) such that χ = ζ∗ρ only if:
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1. (Type An) χ has order n+ 1

2. (Type Bn) If 2n+ 1 is a square, then χ = 1. If 2n+ 1 is a triangular number then χ 6= 1.

3. (Type Cn) If n is an even triangular number, then χ = 1. If n is an odd triangular number, then

χ 6= 1.

4. (Type Dn) If 2n is a square and n/2 is even then χ = 1. If 2n is a square and n/2 is odd then

χ 6= 1 and χ(ε) = 1. If 2n is a triangular number then χ 6= 1. Here, ε denotes the image of the

nontrivial element of Z2 in the sequence:

1→ Z2 → Spin2n → SO2n → 1

5. (Type E6, E7) Any non-trivial χ

6. (Type E8, F4, G2) χ = 1.

In fact, this theorem also yields a classification of the cuspidal local systems associated to any Levi

subgroup. Any such Levi subgroup is a complex reductive group. By passing to L/Z(L)◦ we get a

bijection between cuspidal local systems on L and cuspidal local systems on a semisimple group. If

L′ = L/Z(G)◦ is not simply connected, then we may pass to its universal cover π : L̃′ → L′ and obtain

a bijection between cuspidal local systems on NL′ , and cuspidal local systems on NL̃′ whose central

characters are trivial on kerπ ⊆ Z(L̃′)

Lusztig and Spaltenstein’s theorem on classification of cuspidal local systems, together with propo-

sition 4.5.1, will allow us to deduce that a similar classification theorem holds for cuspidal D-modules

on Vλ, where we now take ρ to be the central character of the D-module.

At this point a small, illustrative example is in order.

Example in SL2: Let G = SL2(C), and write a matrix X ∈ sl2:

X =

(
z x

y −z

)

The nilpotent cone is given by N =
{
X ∈ sl2 : xy + z2 = 0

}
, and consists of two orbits: The origin

(x, y, z) = 0 and the regular orbit O =
{

(x, y, z) : xy + z2 6= 0
}

. The covering of the regular orbit arising

from the adjoint action of G on N can be seen to be given by:

C2\ {(0, 0)} → O

(u, v) 7→

(
−uv u2

v2 uv

)
And this covering has Galois group Z2.

Let λ : WF → SL2(C) be the unramified infinitesimal parameter such that λ(Fr) = diag(q1/2, q−1/2);

the associated Vogan variety is exactly the C-span of the positive root space. The group Gλ = T acts

on Vλ via the adjoint action on the positive root space t · x = t2x, clearly having two orbits. For the

open orbit S, we easily see there is an inclusion S ↪→ O. We may pull back the covering C2 → O by this

inclusion to obtain a covering of S:

S̃ → S
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u 7→ u2

It is now easy to see that the pullback of the covering from O agrees with the covering of S one

obtains from the component group of the stabilizer for a representative point in the orbit. This gives

the isomorphism of Galois groups that allows us to restrict G-equivariant local systems from O to get

Gλ-equivariant local systems on S.

For an infinitesimal parameter λ : WF → ∨G, we let SG(λ) denote the set of triples (L, S, χ) such

that:

• L is a Levi subgroup of ∨G which contains λ(WF )

• S ⊆ V Lλ is an orbit in the L-Vogan variety associated to λ

• χ is an irreducible representation of A(S, x).

To (L, S, χ) ∈ SG(λ) we may associateM(S, χ), the ZL(λ)-equivariant cuspidal D-module on V Lλ arising

from minimal extension of the pair (S, χ). Throughout the next few sections we will characterize the set

SG(λ) under the assumption that λ is unramified and that λ(Fr) is a regular semisimple element.

4.6 Computation of micropackets

Our study of micropackets will be done on a case by case basis. We will study the groups LG =

SLn+1,PGLn+1,Sp2n and SO2n+1.

4.6.1 SLn+1

Let T be the maximal torus in SLn+1 consisting of diagonal matrices. We consider only unramified

infinitesimal parameters of the form:

λ : WF → SLn+1

λ(Fr) = diag(qa1 , . . . , qan+1)

where a1, . . . , an+1 are distinct real numbers, chosen so that a1 + · · · + an+1 = 0 (i.e. λ(Fr) is regular

semisimple). Let Rλ denote the set of roots such that the corresponding root space belongs to Vλ.

We can freely assume that Rλ ⊆ ∆(G); i.e. that the Vogan variety Vλ is a product of simple root

spaces. The maximal torus acts on Vλ through the root space action, and accordingly, two points are in

the same orbit if and only if they have the same non-zero components for each simple root. The strata

of Vλ are indexed by subsets J ⊆ Rλ, where the elements appearing in J label the non-zero coordinates.

From the subset J , construct an ordered tuple of integers (l1, . . . , lk) by recording the Jordan block sizes

of the chosen basepoint xJ ; for example, when J = {1, 3} ⊆ {1, 2, 3} we would get the tuple (2, 2), and

when J = {1, 2} ⊆ {1, 2, 3} we would get the tuple (3, 1). For later convenience, we set Lm =
∑m
j=1 lj .

Let AJ denote the group of deck transformations of the covering pJ : S̃J → SJ .

Lemma 4.6.1. Let SJ ⊆ Vλ be a stratum and pJ : S̃J → SJ the associated covering coming from the

T -action.

AJ '
Z

gcd(l1, . . . , lk)Z

Furthermore, [γ1] + pJ∗ (π1(S̃J)) is a generator of AJ .
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Proof. Standard theory of covering spaces gives an isomorphism AJ ' π1(SJ)/pJ∗ (π1(S̃J)). The desired

isomorphism comes about by applying lemma 4.3.1 in order to compute the Smith normal form of the

matrix of relations prescribed by pJ∗ (π1(S̃J)). The statement about [γ1]+pJ∗ (π1(S̃J)) generating AJ also

follows from a Smith normal form computation (taking a quotient of AJ by the subgroup generated by

[γ1] gives the trivial group).

We now give a description of the simple, T -equivariantD-modules,M(J, χ), which arise from minimal

extension of a vector bundle with flat connection on SJ . Such vector bundles are completely determined

by the conjugacy classes of their monodromy representations χ : π1(SJ) → GLn(C). The requirement

thatM(J, χ) be T -equivariant is enforced by restricting attention to monodromy representations which

are induced from irreducible representations of AJ .

Lemma 4.6.2. (SLn monodromy relations) Let SJ ⊆ Vλ be a stratum, and construct the associated

ordered tuple (l1, . . . , lk). If χ : π1(SJ) → C∗ is induced from a character of AJ , then χ satisfies the

following list of relations on the generating set [γi]:

1. For every m = 1, . . . , k:

χ([γLm−1−1]) = χ([γLm+1])−1

2. For every m = 1, . . . , k, and 0 < i < Lm − Lm−1:

χ([γLm−1+1])i = χ([γLm−1+i])

Proof. We may assume that there is no j such that lj = 1. If there were such a j, then lemma 4.6.1

would imply AJ is trivial and only induce the trivial representation of π1(SJ) may be induced.

As χ is induced from a character of AJ , the relations in the statement of the proposition are all

derived from the condition χ(pJ∗ (π1(S̃J))) = 1. We use lemma 4.3.1 to express the lattice pJ∗ (π1(S̃J)) in

terms of the basis of paths [γi]. Let Rij = (λi, αj), where {λi} is a basis for the cocharacter lattice and

j ∈ J . Simply put, the matrix Rij is the Cartan matrix for An with columns L1, . . . , Lk removed. The

sublattice pJ∗ (π1(S̃J)) is the rowspace of Rij .

The relations can now be deduced in both cases by careful examination of the matrix Rij . Supposing

that column Lm has been removed from the Cartan matrix, Rij takes the form:

Rij =

. . .
−1 2 −1 0 0 0

0 −1 2 0 0 0

0 0 −1 −1 0 0

0 0 0 2 −1 0

0 0 0 −1 2 −1

. . .


The first relation χ([γLm−1−1]) = χ([γLm+1])−1 can be extracted from the middle row. The second to

last row above yields χ([γLm−1+2]) = χ([γLm−1+1])2. From the last row shown above, we also have the

relation:

χ([γLm−1+1])−1χ([γLm−1+2])2χ([γLm−1+3])−1 = 1

Upon rearranging and substituting this yields χ([γLm−1+3]) = χ([γLm−1+1])3. Continuing this process

by induction gives all the relations in the statement of the proposition.
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We may use these monodromy relations to characterize the set SSLn(λ), whenever λ is a regular

unramified infinitesimal parameter.

Proposition 4.6.1. Let λ : WF → SLn(C) be a regular, unramified infinitesimal parameter. Then

(L, S, χ) ∈ SSLn(λ) if and only if

1. Rλ ⊇ ∆(L)

2. L is a Levi subgroup with (n+ 1)/k blocks of size k × k (in particular, k is a divisor of n+ 1)

3. S is the open orbit in V Lλ

4. χ : AS → C∗ has order k

Proof. Let (L, S, χ) be a cuspidal triple. By Theorem 4.5.1, L admits a cuspidal local system if and

only if L consists of blocks of size k × k with k some divisor of n+ 1. The corresponding cuspidal local

systems are supported on the regular nilpotent orbit. For this orbit, the map from Z(L)/Z(L)◦ to the

component group of the orbit is an isomorphism, so the cuspidal local systems on this Levi have central

characters which are primitive k’th roots of unity; so χ must have order k.

If Rλ does not contain the simple roots of L, then it is not possible to find a T -orbit S ⊆ V Lλ whose

corresponding L-orbit in NL is the regular nilpotent orbit in L. We conclude in this case that there are

no cuspidal triples (L, S, χ). A similar argument proves that S must be the open orbit in V Lλ . We may

henceforth assume that Rλ contains all the roots of a fixed cuspidal Levi L, and that S ⊆ V Lλ is the

open orbit.

The preceeding arguments have shown that if (L, S, χ) ∈ SSLn(λ), then L is a Levi subgroup with

evenly sized blocks, V Lλ = Vλ ∩ l, S is the open orbit of V Lλ , and χ is a character of a component

group with order equal to the size of the blocks appearing in L. The converse direction of the proof is

straightforward.

Let (L, S, χ) ∈ SSLn(λ), and write l = n/k so that [L,L] = SLk × · · · × SLk with l factors appearing

in the product. We also write χ(1) = ξ = exp(2πim/k). Recall the notation from chapter one:

Mξ =
DC

DC(x∂ −m/k)

Corollary 4.6.1. If ML(S, χ) is the cuspidal D-module on V Lλ corresponding to the triple (L, S, χ) ∈
SSLn(λ) (as above), then:

ML(S, χ) = �li=1

(
Mξ �Mξ2 � · · ·�Mξk−1

)
Furthermore,

CC(ML(S, χ)) =
∑

J⊆∆(L)

[T ∗SJV
L
λ ]

Proof. By proposition 4.6.1, L is a Levi subgroup consisting of l blocks of size k × k, where kl = n.

The corresponding Vogan variety for L is a product of the simple roots in L (one can imagine l Jordan

blocks of size k arranged along the diagonal; the Vogan variety is the product of the simple root spaces

appearing in these Jordan blocks). From the SLn monodromy relations of lemma 4.6.2, the character of

π1(V Lλ ) induced by χ has the following monodromies:
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γ1 γ2 γ3 . . . γk−1 γk γk+1 γk+2 . . . γn−1

ξ ξ2 ξ3 . . . ξk−1 - ξ ξ2 . . . ξk−1

From which the form ofM(S, χ) follows. The formula for the characteristic cycle follows from Proposition

2.4.1 and Example 2.4.2.

We have now characterized the cuspidal D-modules. Our next proposition will allow us to deduce

that any simple T -equivariant D-module on Vλ can be obtained by induction through some parabolic

subgroup.

Proposition 4.6.2. If M(J, χ) ∈ D-modT (Vλ), then there exists (L, S, η) ∈ SSLn(λ) and a parabolic

P = LU such that M(J, χ) = iGP (ML(S, η)). In particular,

CC(M(J, χ)) =
∑

I′⊆∆(L)

[T ∗I′
∐

kerχVλ] (4.1)

Proof. The component group of the stratum SJ is, according to lemma 4.6.1:

A(SJ , x) = Z/gcd(l1, . . . , lm)Z

For integers l1, . . . , lm which record the sizes of the Jordan blocks determined by J . If k = gcd(l1, . . . , lm),

then let L be the Levi subgroup of G consisting of n/k blocks of size k× k. The set of simple roots of L

is indexed by J\ kerχ. With these choices, the component group of the open orbit S ⊆ V Lλ is isomorphic

to A(SJ , x), so we simply let η = χ. Then by proposition 4.6.1, (L, S, η) is a cuspidal support and we

let ML(S, η) be the corresponding cuspidal D-module on V Lλ .

To ensure that iGP (ML(S, η)) =M(J, χ), we need only choose our parabolic subgroup such that:

1. If α ∈ kerχ then α ∈ ∆(P )

2. If α /∈ J , then α /∈ ∆(P )

The first condition ensures that when we pull D-modules back along the map V Pλ → V Lλ that the

restriction of the D-module to the coordinate corresponding to α is C[xα]. The second condition ensures

that when we push forward along the morphism V Pλ → V Gλ , that the restriction of the D-module to the

coordinate corresponding to α is C[∂α]. We can find a parabolic with these properties by choosing an

element λ ∈ R⊗X∗(T ) such that:

α(λ) = 0 for every α ∈ ∆(L)

α(λ) > 0 α ∈ kerχ

α(λ) < 0 α /∈ J

Then choose a minimal facet of the spherical building for SLn containing λ. The corresponding parabolic

subgroup will have Levi factor L and satisfy conditions (1) and (2) above.

The formula for the characteristic cycle follows by commuting the characteristic cycle with the in-

duction functor, as in Theorem 4.4.1, noticing that for any I ⊆ ∆(L) we have π−1(SI) = SI
∐

kerχ for

our choice of parabolic.
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Theorem 4.6.1. If SI ⊆ Vλ is the stratum in an unramified, regular Vogan variety of SLn+1 corre-

sponding to the subset I ⊆ Rλ, then the micropacket associated to SI is:

ΠI = {M(J, χ) | kerχ ⊆ I ⊆ J}

Proof. Let M(J, χ) ∈ ΠI , then by definition we have that CC(M(J, χ)) contains [T ∗SIVλ]. By equation

4.1 it is immediate that kerχ ⊆ I because I = I ′
∐

kerχ for some I ′ ⊆ ∆(L). We can also see that

if I 6⊆ J , then SI is not contained in the closure of SJ and so it is not possible for the characteristic

cycle of a D-module obtained by minimal extension from a local system on SJ to have [T ∗SIVλ] in its

characteristic cycle. This has shown that ΠI ⊆ {M(J, χ) | kerχ ⊆ I ⊆ J}.
The reverse inclusion follows immediately from equation 4.1, for we may write both J = ∆(L)

∐
kerχ

for some cuspidal Levi subgroup L, and I = (I\ kerχ)
∐

kerχ.

4.6.2 Sp2n

Let G(F ) = SO2n+1, so that we may identify LG = Sp2n. We fix a maximal torus T ⊆ Sp2n consisting of

diagonal matrices of the form t = diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 ). There are n simple roots for the adjoint

action of T on sp2n; we will call them α1, . . . , αn. They are the homomorphisms T → C∗ given by:

αi(t1, . . . , tn) =

{
tit
−1
i+1 1 ≤ i < n

t2n i = n

The cocharacter lattice X∗(T ) has a basis of homomorphisms:

ψi : C∗ → T

ψi(s) = diag(1, . . . , s, . . . , 1, 1, . . . , s−1, . . . , 1)

where the s is placed on the i’th diagonal entry.

Throughout this section we let λ : WF → Sp2n be an unramified infinitesimal parameter, and we

assume that λ(Fr) is regular semisimple. Furthermore, we may assume without loss of generality (by

conjugating λ(Fr)) that Vλ is a product of simple root spaces. We again let Rλ = {α ∈ ∆ |α(Fr) = q}.
The maximal torus acts on Vλ via the adjoint action on the root spaces, and so the orbits are indexed

by subsets J ⊆ Rλ. Our first proposition of this subsection characterizes the component groups of orbits.

Proposition 4.6.3. Let λ : WF → Sp2n be an unramified, regular infinitesimal parameter and Vλ the

associated Vogan variety. If SJ ⊆ Vλ is an orbit, then the component group AJ is given by:

AJ =

{
1 if αn 6∈ J
Z2 if αn ∈ J

When AJ is non-trivial, we may always take [γn] + pJ∗ (π1(S̃J)) as a generator of AJ .

Proof. The proof is similar to lemma 4.6.1. Use lemma 4.3.1 to get a generating set for the lattice

K = pJ∗ (π1(S̃J)). We can deduce the component group from the Smith normal form of the matrix

Rij = (αi(ψj)) where i = 1, . . . , n and j ∈ J . First consider the case where J = {1, 2, . . . , n− 1}. In
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this case, R takes the form:

R =


1 −1 0 . . . 0 0 0

0 1 −1 . . . 0 0 0
...

...

0 0 0 . . . 0 1 −1


One may compute the Smith normal form by performing rightward column replacements to see that

K = π1(SJ). For any other J such that αn /∈ J one would simply delete some of the rows of R and

perform an identical computation, in which case we still have K = π1(SJ).

In the case that αn ∈ J (say, J = ∆(Sp2n)), the matrix R is:

R =



1 −1 0 . . . 0 0 0

0 1 −1 . . . 0 0 0
...

...

0 0 0 . . . 0 1 −1

0 0 0 . . . 0 0 2


For any other J which contains αn, R would appear as above but with some of the rows deleted. In any

case, one can compute the Smith normal form by rightward column replacements and see that AJ ' Z2.

From the form of R, it is clear that the final column can be taken as a generator of AJ ; but

2[γn]− [γn−1] ∼ 2[γn] mod pJ∗ (π1(S̃J)) so the statement about [γn] being a generator of AJ follows.

The following proposition tells us the monodromies of simple T -equivariant local systems on SJ .

Proposition 4.6.4. (Sp2n monodromy relations) Let SJ ⊆ Vλ be a stratum. If αn ∈ J and χ̃ : π1(SJ)→
C∗ is induced from a character χ : AJ → C∗, then:

χ̃([γi]) = 1 for all i 6= n

χ̃([γn]) = χ(−1)

If αn /∈ J and χ̃ : π1(SJ)→ C∗ is induced from χ : AJ → C∗, then χ̃ is the trivial representation.

Proof. Considering again the matrix R (as in the proof of proposition 4.6.3), we see that [γi] ∈ pJ∗ (π1(S̃J))

for all i 6= n, while [γn] descends to a generator of AJ . The proposition now follows.

The simple T -equivariant D-modules on Vλ are obtained by minimal extension of the equivariant

local systems described by the previous proposition. Calling these D-modules M(J, χ), we can see that

if αn ∈ J then:

M(J, χ) '

{
C[xJ\n] � C[∂Jc ] �

DC
DC(xn∂n−1/2) if χ([γn]) = −1

C[xJ ] � C[∂Jc ] if χ([γn]) = 1

and if αn /∈ J , then:

M(J, χ) = C[xJ ] � C[∂Jc ]
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As in the case of SLn+1, we will present these D-modules as being induced from cuspidal ones on

Levi subgroups. We first require a characterization of the cuspidal triples SSp2n
(λ).

Proposition 4.6.5. Let λ : WF → Sp2n be an unramified, regular infinitesimal parameter. (L, S, χ) ∈
SSp2n

(λ) if and only if either of the following two conditions holds:

1. αn ∈ Rλ, L = GLn−1
1 × SL2, S is the open orbit in V Lλ , and χ is the non-trivial character of Z2

2. αn /∈ Rλ, L = T , S = V Tλ = {0}, and χ is trivial

Proof. Suppose that (L, S, χ) is a cuspidal triple.

The Levi subgroups of Sp2n take one of two forms. Either:

L = GLn1
× · · · ×GLnk

where n1 + · · ·+ nk = n, or:

L = GLn1 × · · · ×GLnk × Sp2l

where n1 + · · ·+ nk = n− l.
Cuspidal local systems on a product of groups are external direct products of cuspidal local systems

coming from each factor. For the first type of Levi, only T = (GL1)n supports a cuspidal local system.

For the second type of Levi, only those Levi subgroups of the form Ll = (GL1)n−l × Sp2l could possibly

support cuspidal local systems; by the classification theorem 4.5.1, we get a single cuspidal local system

when l = d(d− 1)/2 is a triangular number and it is supported on the nilpotent orbit corresponding to

the partition [12n−2l, 2, 4, 6, . . . , 2d].

When λ is regular and unramified, the variety Vλ can be assumed to be a product of simple root

spaces. In this case, if L is a Levi subgroup and x ∈ SJ ⊆ V Lλ , then the nilpotent orbit L · x must

correspond to one of the following partitions:

if αn ∈ J, P2 = [2, n2
1, . . . , n

2
k] n1 + · · ·+ nk = l − 1

if αn /∈ J, P1 = [n2
1, . . . , n

2
k] n1 + · · ·+ nk = l

In the first case, if L · x is to support a cuspidal local system then we must have L = L1 and χ the

non-trivial character of Z2 (and so we’re in the first case of the proposition statement). In the second

case, if L · x is to support a local system we must have L = T and χ = 1 (and so we’re in the second

case of the proposition statement).

The converse direction of the proof follows immediately from the classification theorem 4.5.1.

The previous proposition tells us that for a fixed λ, Vλ admits at most two cuspidal supports. For

L = (GL1)n−1 × Sp2, the cuspidal D-module is:

ML(S, χ) =
DC

DC(x∂ − 1/2)

In this case we have:

CC(ML(S, χ)) = [T ∗{n}V
L
λ ] + [T ∗∅ V

L
λ ]
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While for the other cuspidal Levi T , we have:

MT (S′, 1) = C

So:

CC(MT (S′, 1)) = [T ∗∅ V
T
λ ]

Proposition 4.6.6. If M(J, χ) is a simple T -equivariant D-module on Vλ, then there exists (L, S, η) ∈
SSp2n

(λ) and a parabolic subgroup P = LU such that:

M(J, χ) = iGP (ML(S, η))

Furthemore,

CC(M(J, χ)) =

{
[T ∗JVλ] + [T ∗J\nVλ] αn ∈ J, χ 6= 1[

T ∗JVλ
]

else

Remark : The formula for the characteristic cycle has an identical form to the one in Proposition 4.6.2,

noticing that kerχ = J\n when χ 6= 1 and kerχ = J when χ = 1.

Proof. If αn ∈ J and χ([γn]) = −1 then M(J, χ) is induced from ML(S, χ). Otherwise, M(J, χ) is

induced from MT (S′, 1). A suitable parabolic is selected as in the proof of Proposition 4.6.2.

Theorem 4.6.2. If SI ⊆ Vλ is the stratum in an unramified, regular Vogan variety of Sp2n corresponding

to the subset I ⊆ Rλ, then the micropacket associated to SI is:

ΠI = {M(J, χ) | kerχ ⊆ I ⊆ J}

Proof. The proof is identical to Theorem 4.6.1, noticing that: (1) every D-module is induced from a

cuspidal one, (2) we know the characteristic cycles of the relevant cuspidal D-modules, and (3) we know

how to commute the characteristic cycle functor with induction.

4.6.3 PGLn+1

When G(F ) = SLn+1(F ) we get a Langlands dual group PGLn+1. The maximal torus of diagonal

matrices in GLn+1 descends to a maximal torus of PGLn+1. We assume as before that λ : WF → PGLn+1

is unramified, and that the image of Frobenius is a regular semisimple element of our chosen maximal

torus. With these hypotheses we may also assume that Vλ is a product of simple root spaces. The simple

roots are the functions αi : T → C∗ given by:

αi (diag(t1, . . . , tn+1)) = tit
−1
i+1

We choose a basis of cocharacters given by the functions:

ψi : C∗ → PGLn+1

ψi(s) = diag(1, . . . , s, . . . , 1)

with the s being placed on the i’th diagonal entry.

The following proposition will show that there are not many simple T -equivariant D-modules on Vλ.
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Proposition 4.6.7. Let λ : WF → Sp2n be an unramified, regular infinitesimal parameter and Vλ the

associated Vogan variety. If SJ ⊆ Vλ is an orbit, then the component group AJ is trivial.

Proof. We again use Lemma 4.3.1 to get a generating set for the lattice K = pJ∗ (π1(S̃J)). We can deduce

the component group from the Smith normal form of the matrix Rij = (αi(ψj)) where i = 1, . . . , n and

j ∈ J . First consider the case where J = ∆λ = ∆(PGLn). The matrix R takes the form:

R =



1 −1 0 . . . 0 0 0

0 1 −1 . . . 0 0 0
...

...

0 0 0 . . . 0 1 −1

0 0 0 . . . 0 0 1


It is evident from the Smith normal form of R that pJ∗ (π1(S̃J)) = π1(SJ), so AJ is trivial. The compu-

tation works identically for any other J ; one need only delete some of the rows of the matrix R.

From Propostion 4.6.7 we may immediately deduce that the simple T -equivariant D-modules on Vλ

take the form:

M(J, χ) = C[xJ ] � C[∂Jc ]

By a direct computation, the characteristic cycle of these D-modules are:

CC(M(J, χ)) = [T ∗JVλ]

Since the characteristic cycles only ever contain a single Lagrangian cycle, the microlocal packets are

easily seen to be:

ΠI = {M(I, χ)}

It would also be possible to proceed as in the previous subsections. In this example, there is only a

single possible cuspidal triple, (T, {pt} , triv). It is still true that every D-module on Vλ is induced from

a cuspidal one through some parabolic. Never the less, we have the following:

Theorem 4.6.3. If SI ⊆ Vλ is the stratum in an unramified, regular Vogan variety of PGLn+1 corre-

sponding to the subset I ⊆ Rλ, then the micropacket associated to SI is:

ΠI = {M(J, χ) | kerχ ⊆ I ⊆ J}

Proof. The component group AJ is trivial; so too must be χ. This means that kerχ = J ⊆ I ⊆ J .

4.6.4 SO2n+1

When G(F ) = Sp2n(F ) we get a Langlands dual group Ĝ = SO2n+1. We choose the maximal torus

given by the diagonal matrices of the form t = diag(t1, . . . , tn, 1, t
−1
n , . . . , t−1

1 ), which gives a basis of

the cocharacter lattice consisting of the homomorphisms ψi : C∗ → SO2n+1, where ψi(s) is a diagonal

matrix with s in the i’th diagonal position, s−1 in the 2n+ 1− i’th diagonal position, and 1’s elsewhere.

We assume as before that λ : WF → PGLn+1 is unramified, and that the image of Frobenius is a regular

semisimple element of our chosen maximal torus. With these hypotheses we may also assume that Vλ is
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a product of simple root spaces. The simple roots of SO2n+1 are the functions α1, . . . , αn where:

αi(t) =

{
tit
−1
i+1 i < n

tn i = n

As in the case of PGLn+1, the pairing between the roots and the cocharacter lattice forces all of the

component groups to be trivial.

Proposition 4.6.8. Let λ : WF → SO2n+1 be an unramified, regular infinitesimal parameter and Vλ

the associated Vogan variety. If SJ ⊆ Vλ is an orbit, then the component group AJ is trivial.

Proof. The proof is identical to Proposition 4.6.7, except for that the last column of R is (0, 0, . . . , 0, 1).

This does not change the result.

The discussion at the end of the previous section applies equally in this case. The equivariant

D-modules on Vλ all take the form:

M(J, 1) = C[xJ ] � C[∂Jc ]

So their characteristic cycles are:

CC(M(J, 1)) = [T ∗JVλ]

which trivially yields the formula for the micropackets:

ΠI = {M(I, 1)} = {M(J, χ) | kerχ ⊆ I ⊆ J}

4.7 Remarks on the regular unramified case

In this section we make some remarks about which features of the regular unramified case have made

possible an explicit computation of the microlocal packets, and then make some comments about why

these issues become challenges when one considers more complicated examples.

The principal reason why the regular unramified case was within reach is that geometry of the orbits

and their closures is very simple. When the image of Frobenius is a regular semisimple element, the

orbits S are always isomorphic to (C∗)k, and the boundaries of the orbits are always normal crossing

divisors in S. In this situation, it is possible to explicitly present the minimal extension D-modules by

generators and relations, dependent on the monodromies of the underlying local system. This feature

made it possible to effectively explore the environment surrounding the problem, which ultimately led

to an observation of how cuspidal local systems were playing a role. Outside of the regular setting, the

geometry of the orbits can be much more complicated (c.f. Example 3.3.4) and it is unclear exactly how

one should present the minimal extensions by generators and relations.

The other important feature of the regular unramified case is that the induction functors simplify

substantially. In the most general case, the equivariant pushforward and pullback functors are com-

putationally intractable. It is very difficult to even explicitly write down an object of an equivariant

derived category. In the regular unramified case, however, we are pushing forward and pulling back

along morphisms that are equivariant for the identity map T → T . Furthermore, since T is connected,

the classical equivariant category is equivalent to a full subcategory of the usual D-module category
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and we may ignore the equivariant structure. It also happens that the varieties involved are affine, and

the induction functors involve pulling back along a smooth map then pushing forward along a closed

immersion. This is essentially the only case where these functors can be easily computed, and we have

wound up in this setting because of the assumption that λ(Fr) is regular semisimple.

If one assumes regularity, but relaxes the assumption that λ is unramified, then one may obtain that

Ĝλ is disconnected. In this case, we must be careful about considering the equivariant structure (c.f.

Example 3.3.3). If one assumes that λ is unramified, but λ(Fr) is not regular semisimple then Ĝλ need

not be connected (although this will be true if Ĝ is simply connected). In either of these cases, a careful

analysis of how the equivariant structure is affected by the induction functors would be necessary to

fully understand the problem, but in the regular unramified case these complications disappear.



Chapter 5

On the Duistermaat-Heckman

distribution of ΩG

5.1 Introduction

For finite-dimensional compact symplectic manifolds equipped with a Hamiltonian torus action with

moment map µ, the Duistermaat-Heckman theorem gives an explicit formula for an oscillatory integral

over the manifold in terms of information about the fixed point set of the torus action, and the action of

the torus on the normal bundle to the fixed point set. Furthermore, the Fourier transform of this integral

controls the structure of the cohomology rings of the various symplectic reductions. For Hamiltonian

actions on infinite dimesional symplectic manifolds, little is known is known about the behaviour of

their corresponding Duistermaat-Heckman distributions. In this paper we define the same oscillatory

integral for the natural Hamiltonian torus action on the based loop group, as introduced by Atiyah

and Pressley, in order to give an expression for a Duistermaat-Heckman hyperfunction. The essential

reason for introducing hyperfunction theory is that the local contribution to the Duistermaat-Heckman

polynomial near the image of a fixed point is a Green’s function for an infinite order differential equation.

Since infinite order differential operators do not act on Schwarz distributions, we are forced to use this

more general theory. After this work had been completed, we learned of the related work of Roger Picken

[Pic89].

The layout of this chapter is as follows. In Section 2 we review the theory of hyperfunctions, following

[KS99a, Kan89]. In Section 3 we study hyperfunctions that arise naturally from Hamiltonian group

actions via localization. Section 4 reviews the based loop group and its Hamiltonian action (introduced

by Atiyah and Pressley [AP83]). Section 5 describes the fixed point set of any one parameter subgroup

of this torus. In Section 6 we demonstrate the theorems of Section 5 for the based loop group of SU(2).

In Section 7, we compute the isotropy representations of the torus that acts on the based loop group on

the tangent spaces to each of the fixed points. Finally, Section 8 applies the hyperfunction localization

theorem to ΩSU(2).

65
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5.2 Introduction to Hyperfunctions

In this section we will quickly review the elements of hyperfunction theory which are needed in order to

make sense of the fixed point localization formula for a Hamiltonian action on an infinite dimensional

manifold. We will assume that the reader is familiar with Hamiltonian group actions, but not necessarily

with hyperfunctions. Our exposition will follow a number of sources. The bulk of the background

material follows [KS99a, Kan89], while the material on the Fourier transform of hyperfunctions is covered

in [Kan89] as well as the original paper of Kawai [Kaw70]. The original papers of Sato also give great

insight into the motivation for introducing this theory [Sat59]. The lecture notes of Kashiwara, Kawai,

and Sato also give useful insight into why hyperfunction and microfunction theory is needed to solve

problems in linear partial differential equations [KKS].

We will let O be the sheaf of holomorphic functions on Cn. Points in Cn will be denoted z =

(z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn), and we will write Re(z) = (x1, . . . , xn) ∈ Rn and Im(z) =

(y1, . . . , yn) ∈ iRn. An open convex cone γ ⊆ Rn is a convex open set such that, for every c ∈ R>0, if

x ∈ γ then cx ∈ γ. We allow Rn itself to be an open convex cone. If γ is an open convex cone, we

will denote its polar dual cone by γ◦. Let Γ denote the set of all open convex cones in Rn. If γ ∈ Γ

and Ω ⊆ Rn is an open set, then we denote Ω × iγ = {(xj + iyj) ∈ Cn |Re(x) ∈ Ω, Im(z) ∈ γ}. An

infinitesimal wedge, denoted Ω × iγ0, is a choice of an open subset U ⊆ Ω × iγ which is asymptotic to

the cone opening (we will not need the precise definition, so we omit it). We will denote the collection

of germs of holomorphic functions on the wedge Ω× iγ by O(Ω× iγ0); that is, we take a direct limit of

the holomorphic functions varying over the collection of all infinitesimal wedges U = Ω× iγ0 ⊆ Ω× iγ:

O(Ω× iγ0) = lim−→
U⊆Ω×iγ

O(U)

We will use the notation F (z + iγ0) to denote an element of O(Ω× iγ0).

Definition 5.2.1. A hyperfunction on Ω ⊆ Rn is an element:

n∑
i=1

F (z + iγi0) ∈
⊕
γ∈Γ

O(Ω× iγ0)
/
∼

where the equivalence relation is given as follows. If γ1, γ2, γ3 ∈ Γ are such that γ3 ⊆ γ1 ∩ γ2 and

Fi ∈ O(Ω × iγi), then F1(z) + F2(z) ∼ F3(z) if and only if (F1(z) + F2(z))|γ3
= F3(z). If Ω ⊆ Rn, we

will denote the collection of hyperfunctions on Ω by B(Ω).

When we wish to keep track of the cones we will use the notation f(x) =
∑
j F (z+iγj0); we call such

a sum a boundary value representation of f(x). Alternatively, we will sometimes also use the notation

F (z + iγ0) = bγ(F (z)) when the expression for F (z) makes it notationally burdensome to include the

text +iγ0. The association Ω 7→ B(Ω) forms a flabby sheaf on Rn, although we will not make use of

the sheaf theoretical nature of hyperfunctions in this thesis. Actually, what is more, is that this is a

sheaf of D-modules on Cn; the sheaf of differential operators acts termwise on each element of a sum∑
γ F (z + iγ0).

The relation defining the sheaf of hyperfunctions allows us to assume that the cones appearing in

the sum are disjoint. Indeed, if we have a hyperfunction f(x) = F1(z + iγ10) + F2(z + iγ20) such that
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γ1 ∩ γ2 6= ∅, then we simply observe that we have an equality of equivalence classes:

F1(z + iγ10) + F2(z + iγ20) = (F1 + F2)(z + iγ1 ∩ γ20)

Similarly, if γ1 ⊆ γ2 and F (z) is an analytic function on the wedge Ω × iγ10 that admits an analytic

extension to Ω× iγ20, then F (z + iγ10) = F (z + iγ20) as hyperfunctions. A particular example of this

says that two hyperfunctions f(x) = F+(z + i0) + F−(z − i0), g(x) = G+(z + i0) + G−(z − i0) ∈ B(R)

are equal when the function:

F (z) =

{
F+(z)−G+(z) Im(z) > 0

F−(z)−G−(z) Im(z) < 0

admits an analytic extension across the real axis.

The following definition is necessary to define the product of hyperfunctions. We say that a hyper-

function f(x) is microanalytic at (x, ξ) ∈ T ∗Rn if and only if there exists a boundary value representation:

f(x) =

n∑
j=1

F (z + iγj0)

such that γj ∩ {y ∈ Rn | ξ(y) < 0} 6= ∅ for every j ∈ 1, . . . , n. The singular support of a hyperfunction

f(x), denote SS(f) ⊆ T ∗Rn, is defined to be the set of points (x, ξ) ∈ T ∗Rn such that f(x) is not

microanalytic at (x, ξ). If S ⊆ T ∗Rn then we denote S◦ = {(x, ξ) ∈ T ∗Rn : (x,−ξ) ∈ S}.

Definition 5.2.2. Suppose that f, g ∈ B(Ω) are two hyperfunctions such that SS(f)∩SS(g)◦ = ∅, then

the product f(x) · g(x) is the hyperfunction defined by:

f(x) · g(x) =
∑
j,k

(Fj ·Gk)(x+ i(γj ∩∆k)0)

where we have chosen appropriate boundary value representations:

f(x) =
∑
j

Fj(z + iγj0)

g(x) =
∑
k

Gj(z + i∆k0)

such that γj ∩∆k 6= ∅ for all j, k.

In the above definition, the condition on singular support is simply ensuring existence of boundary

value representations of f and g such that for all pairs j, k the intersection γj ∩ ∆k 6= ∅ [Kan89,

Theorem 3.2.5].

We may define an infinite product of hyperfunctions when the singular support condition holds

pairwise, and the corresponding infinite product of holomorphic functions converges to a holomorphic

function. This result will be necessary to define the equivariant Euler class of the normal bundle to a

fixed point in ΩG as a hyperfunction.

Lemma 5.2.1. If {Fk(z + iγk0)}∞k=1 is a sequence of hyperfunctions on Ω such that:

1. For all pairs j 6= k, SS(Fk(z + iγk0)) ∩ SS(Fj(z + iγk0))◦ = ∅
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2. γ =

∞⋂
k=1

γk is open

3. The infinite product

∞∏
k=1

Fk(z) is uniformly convergent on compact subsets of Ω× iγ

then there exists a hyperfunction F (z + iγ0) such that:

F (z + iγ0) =

∞∏
k=1

F (z + iγk0)

Proof. The condition on singular support is necessary to define any product of the Fk. Since the

intersection of the cones is open, the wedge Ω× iγ is a well defined open set in Cn, and the convergence

condition on the infinite product ensures that the following limit is a holomorphic function on Ω× iγ:

F (z) = lim
N→∞

N∏
k=1

Fk(z)

This result has shown that the infinite product of the hyperfunctions Fk(z + iγk0) is well defined and

equal to F (z + iγ0).

We now describe how to define the Fourier transform of a hyperfunction. The following two definitions

are central to the theory of hyperfunction Fourier transforms. We will restrict our attention to the class

of Fourier hyperfunctions, also known as slowly increasing hyperfunctions.

Definition 5.2.3. A holomorphic function F ∈ O(Rn × iγ0) is called slowly increasing if and only if

for every compact subset K ⊆ iγ0, and for every ε > 0, there exist constants M,C > 0 such that, for all

z ∈ Rn × iK, if |Re(z)| > M then |Fj(z)| ≤ C exp(εRe(z)).

A holomorphic function F ∈ O(Rn × iγ0) is called exponentially decreasing on the (not necessarily

convex) cone ∆ ⊆ Rn if and only if there exists δ > 0, such that for every compact K ⊆ iγj0, and

for every ε > 0, there exist constants M,C > 0 such that for every z ∈ ∆ × iK, if |Re(z)| > M then

|Fj(z)| ≤ C exp(−(δ − ε)Re(z)).

Remarks on the definition:

1. A hyperfunction will be called slowly increasing (resp. exponentially decreasing on ∆) if and only

if it admits a boundary value representation:

f(x) =

n∑
j=1

Fj(z + iγ0)

such that each of the Fj(z) is slowly increasing (resp. exponentially decreasing on ∆).

2. If F (z) is slowly increasing and G(z) is exponentially decreasing on ∆, then F (z) · G(z) is expo-

nentially decreasing on ∆.

3. The class of exponentially decreasing functions is closed under the classical Fourier transform (see

[Kaw70]). The Fourier transform of slowly increasing hyperfunctions will be defined to be dual to

this operation via a pairing between slowly increasing hyperfunctions and exponentially decreasing

holomorphic functions.
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Intuitively, a hyperfunction is slowly increasing when, after fixing the imaginary part of z inside of

iγj , its asymptotic growth along the real line is slower than every exponential function. A hyperfunc-

tion is exponentially decreasing on the cone γ when the holomorphic functions in a boundary value

representation decay exponentially in the real directions which are inside of the cone γ.

As previously mentioned, there exists a pairing between slowly increasing hyperfunctions and expo-

nentially decreasing holomorphic functions. Let f(x) = F (z + iγ0) be a slowly increasing hyperfunc-

tion, G(z) an exponentially decreasing analytic function, and S a contour of integration chosen so that

Im(z) ∈ iγ0 for all z ∈ S. The pairing is given by:

〈f,G〉 =

∫
S

F (x+ iy)G(x+ iy) dx

Convergence of the integral is guaranteed by the condition that F (z)G(z) is exponentially decreasing.

That the pairing does not depend on the choice of contour follows from the Cauchy integral formula.

The pairing allows us to identify the slowly increasing hyperfunctions as the topological dual space to the

space of exponentially decreasing holomorphic functions. The Fourier transform of a slowly increasing

hyperfunction is then defined by a duality with respect to this pairing:

〈F (f), G〉 := 〈f,F (G)〉

In practice, the Fourier transform of a hyperfunction is not computed directly from the definition.

Let us now introduce the practical method by which one normally computes the Fourier transform of

a slowly increasing hyperfunction. Suppose that F (z) is a holomorphic function which is exponentially

decreasing outside of a closed convex cone ∆. Letting z = x + iy and ζ = σ + iτ , and suppose that

x ∈ ∆. We have the following estimate:

| exp(−iζ · z)| = exp(y · σ + x · τ)

The above estimate shows that exp(−iζz) will be exponentially decreasing on ∆, so long as we fix τ ∈
−∆◦. It then follows that the product e−iζzF (z) is exponentially decreasing on Rn. If f(x) = F (z+iγ0),

then its Fourier transform is the hyperfunction given by:

F (f) = G(ζ − i∆◦) = b−∆◦

(∫
S

e−iζzF (z) dz

)
This can be extended to an arbitrary boundary value expression f(x) =

∑
j Fj(z + iγj0) by linearity,

assuming that each of the Fj(z) decreases exponentially outside of some cone.

We must now deal with the case that f(x) = F (z + iγ0) is a slowly increasing hyperfunction, but

that it does not decrease exponentially on any cone.

Definition 5.2.4. Let Σ be a finite collection of closed convex cones. A holomorphic partition of unity

is collection of holomorphic functions {χσ(z)}σ∈Σ such that:

1.
∑
σ∈Σ

χσ(z) = 1

2. χσ(z) is exponentially decreasing outside of any open cone σ′ ⊃ σ
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3.
⋃
σ∈Σ

σ = Rn

Example of a holomorphic partition of unity :

Let Σ denote the collection of orthants in Rn. If σ = (σ1, . . . , σn) is a multi-index whose entries are

±1 (clearly such objects are in bijection with the orthants), we will denote the corresponding orthant

by γσ Consider the following two functions:

χ+(t) =
1

1 + e−t

χ−(t) =
1

1 + et

where t ∈ C is a complex variable. We notice that χ+(t) is exponentially decreasing on Re(t) < 0 and

χ−(t) is exponentially decreasing on Re(t) > 0. For a fixed orthant σ ∈ Σ, define the holomorphic

function χσ(z) by:

χσ(z) =

n∏
i=1

1

1 + eσizi

This function exponentially decreases on the complement of γσ. The collection {χσ(z)}σ∈Σ is a holo-

morphic partition of unity.

We have introduced holomorphic partitions of unity as an abstract concept, but we will only ever

use this example in our computations. The reason we have done this, as we will see later, is that the

computations can be made easier or harder by a clever choice of holomorphic partition of unity (although

the actual result of the computation is of course independent of any such choices). Our main result on

the Duistermaat-Heckman hyperfunction of ΩSU(2) will remain in an integral form, but it is possible

that the computation of the Fourier transform could be completed by redoing the computation with a

judicious choice of holomorphic partition of unity.

We are now ready to explain how to compute the Fourier transform of a general slowly increasing

hyperfunction. Again, by linearity of the Fourier transform, we may assume our hyperfunction takes

the form f(x) = F (z + iγ0), and that F (z) is a slowly increasing holomorphic function. Choose a

holomorphic partition of unity {χσ(z)}σ∈Σ, then we observe that:

F (z) =
∑
σ∈Σ

F (z)χσ(z)

where now, F (z)χσ(z) is exponentially decreasing outside of σ. By our previous observations,

F (f) =
∑
σ∈Σ

b−σ◦

(∫
S

e−iζzF (z)χσ(z) dz

)
(5.1)

Equation 5.1 exactly tells us how to compute the Fourier transform of a general slowly increasing

hyperfunction.
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5.3 Hyperfunctions arising from localization of Hamiltonian group

actions

Let (M,ω) be a finite dimensionial compact symplectic manifold with a Hamiltonian action of a d-

dimensional compact torus T ; call the moment map µ : M → t∗. The symplectic form ω gives us the

Liouville measure ωn/n! on M , which we we may push forward to t∗ using the moment map µ. We let

F denote the connected components of the fixed point set for the T action on M ; furthermore, if q ∈ F ,

we denote by eTq the equivariant Euler class of the normal bundle to the fixed point set. We can identify

eTq ∈ H∗(BT ) ' Sym(t∗) with the product of the weights appearing in the isotropy representation of T

on TqM .

Theorem 5.3.1. [DH82] The measure µ∗(ω
n/n!) has a piecewise polynomial density function. Further-

more, the inverse Fourier transform of µ∗(ω
n/n!) has an exact expression:∫

M

eiµ(p)(X)ωn/n! =
1

(2πi)d

∑
q∈F

eiµ(q)(X)

eTq (X)
(5.2)

where X ∈ t is such that eTq (X) 6= 0 for all q ∈ F .

The Duistermaat-Heckman theorem applies to the case where M is finite dimensional and compact.

We are interested in finding some version of a Duistermaat-Heckman distribution in the setting where M

is an infinite dimensional manifold with a Hamiltonian group action. There are some immediate technical

obstructions to producing such a distribution. Most notably, the inability to take a top exterior power

of ω prevents us from defining a suitable Liouville measure. There are significant analytic challenges in

properly defining the left hand side of equation 5.2; a related problem is defining a rigorous measure of

integration for the kinds of path integrals which appear in quantum field theory. We will not attempt

to answer this question in this thesis. Nevertheless, it is possible to make sense of the right hand side of

Equation 5.2.

The main goal for this section is to explain how Hamiltonian actions of compact tori yield, in a

natural way, hyperfunctions on t. The hyperfunction one gets in this way should be a substitute for

the the reciprocal of the equivariant Euler class which appears in the localization formula. We then

reinterpret the sum over the fixed points in the localization formula as a hyperfunction on t, and define

the Duistermaat-Heckman hyperfunction to be its Fourier transform as a hyperfunction.

We will start by considering the local picture. Suppose that T has a Hamiltonian action on a (finite

dimensional, for now) complex vector space with weights λi. Let the weights of the action be given by

W = {λi}i∈I . The weights of the action are linear functionals tC → C. For every weight λ ∈ W we get

a corresponding half space Hλ = {y ∈ t |λ(y) > 0}, as well as a hyperfunction:

fλ(x) =
1

λ(z) + iHλ0

The singular support of fλ(x) is given by:

SS(fλ) = {(x, ξ) ∈ T ∗(t) |λ(x) = 0,∃ c > 0, ξ = c dλ(x)}

Proposition 5.3.1. If µ : V → t∗ is proper then for all pairs of weights λ, λ′, SS(fλ) ∩ SS(fλ′)
◦ = ∅.
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Proof. If the moment map is proper, then all of the weights are contained in a half space [GLS88]. There

exists X ∈ t such that for any pair of weights λ, λ′ we have both λ(X) > 0 and λ′(X) > 0. Suppose that

(x, ξ) ∈ SS(fλ) ∩ SS(f ′λ)◦. This means that:

1. λ(x) = λ′(x) = 0

2. ∃c, c′ > 0 such that ξ = c dλ = −c′dλ′

Rearranging the second condition implies that the function L = λ′ + c
c′λ is constant. However, we have

obtained a contradiction as L(x) = 0, while L(X) > 0.

The following is immediate from the proposition.

Corollary 5.3.1. Let γ =
⋂
λ∈W

Hλ. If µ : V → t∗ is proper, then the following product of hyperfunctions

is well defined:

1

eT (x)
=
∏
λ∈W

fλ(x) = bγ

(∏
λ∈W

1

λ(z)

)
We can use the reciprocals of the equivariant Euler classes in an expression which imitates the sum

over the fixed points in the Duistermaat-Heckman formula. For any p ∈MT , let Wp =
{
λpj
}N
j=1

denote

the set of weights of the isotropy representation of T on TpM . As in the case of the usual localization

formula we must choose a polarization, which is simply a choice of vector ξ ∈ t such that for every

p ∈ MT , and for every λpj ∈ Wp, we have λpj (ξ) 6= 0. For every λpj ∈ Wp we define the polarized weight

by:

λ̃pj =

{
λpj λpj (ξ) > 0

−λpj λpj (ξ) < 0

and we adopt the notation as in [GLS88] by setting (−1)p =
∏

λpj∈Wp

sgnλpj (ξ).

By definition, for every fixed point p ∈MT we have that the polarized weights are contained in the

half plane defined by ξ. We define the cone γp =
⋂

λpj∈Wp

Hλ̃pj
, which is simply the intersection of the half

spaces defined by the polarized weights. We will call:

1

eTp (x)
= bγp

 ∏
λ̃pj∈Wp

1

λ̃pj (z)


the reciprocal of the equivariant Euler class to the normal bundle of p.

Definition 5.3.1. Suppose that (M,ω) has a Hamiltonian action of a compact, dimension d torus T

such that all the fixed points are isolated; let MT denote the fixed point set and µ : M → t∗ the moment

map. We will call the following expression the Picken hyperfunction:

L(x) =
1

(2πi)d

∑
p∈MT

(−1)p
eiµ(p)(x)

eTp (x)
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t

t× iγN = {z ∈ tC | Im(z) < 0}

F+(z) = 0

F−(z) = −eiz

z

Figure 5.1: A depiction of the hyperfunction JN (x) ∈ B(t)

Example: S2 with a circle action by rotation

We will first use a simple example to demonstrate that the formalism of hyperfunctions reproduces

the results one would expect from the Duistermaat-Heckman function. We choose a polarization ξ = −1.

For the usual Hamiltonian circle action on S2 by counterclockwise rotation about the z-axis, there are

fixed points at the north and south poles, N and S, respectively. The torus acts on TNS
2 with weight

+1, while it acts on TSS
2 with weight −1. Let’s compute the reciprocal of the equivariant Euler class

to the normal bundle of N (as a hyperfunction). There is only one weight at this fixed point. We have

γN = {x ∈ it |x < 0}

(−1)N = −1

The north pole contributes the following hyperfunction as a summand of the Picken hyperfunction, which

we denote pictorially in figure 5.1:

JN (x) = bγN

(
−e

iz

z

)
The contribution to the Picken hyperfunction coming from the south pole is computed similarly. We

obtain:

γS = {x ∈ it |x < 0}

(−1)S = −1

and so

JS(x) = bγS

(
e−iz

z

)
Since γN = γS in this example, we simply call both of these γ. The end result is that the Picken

hyperfunction of this Hamiltonian group action is:

2πiL(x) = bγ

(
−e

iz

z
+
e−iz

−z

)
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or, thinking of hyperfunctions on R as pairs of holomorphic functions, this corresponds to the pair

2πiL(x) =

[
0,
−eiz + e−iz

z

]
Had one chosen the polarization ξ̃ = +1, one would have alternatively obtained the presentation

2πiL̃(x) =

[
eiz − e−iz

z
, 0

]
however, L(x) = L̃(x) as hyperfunctions because their difference extends analytically across the real axis.

The observation here is that a choice of polarization is simply enabling us to write down a presentation

of a hyperfunction using a specific set of cones.

The Duistermaat-Heckman hyperfunction is the Fourier transform of the Picken hyperfunction. We

will now compute it according to the formula in equation 5.1. We choose the holomorphic partition of

unity given by the functions:

χ+(z) =
1

1 + e−z

χ−(z) =
1

1 + ez

which gives a decomposition of the Picken hyperfunction into four parts.

2πiL(x) = bγ

(
−e

iz

z
χ+(z)

)
+ bγ

(
e−iz

z
χ+(z)

)
+ bγ

(
−e

iz

z
χ−(z)

)
+ bγ

(
e−iz

z
χ−(z)

)
The Fourier transform can now be computed termwise, noticing that the first two terms in the above

expression are exponentially decreasing on Re(z) < 0, while the third and fourth terms are exponentially

decreasing on the cone Re(z) > 0. Let 1� δ > 0, then we may write the Fourier transform F (L(x)) =

G+(ζ + i0) +G−(ζ − i0) where:

G+(ζ) =

∫ ∞−iδ
−∞−iδ

− e
−i(ζ−1)z

z(1 + ez)
dz +

∫ ∞−iδ
−∞−iδ

e−i(ζ+1)z

z(1 + ez)
dz

G−(ζ) =

∫ ∞−iδ
−∞−iδ

− e−i(ζ−1)z

z(1 + e−z)
dz +

∫ ∞−iδ
−∞−iδ

e−i(ζ+1)z

z(1 + e−z)
dz

Each of these integrals can be computed by completing to a semicircular contour in the lower half plane

and applying the residue theorem (noting that, as the contour is oriented clockwise, we must include an

extra minus sign). The contour we use for the first integral appearing in G+(ζ) is depicted in Figure

5.2, along with the locations of the poles.

We show how to compute the first integral in the expression for G+(ζ); the rest are similar. The

integrand of the first integral in G+(ζ) has poles at z0 = 0 and zk = −(2k+ 1)πi for k ∈ Z, however, the

only poles inside the contour (in the limit as the radius of the semicircle tends to infinity) are the poles at

zk for k ≥ 0. Also, in the limit as the radius of the semicircle gets large we see that the contribution to the

integral coming from the semicircular part of the contour vanishes because the integrand is exponentially
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z

−R R

z1

z2

z3

z4

Figure 5.2: Integration contour for the first integral in G+(ζ)

decreasing in Re(z), and decreasing exponentially in Im(z) when Im(z) < 0. By the residue theorem:

∫ ∞−iδ
−∞−iδ

e−i(ζ−1)z

z(1 + ez)
dz = −2πi

∞∑
k=0

Res

(
e−i(ζ−1)z

z(1 + ez)
, z = zk

)

= −2πi

∞∑
k=0

e−(ζ−1)(2k+1)π

−(2k + 1)πi(−1)

= 2π

∞∑
k=0

∫ ζ

c

e−(ζ′−1)(2k+1)π dζ ′

= 2π

∫ ζ

c

∞∑
k=0

e−(ζ′−1)(2k+1)π dζ ′

= 2π

∫ ζ

c

dζ ′

eπ(ζ′−1) − e−π(ζ′−1)

= π

∫ ζ

c

dζ ′

sinh(π(ζ ′ − 1))
dζ ′

= Log

(
tanh

(
π(ζ − 1)

2

))
valid for Im(ζ) > 0

From the second to third line, we found a primitive function for the summand. From the third to the

fourth line we applied the monotone convergence theorem to interchange the order of summation and
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integration. A nearly identical computation yields the result:∫ ∞−iδ
−∞−iδ

e−i(ζ+1)z

z(1 + ez)
dz = Log

(
tanh

(
π(ζ + 1)

2

))
valid for Im(ζ) > 0

Summarizing, to this point we have computed:

G+(ζ) = Log

(
tanh

(
π(ζ + 1)

2

))
− Log

(
tanh

(
π(ζ − 1)

2

))
valid for Im(ζ) > 0

G−(ζ) = −Log

(
tanh

(
π(ζ + 1)

2

))
+ Log

(
tanh

(
π(ζ − 1)

2

))
valid for Im(ζ) < 0

The above expressions can be simplified. We notice that the holomorphic function Log(tanh(ζ)) −
Log(ζ) admits an analytic extension across a neighbourhood of the real axis, and is therefore zero as a

hyperfunction. This means that all of the tanh factors may be ignored for the purposes of computing

the hyperfunction Fourier transform. Therefore, the final result of our computation is:

F (L(x)) = b+

(
− 1

2πi
Log

(
ζ − 1

ζ + 1

))
− b−

(
− 1

2πi
Log

(
ζ − 1

ζ + 1

))
which we recognize as the standard defining hyperfunction of χ[−1,1](x) (see [Kan89] Example 1.3.11, p.

29). This has shown that the Fourier transform of the Picken hyperfunction gives the standard defining

hyperfunction of the Duistermaat-Heckman distribution.

Jeffrey and Kirwan, building on work of Witten [Wit92], formalized the notion of a residue in symplec-

tic geometry [JK95b]. They fruitfully applied this construction to compute relations in the cohomology

ring of the moduli space of stable holomorphic bundles on a Riemann surface [JK95a]. We expect that

the properties that uniquely characterize the residue (c.f. Proposition 8.11, [JK95b]) can be recovered

from the usual notion of a residue [GH14] of a multivariable complex meromorphic function using our

construction of the Picken hyperfunction.

5.4 ΩG and its Hamiltonian group action

Let G be a compact connected real Lie group, and call its Lie algebra g. In this chapter we will consider

the space of smooth loops in LG = C∞(S1, G). LG is itself an infinite dimensional Lie group, with the

group operation taken to be multiplication in G pointwise along a loop. The Lie algebra of LG is easily

seen to consist of the space of smooth loops into the Lie algebra, which we denote Lg.

We will also consider its quotient ΩG = LG/G, where the quotient is taken with respect to the

subgroup of constant loops. One may alternatively identify ΩG as the collection of loops, such that the

identity in S1 maps to the identity in G:

ΩG = {γ ∈ LG : γ(1) = e}

Its Lie algebra can be identified with the subset Ωg =
{
X : S1 → g |X(0) = 0

}
.

ΩG has a lot of extra structure, which essentially comes from its realization as a coadjoint orbit of

a central extension of LG [KW08]. We can give ΩG a symplectic structure as follows. Since G is a

compact Lie group, there exists a non-degenerate symmetric bilinear form 〈·, ·〉 : g× g→ R. This form
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induces an antisymmetric form:

ωe : Lg× Lg→ R

(X,Y ) 7→ 1

2π

∫ 2π

0

〈X(θ), Y ′(θ)〉 dθ

This bilinear form is an antisymmetric, non-degenerate form when restricted to Ωg, and extends to a

symplectic form on ΩG using a left trivialization of the tangent bundle of ΩG. That is, for every γ ∈ ΩG

we fix the isomorphism

TγΩG ' Ωg

X 7→
(
θ 7→ γ−1(θ)X(θ)

)
This choice allows us to define a form on ΩG as:

ωγ : TγΩG× TγΩG→ R

(X,Y ) 7→ ωe(γ
−1X, γ−1Y )

The form so defined is symplectic; a proof can be found in [PS86].

Consider the following group action on ΩG. Fix T ⊆ G a maximal compact torus, and let t be its

Lie algebra. Pointwise conjugation by elements of T defines a T action on ΩG.

T × ΩG→ ΩG

t · γ =
(
θ 7→ tγ(θ)t−1

)
There is also an auxiliary action of S1 on ΩG, which comes about by descending the loop rotation action

on LG to the quotient LG/G. Explicitly,

S1 × ΩG→ ΩG

exp(iψ) · γ =
(
θ 7→ γ(θ + ψ)γ(ψ)−1

)
These actions commute with one another, so define an action of T × S1 on ΩG. We will let prt : g→ t

denote the orthogonal projection coming from the Cartan-Killing form. We now define two functions on

ΩG:

p(γ) =
1

2π
prt

(∫ 2π

0

γ−1(θ)γ′(θ) dθ

)

E(γ) =
1

2π

∫ 2π

0

||γ′(θ)||2 dθ

Proposition 5.4.1. [AP83] The T × S1 action on ΩG is Hamiltonian. The moment map is given by:

µ : ΩG→ Lie(T × S1)

γ 7→

(
p(γ)

E(γ)

)
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Furthermore, the Hamiltonian vector fields associated to the group action are given by:

(XE)γ = γ′(θ)− γ(θ)γ′(0)

(Xpτ )γ = τγ(θ)− γ(θ)τ

where τ ∈ t.

If β ∈ t⊕ R then we let (Xβ)γ denote the Hamiltonian vector field evalutated at the loop γ.

5.5 Fixed Points Sets of Rank One Subtori

We will now proceed to identify the fixed point sets of dimension one subtori of T × S1 acting on

ΩG. The moment map image of the fixed point submanifolds should correspond to the locus where the

Duistermaat-Heckman density function is not differentiable. Using the exponential map, we identify

X∗(T ×S1) ' P ×Z, where P is the coweight lattice of Lie(T ). Fix an element β = (λ,m) ∈ X∗(T ×S1)

and call the cocharacter it generates by Tβ . Let Λ ∈ X∗(T ) be the cocharacter generated by λ,

Λ(θ) = exp(iλθ)

We will say the fixed point set of Tβ is trivial when ΩGTβ = HomGrp(S1, T ). In this section, we say that

L ⊆ G is a Levi subgroup if and only if there exists a parabolic subgroup Q ⊆ GC such that LC is a Levi

factor of Q. Every Levi subgroup of G is the centralizer of a subtorusS ⊆ T .

If we have two groups K and N , together with a map ϕ : K → AutN , then we can construct

the semidirect product group N oK whose point set is the Cartesian product N ×K, but the group

operation is (n, k) · (n′, k′) = ((φ(k′) · n)n′, kk′). In our specific context, if we fix any Levi subgroup

L ⊆ G, we can construct a group homomorphism:

ϕβ : S1 → AutL

ϕβ(ψ) · x = Λ

(
ψ

m

)−1

xΛ

(
ψ

m

)
Remarks:

1. Since ϕβ(1) = idL and S1 is connected then we may consider ϕβ : S1 → Inn(L). We identify

Inn(L) ' Lad, which may further be identified with [L,L]/Z(L)∩[L,L]. Under these identifications,

ϕβ ∈ X∗(Tad) is a cocharacter of the maximal torus in Lad.

2. This homomorphism is well defined if and only if Λ( 2π
m ) ∈ Z(L). In particular, λ/m must be an

element of the coweight lattice for the Levi subgroup L, mod z(L).

3. ϕβ = ϕβ′ if and only if λ/m− λ′/m′ ∈ z(L)

We will denote the resulting semidirect product group as Loβ S1.

It can be easily seen that for any Levi subgroup L, T × S1 is a maximal torus of L oβ S1. Any

one parameter subgroup of Loβ S1 is abelian, and is therefore contained in a maximal torus conjugate



Chapter 5. On the Duistermaat-Heckman distribution of ΩG 79

to T × S1. We can obtain all one parameter subgroups by considering one of the form (η(θ), θ) for

η ∈ Hom(S1, T ), then conjugating by an element of Loβ S1.

γ(θ) = Λ

(
ψ − θ
m

)
gΛ

(
θ

m

)
η(θ)g−1Λ

(
ψ

m

)−1

(5.3)

Proposition 5.5.1. For any β ∈ P ×Z, there exists a Levi subgroup T ⊆ Lβ ⊆ G, such that γ ∈ ΩGTβ

if and only if (γ(θ), θ) is a one parameter subgroup of Lβ oβ S1.

Proof. Fix β ∈ P × Z and set Lβ = ZG(Λ(2π/m)); that T ⊆ Lβ follows, since Λ(2π/m) ∈ T and T is

abelian.

Suppose we have a loop γ fixed by Tβ . Recall how Tβ acts on a loop γ ∈ ΩG. For every

(Λ(ψ), exp(imψ)) ∈ Tβ , the action is:

(Λ(ψ), exp(imψ)) · γ(θ) = Λ(ψ)γ(θ +mψ)Λ−1(ψ)γ(mψ)−1 ∀ψ, θ ∈ [0, 2π)

Let’s rescale the ψ variable, then by periodicity we may write the condition to be fixed under Tβ as:

γ(θ + ψ) = Λ

(
ψ

m

)−1

γ(θ)Λ

(
ψ

m

)
γ(ψ) ∀ θ, ψ ∈ [0, 2π)

When ψ = 2π in the above equation we get the condition γ(θ) ∈ Lβ for all θ. That (γ(θ), θ) is a

one parameter subgroup of Loβ S1 follows immediately from the multiplication rule for the semidirect

product.

Now suppose conversely that (γ(θ), θ) is a one parameter subgroup of LoβS1. There exists η ∈ X∗(T ),

g ∈ L and ψ ∈ S1 such that γ can be written as in equation 5.3. To show that γ is fixed by Tβ it suffices

to prove that the Hamiltonian vector field corresponding to β vanishes at γ. This is a straightforward

(but tedious) verification.

A consequence of the previous proposition is that for any such β, there exists a Levi subgroup Lβ

such that ΩGTβ = ΩL
Tβ
β . This follows, since the semidirect product formula forces any loop fixed under

Tβ to have its image be contained in Lβ .

Proposition 5.5.2. Every connected component of the fixed point set of Tβ is a translate of an adjoint

orbit in Lie(Lβ) ⊆ g.

Proof. Fix a loop γ in some connected component of the fixed point set of Tβ . Using the exponential

map on Loβ S1, it can be seen that (γ(θ), θ) is a one-parameter subgroup of Lβ oβ S1 if and only if γ

is a solution to the differential equation:

dγ

dθ
=

[
γ(θ),

λ

m

]
+ γ(θ)γ′(0)

Compactness of G (and therefore, of Lβ , since it is a closed subgroup) and the Picard-Lindelöf theorem

allow us to identify the loops in the fixed point set of Tβ with their initial conditions γ′(0) ∈ g. We can
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use equation 5.3 to compute γ′(0):

γ′(0) = AdΛ( ψm )g

[
λ

m
+ η′(0)

]
− λ

m

Any other loop in the same connected component of the fixed point set of Tβ can be obtained by varying

g ∈ Lβ and ψ ∈ [0, 2π).

Notice that by fixing λ = 0 in the preceeding discussion, we recover the result that the fixed point

set of the loop rotation action consists of the group homomorphisms S1 → G [PS86].

The last result of this section characterizes exactly when two rank one subtori have the same fixed

point sets.

Proposition 5.5.3. Let β = (λ,m) and β′ = (λ′,m′) be generators of rank one subgroups Tβ, Tβ′ of

T × S1, and let Lβ , Lβ′ be the Levi subgroups provided by Proposition 5.5.1. Then, ΩGTβ = ΩGTβ′ if

and only if λ/m− λ′/m′ ∈ z(Lβ)

Remark : If λ/m− λ′/m′ ∈ z(Lβ) then Lβ = Lβ′ . This is due to the fact that Lβ was defined to be the

G-centralizer of exp(2πiλ/m) (and similarly for Lβ′).

Proof. Suppose that the fixed point sets of Tβ and Tβ′ are equal. Then for any γ, we have (Xβ)γ = 0 if

and only if (Xβ′)γ = 0. These conditions yield two differential equations:

0 = m
dγ

dθ
− γ(θ)γ′(0) + λγ(θ)− γ(θ)λ

0 = m′
dγ

dθ
− γ(θ)γ′(0) + λ′γ(θ)− γ(θ)λ′

We may subtract these, and left translate back to g to get the condition:

∀ γ ∈ ΩGTβ , θ ∈ [0, 2π), Adγ(θ)

(
λ

m
− λ′

m′

)
=

λ

m
− λ′

m′

The derivative of this condition at the identity is[
γ′(0),

λ

m
− λ′

m′

]
= 0

so the statement is proved if for every element Y ∈ Lie([Lβ , Lβ ]), there exists γ ∈ ΩGTβ and c ∈ R
such that Y = cγ′(0). By Proposition 5.5.2, we can identify the set of all such γ′(0) with a translated

adjoint orbit. This can be achieved by choosing a cocharacter η(θ) such that η′(0) + λ
m is regular for

the AdLβ -action and η′(0) is sufficiently large so that the translated adjoint orbit intersects every ray

through the origin.

Conversely, if λ/m − λ′/m′ ∈ z(Lβ) then by the above remark, Lβ = L′β , and furthermore, β and

β′ yield identical automorphisms ϕβ = ϕβ′ : S1 → Aut(Lβ). Then by Proposition 5.5.1 we have

ΩGTβ = ΩGTβ′ .
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5.6 An explicit example: The loop space of SU(2)

When G = SU(2), the general theory of the previous section can be understood in a very explicit way.

The way to do this is to translate the condition of being fixed under the group action into a solution

of a system of differential equations for the matrix parameters. Let’s work through this derivation. We

can describe an element γ(t) ∈ ΩSU(2) by:

γ(t) =

(
α(t) −β(t)∗

β(t) α(t)∗

)

Subject to the constraints |α(t)|2 + |β(t)|2 = 1 for all t ∈ [0, 2π], α(0) = 1, and β(0) = 0. One-parameter

subgroups correspond bijectively with elements of the Lie algebra of T × S1. In that spirit, fix some

element (θ, ψ) ∈ t⊕ R, exponentiate to the group, and act on our loop γ(t)((
eiθ 0

0 e−iθ

)
, eiψ

)
· γ(t) = eiψ ·

((
eiθ 0

0 e−iθ

)(
α(t) −β(t)∗

β(t) α(t)∗

)(
e−iθ 0

0 eiθ

))

= eiψ ·

(
α(t) −ei2θβ(t)∗

e−i2θβ(t) α(t)∗

)

=

(
α(t+ ψ) −ei2θβ(t+ ψ)∗

e−i2θβ(t+ ψ) α(t+ ψ)∗

)(
α(ψ)∗ ei2θβ(ψ)∗

−e−i2θβ(ψ) α(ψ)

)

=

(
α(t) −β(t)∗

β(t) α(t)∗

)
when γ(t) is a fixed loop

so by rearranging slightly(
α(t+ ψ) −ei2θβ(t+ ψ)∗

e−i2θβ(t+ ψ) α(t+ ψ)∗

)
=

(
α(t) −β(t)∗

β(t) α(t)∗

)(
α(ψ) −ei2θβ(ψ)∗

e−i2θβ(ψ) α(ψ)∗

)

=

(
α(t)α(ψ)− e−i2θβ(t)∗β(ψ) −α(ψ)∗β(t)∗ − ei2θα(t)β(ψ)∗

α(ψ)β(t) + e−i2θα(t)∗β(ψ) α(t)∗α(ψ)∗ − ei2θβ(t)β(ψ)∗

)

this yields the finite difference relations:

α(t+ ψ) = α(t)α(ψ)− e−i2θβ(t)∗β(ψ)

β(t+ ψ) = ei2θα(ψ)β(t) + α(t)∗β(ψ)

We use these infinitesimal form of these relations to get the necessary system of differential equations.

Set θ = ns and ψ = ms so that we can vary the group element along a fixed one parameter subgroup.

m
dα

dt
= lim

s→0

α(t+ms)− α(t)

s

= lim
s→0

α(t)α(ms)− e−i2nsβ(t)∗β(ms)− α(t)

s

= α(t) lim
s→0

α(ms)− 1

s
− β(t)∗ lim

s→0

e−i2nsβ(ms)

s
= mα(t)α′(0)−mβ(t)∗β′(0)
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And similarly for β(t),

m
dβ

dt
= lim

s→0

β(t+ms)− β(t)

s

= β(t) lim
s→0

ei2nsα(ms)− 1

s
+mα(t)∗β′(0)

= β(t)
[
i2nei2nsα(ms) +mei2nsα′(ms)

] ∣∣∣∣
s=0

+mβ′(0)α(t)∗

= (i2n+mα′(0))β(t) +mβ′(0)α(t)∗

so the system of differential equations we must solve (for m 6= 0, when m = 0 the problem is trivial) is

given by:
dα

dt
= α(t)α′(0)− β(t)∗β′(0)

dβ

dt
= β′(0)α(t)∗ +

(
i2
n

m
+ α′(0)

)
β(t)

These differential equations are exactly the ones we could have gotten by searching for zeroes of the

Hamiltonian vector field corresponding to (n,m) ∈ t ⊕ R (c.f. the differential equation given in Propo-

sition 5.5.2). The system we have described depends on four parameters: n, m, α′(0) and β′(0). Once

we fix these parameters, the solutions α(t) and β(t) are uniquely determined. The parameters n and

m are fixed from the start, so are only free to vary α′(0) and β′(0). The choices that will turn out to

yield periodic solutions will be exactly those loops whose derivatives at the identity are elements of the

translated adjoint orbits of Proposition 5.5.2.

An explicit analytic solution to the system of differential equations can be found by expanding α(t)

and β(t) in Fourier series.

α(t) =

∞∑
k=−∞

αke
−ikt

β(t) =

∞∑
k=−∞

βke
−ikt

Plugging these expressions into the system of differential equations yields a system of algebraic relations

for each k:

0 = (α′(0) + ik)αk − β′(0)β∗−k (5.4)

0 = β′(0)α∗−k +
(
i(2

n

m
+ k) + α′(0)

)
βk (5.5)

We can solve by taking ik − i2 nm + α′(0)∗ times the first equation above and substituting into the

conjugate of the second equation (replacing k by −k). For each k, this yields the expression:(
|α′(0)|2 + |β′(0)|2 − k2 +

2n

m
α′(0) +

2n

m
k

)
αk = 0

which implies that either αk = 0 or (after completing the square and setting α′(0) = iA, which is

necessary for γ ∈ ΩSU(2)): (
k − n

m

)2

=
(
A+

n

m

)2

+ |β′(0)|2 (5.6)
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The purpose of equation 5.6 is to characterize the set of initial conditions for the differential equations

above which yield periodic solutions; in other words, equation 5.6 exactly identifies to fixed point set

of the subtorus generated by (n,m) with a disjoint union of translated adjoint orbits of SU(2), as in

Proposition 5.5.2. It is evident from equation 5.6 that for any loop fixed under the subgroup (n,m) at

most two Fourier modes can be non-zero. These two modes correspond to precisely the values of k that

satisfy k − n
m = ±C for some constant C, for which we require integer solutions of k. We can get two

distinct solutions only if n + Cm = ml and n − Cm = ml′, which implies that C = (l − l′)/2 is a half

integer and n/m = (l + l′)/2 is a half integer.

We should contextualize this result in the language of Proposition 5.5.1. For SU(2) only two Levi

subgroups are possible: the maximal torus T , or SU(2) itself. The former case arises when n/m /∈ 1
2Z,

and the latter case arises when n/m ∈ 1
2Z. Stated slightly differently, when n/m ∈ P∨ ⊆ t is in the

coweight lattice of SU(2), then exp(2πin/m) ∈ Z(SU(2)) and the Levi subgroup corresponding to (n,m)

is G = SU(2) (and is the maximal torus otherwise).

5.7 Isotropy Representation of T × S1

Whenever a group G acts on a manifold M and x ∈ M is a fixed point of the action, one obtains a

representation of G on TxM by taking the derivative of the action map at x. In this section, we compute

this representation on the tangent space at any fixed point of the T × S1 action on ΩG. As we are

considering the action of torus on a vector space, we present a splitting of the representation in terms

of its weight vectors.

Proposition 5.7.1. Let γ be fixed by T × S1 and suppose that (t, ψ) ∈ T × S1, then after identifying

TγΩG ' Ωg, the isotropy representation of T × S1 on TγΩG is given by:

(t, eiψ)∗ : Ωg→ Ωg

X(θ) 7→ Adtγ(ψ)X(θ + ψ)

Proof. By embedding G in U(n) we may assume that G is a matrix group. Pick any variation δγ ∈ TγΩG

and write δγ(θ) = γ(θ)X(θ) for some X ∈ Ωg. We compute the pushforward:

(t, eiψ)∗(δγ) =
d

dε

∣∣∣∣
ε=0

[(t, ψ) · (γ(θ) + εγ(θ)X(θ))]

=
d

dε

∣∣∣∣
ε=0

[
t(γ(θ + ψ) + εγ(θ + ψ)X(θ + ψ))(1 + εX(ψ))−1γ(ψ)−1t−1

]
=

d

dε

∣∣∣∣
ε=0

 ∞∑
j=0

(−1)jεjt(γ(θ + ψ) + εγ(θ + ψ)X(θ + ψ))X(ψ)jγ(ψ)−1t−1


= tγ(θ + ψ) [X(θ + ψ)−X(ψ)] γ(ψ)−1t−1

But now since γ is fixed under T × S1, we have γ(θ) = (t, ψ) · γ(θ) = tγ(θ+ ψ)γ(ψ)−1t−1 which implies

γ(θ)tγ(ψ) = tγ(θ+ψ). Plugging in to the last line of the above yields the desired formula for the isotropy

representation, noticing that the constant term is equivalent to zero in the quotient Ωg ' Lg/g.

The proposition above allows us to compute a weight basis for the isotropy representation, along
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with the corresponding weights.

Theorem 5.7.1. If γ(θ) = exp(ηθ) ∈ ΩG is fixed by T × S1 (i.e. η ∈ Q∨), the T × S1 action on TγΩG

decomposes into non-trivial irreducible subrepresentations:

TγΩG ' Ωg '
∞⊕
k=1

(⊕
α∈R

Vα,k ⊕
n⊕
i=1

Vi,k

)

The weight of T × S1 on Vα,k is:

λkα : Lie(T × S1)C → C

λkα(x1, x2) = α(x1 + ηx2) + kx2

A basis of weight vectors for Vα,k is:

X
(1)
α,k = iσαy cos(kθ)± iσαx sin(kθ)

X
(2)
α,k = iσαx cos(kθ)∓ iσαy sin(kθ)

where the plus or minus sign is taken depending on whether α is a positive or negative root, respectively.

The weight of T × S1 on Vi,k is:

λki : Lie(T × S1)C → C

λki (x1, x2) = kx2

A basis of weight vectors for Vi,k is given by:

X
(1)
i,k = iσαz cos(kθ)

X
(1)
i,k = iσαz sin(kθ)

Proof. We will check that the pair (X
(1)
α,k, X

(2)
α,k) is a weight basis for Vα,k with the appropriate weight;

the other cases are similar. Let t = ex1 for x1 ∈ t, let x2 ∈ Lie(S1), and let Θ = α(x1 + ηx2). By

Proposition 5.7.1,

(t, eix2)∗X
(1)
α,k = Adtγ(x2)

(
iσαy cos(kθ) + iσαx sin(kθ)

)
= i

(
σαy cos Θ + σαx sin Θ

)
cos(k(θ + x2)) + i

(
σαx cos Θ− σαy sin Θ

)
sin(k(θ + x2))

= i
(
σαy cos Θ + σαx sin Θ

)
(cos kx2 cos kθ − sin kx2 sin kθ)

+ i
(
σαx cos Θ− σαy sin Θ

)
(sin kx2 cos kθ + cos kx2 sin kθ)

= i cos(Θ + kx2)σαy cos kθ + i sin(Θ + kx2)σαx cos kθ

−i sin(Θ + kx2)σαy sin kθ + i cos(Θ + kx2)σαx sin kθ

= cos(Θ + kx2)X
(1)
α,k + sin(Θ + kx2)X

(2)
α,k

The computation for X
(2)
α,k is identical. This completes the proof.
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5.8 An application of the hyperfunction fixed point localization

formula to ΩSU(2)

In this section we will present our approach to computing a regularized Duistermaat-Heckman distribu-

tion on Lie(T ×S1)∗ coming from the Hamiltonian action of T ×S1 on ΩG. We will specialize to the case

that G = SU(2). This problem (and the work herein) was originally motivated by Atiyah’s approach

to a similar problem [Ati85]. In that paper, Atiyah showed that the Atiyah-Singer index theorem is a

consequence of applying the Duistermaat-Heckman localization formula to the loop space of a Rieman-

nian manifold. In [Ati85], Atiyah does also mention that similar methods can be applied to study ΩG,

however, no further details or specific theorems are provided. Our original aim was to provide these

details, as well as to study Duistermaat-Heckman distributions which come from Hamiltonian actions of

compact tori on infinite dimensional manifolds.

It was discovered after completing this project that some of these issues had already been considered

[Pic89]. In this paper, Picken shows that the propagator for a quantum mechanical free particle moving

on G (with the invariant Riemannian metric coming from the Killing form) can be exactly expressed by

applying the fixed point localization formula for ΩG. In this case, the ill defined left hand side of the

localization formula for ΩG is expressed as a path integral on G, while the right hand of the localization

formula tells us exactly how to express the result of this path integral in terms of solutions to the classical

equations of motion. We should highlight where our approach differs from his:

1. Throughout, Picken uses a variable ϕ as a coordinate on t. We will be calling this coordinate x1

in our work.

2. Picken is implicitly setting x2 = 1 throughout (i.e. he considers the slice t × {1} ⊆ Lie(T × S1).

This is evident in his choice of action functional, where the kinetic energy term:

Ik[g] =

∫
〈g−1ġ, g−1ġ〉 dθ

appears without a mass coefficient.

3. We will directly apply a fixed point localization formula to ΩG with its T×S1 action, and interpret

the result as a hyperfunction on Lie(T × S1). The advantage to this approach is that we will be

able to Fourier transform this hyperfunction to obtain a closed form of a density function for what

one should expect is the pushforward of the “Liouville measure” from ΩG to Lie(T × S1)∗ using

the moment map. Picken’s formula is limited in this regard, since he does not use the localization

formula to obtain a distribution on Lie(T × S1) - he only obtains its restriction to a slice through

E = 1. He also makes no use of hyperfunctions in his paper.

Definition 5.8.1. Let γ ∈ ΩGT×S
1

. The regularized equivariant Euler class of the normal bundle to γ

is defined to be the holomorphic function on Lie(T × S1)C given by:

eT×S
1

γ (z1, z2) =

∞∏
k=1

(∏
α∈∆

λkα(z1, z2)

kz2

)

The difference between the “usual” and the regularized equivariant Euler class of the normal bundle

to γ is that we divide out by kz2 on each weight. The regularization can be justified in a number of
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ways. We will see shortly that when we include the regularizing terms, the resulting infinite product will

converge to a useful functional expression for eT×S
1

γ . Without the regularization, the infinite product

does not converge. Picken’s work provides another justification for the regularization, since the resulting

regularized localization formula provides an exact determination of the quantum mechanical propagator

for a free particle moving on G.

For simplicity, let’s examine the example G = SU(2). We always use coordinates on Lie(T × S1)

consisting of the coroot basis for t, and normalize the E-component of the moment map so that:

E

(
eiθ 0

0 e−iθ

)
= 1/2

Let z = (z1, z2) ∈ Lie(T × S1) and let γ(θ) = exp(iηθ) ∈ ΩSU(2) be a fixed point of the T × S1

action. When we work with G = SU(2) a choice of η is really just a choice of integer, so for α ∈ ∆ the

non-zero positive root we set α(η) = 2n. For every k we get four weights for the isotropy representation,

corresponding to the two root vectors in sl2 and a the two weights cominig from a non-zero element of

the Cartan subalgebra:

λ
(k)
h,i (z1, z2) = kz2 i = 1, 2

λ(k)
e (z1, z2) = kz2 + 2(z2n+ z1)

λ
(k)
f (z1, z2) = kz2 − 2(z2n+ z1)

Proposition 5.8.1. Let G = SU(2). If γn ∈ ΩGT×S
1

, then the regularized equivariant Euler class of

the normal bundle to γn is given by:

eTγn(z1, z2) =
sin (2π(n+ z1/z2))

2π(n+ z1/z2)
(5.7)

Proof. Since the fixed points of the T × S1 action are isolated we have that the normal bundle to the

fixed point set is simply TγnΩG. We can compute the regularized equivariant Euler class of TγnΩG

by taking the product over the weights appearing in the isotropy representation of T × S1 on TγnΩG,

according to Theorem 5.7.1:

eTγn(z1, z2) =

∞∏
k=1

∏
α∈∆

λ(k)
α /kz2

=

∞∏
k=1

[
1 +

2(z2n+ z1)

z2k

] [
1− 2(z2η + z1)

z2k

]

=

∞∏
k=1

[
1−

(
2(z2n+ z1)

z2k

)2
]

=
sin (2π(n+ z1/z2))

2π(n+ z1/z2)

where the last line follows from the infinite product formula for sin(z).

Remark : In the more general case of G = SU(n), each choice of positive root will give a difference
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of squares, which then translates to an extra sin(z)/z term in the final result. We would then take a

product over all the positive roots.

In what follows we will write eT×S
1

γn (z1, z2) = en(z1, z2) for notational simplicity. A formal application

of the fixed point localization formula to ΩG would then yield the following expression, valid for (x1, x2) ∈
Lie(T × S1) such that en(x1, x2) 6= 0:∫

ΩG

eω+i〈µ(γ),x〉 =
∑
n∈Z

ei(nx1+n2

2 x2) 2π(n+ x1/x2)

sin (2π(n+ x1/x2))
(5.8)

We have not addressed what types of objects that equation 5.8 asserts an equality of. In the setting of

a compact symplectic manifold with a Hamiltonian action of a compact torus, one is free to understand

this to be an equality of distributions, and even an equality of density functions on some open set.

But for the purposes of ΩG, this perspective is insufficient. For instance, the Duistermaat-Heckman

“distribution” is supposed to be obtained by taking the Fourier transform of the right hand side of

equation 5.8, however, we can see that the expression obtained from the localization formula is not

even integrable since it has poles, and even if we ignore the poles coming from the denominator, the

numerator grows linearly in the ξ1 variable. The terms appearing in the localization formula for ΩG also

have unpleasant limiting behaviour as x2 → 0. The right hand side of the localization formula should

not be interpreted as a distribution (and consequently, neither should the left hand side).

There are further hints in [GLS88] which suggest that the localization formula for ΩG should be an

expression positing an equality of two hyperfunctions. Suppose for a moment that we are considering a

Hamiltonian action of a torus T on a finite dimensional vector space with weights α1, . . . , αn. To each

weight we can associate a constant coefficient differential operator Dαi on t∗. The Duistermaat-Heckman

distribution is a solution to the differential equation:

Dα1
. . . Dαn(DH(x)) = δ(x)

When V is infinite dimensional and we have infinitely many weights (such as is the case for the isotropy

representation of T ×S1 on the tangent space to a fixed loop in ΩG), then we are forced to consider dif-

ferential operators of infinite order. Infinite order differential operators do not even act on distributions.

For example, any infinite order differential operator on R cannot act on the Dirac delta distribution

because of the classical theorem which states that any distribution supported at the origin must be a

finite sum of the Dirac delta distribution and its derivatives. Hyperfunctions (and the related concept of

a microfunction) are a sheaf on which infinite order differential operators do have a well defined action.

Furthermore, the entire classical theory of distributions is subsumed by the theory of hyperfunctions, so

it makes more sense to study the Duistermaat-Heckman distribution as a hyperfunction, rather than as

a distribution.

We now begin our construction of the Picken hyperfunction of ΩSU(2). Fix a polarizing vector of

the form ξ = (δ, δ′) ∈ Lie(T × S1), with δ′ > 2δ > 0. For the chosen polarization, we must determine

the structure of the polarized weights of the isotropy representation at each fixed point. Recall for

p ∈ ΩGT×S
1

, we defined a cone γp as the intersection of the positive half spaces coming from the

polarized weights. We now let pn denote the n’th fixed point of the T × S1 action on ΩSU(2).

Proposition 5.8.2. 1. If n > 0, then the weights of the isotropy representation at the n’th fixed point
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satisfy the following inequalities:

λ(k)
α (ξ) > 0, α = +2, k ≥ 1

λ(k)
α (ξ) > 0, α = −2, k > 2n

λ(k)
α (ξ) < 0, α = −2, k ≤ 2n

2. If n < 0, then the weights of the isotropy representation at the n’th fixed point satisfy the following

inequalities:

λ(k)
α (ξ) > 0, α = −2, k ≥ 1

λ(k)
α (ξ) > 0, α = +2, k ≥ 2n

λ(k)
α (ξ) < 0, α = +2, k < 2n

3. If n = 0, then the weights of the isotropy representation at p0 satisfy the following inequalities:

λ(k)
α (ξ) > 0, for all α = ±2, k ≥ 1

Consequently,

γp0
=
{

(y1, y2) ∈ iLie(T × S1) | |y1| < y2/2
}

γpn =
{

(y1, y2) ∈ iLie(T × S1) | |y1| < y2/2, y1 > 0
}

n 6= 0

Remark : Since the cones γpn are independent of n (so long as n 6= 0), after the proof of this proposition

will will simply denote γ 6=0 := γpn and γ0 := γp0

Proof. We shall prove the result for 1, as 2 and 3 are similar. For the root α = +2, we have that

λ(k)
α (ξ) = kδ′ + 2(nδ′ + δ)

This is a positive number, being a sum of positive numbers. For the root α = −2, we are interested in

finding the values k ≥ 1 such that:

kδ′ − 2(nδ′ + δ) < 0

Dividing both sides by the positive number δ′ yields

k − 2n− 2δ

δ′
< 0

By our choice of polarization we have 0 < 2δ/δ′ < 1, so the above inequality is true exactly when

1 ≤ k ≤ 2n, which proves the first claim.

For a root α = ±2 and k ≥ 1, we denote H
(n)
k,± =

{
(y1, y2) ∈ iLie(T × S1) | ky2 ± 2(ny2 + y1) > 0

}
,

which is the positive half plane corresponding to the weight λ
(k)
α at the n’th fixed point.

We now consider the second set of claims about the cones γpn and γp0
. First, consider the case where
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n = 0. By part (3) of the previous work towards this proposition, we can see that the weights of the

isotropy representation at the n = 0 fixed point are already polarized. Letting ηk = Hk,+ ∩ Hk,−, we

have by definition that γp0 =
⋂
k≥1 ηk. Notice that k ≥ k′ implies that ηk ⊇ ηk′ , and so γp0 = η1. But

now the proof is complete, since

γp0
= η1 = {(y1, y2) | y2 + 2y1 > 0} ∩ {(y1, y2) | y2 − 2y1 > 0} = {(y1, y2) | y2 > 2|y1|}

The case where n 6= 0 is similar; the only modification required is that the set of polarized weights

of the isotropy representation at the n’th fixed point is equal to the set of weights at the n = 0 fixed

point, with one extra weight of the form (y1, y2) 7→ 2y1.

Another consequence of the previous proposition is that

(−1)pn =


1 n = 0

1 n > 0

−1 n < 0

We now have all the necessary pieces to construct the Picken hyperfunction for the T ×S1 action on

ΩSU(2), which we expect is a hyperfunction replacement for the sum over the fixed points appearing in

the Duistermaat-Heckman localization formula.

As before, we let λ̃k,α denote the polarized weights of the isotropy representation at the n’th fixed

point; we leave the n implicit to avoid notational clutter. For every n, we apply Lemma 5.2.1 to the set

of hyperfunctions
{
f

(n)

λ̃k,α
(x)
}∞
k=1

(c.f. notation of Corollary 5.3.1, making sure to use the regularized

weights to guarantee uniform convergence of the infinite product. The resulting hyperfunction is the

regularized equivariant Euler class to the normal bundle of the n’th fixed point:

1

en(x1, x2)
= bγpn

(
2π(n+ z1/z2)

sin(2πz1/z2)

)
Putting all of these results together we obtain the Picken hyperfunction for the Hamiltonian T × S1

action on ΩSU(2):

LΩSU(2)(x1, x2) =
1

(2πi)2
bγ 6=0

(∑
n>0

eiz1n+iz2n
2/2 2π(n+ z1/z2)

sin(2πz1/z2)
−
∑
n<0

eiz1n+iz2n
2/2 2π(n+ z1/z2)

sin(2πz1/z2)

)

+
1

(2πi)2
bγ0

(
2πz1/z2

sin(2πz1/z2)

)
Ultimately, we would like to be able to take a Fourier transform of the Picken hyperfunction in order to

obtain the Duistermaat-Heckman hyperfunction. The following proposition guarantees that the Picken

hyperfunction of ΩSU(2) is in the class of hyperfunctions which have Fourier transforms, and so guar-

antees that we can find some hyperfunction analogue of the Duistermaat-Heckman distribution in this

infinite dimensional example. We will do this term by term.

Proposition 5.8.3. For every n,

In(z1, z2) =
n+ z1/z2

sin(2πz1/z2)

is a slowly increasing holomorphic function on R2 × iγpn ⊆ Lie(T × S1)C.
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Proof. That the function in question is holomorphic on R2×iγpn follows from its expression as an infinite

product of regularized weights, and that the cones γpn are constructed to avoid the zero locus of all such

weights. It remains to show that In(z1, z2) is slowly increasing.

For fixed (y1, y2) ∈ γn, the image of the curves x1 = mx2 (m ∈ R) under the mapping (z1, z2) 7→ z1/z2

are the parametric curves given by:

R→ C

s 7→ ms2 + y1y2

s2 + y2
2

+ i
sy1 −msy2

s2 + y2
2

These are easily seen to be ellipsoidal arcs which cross the real axis at Re(z1/z2) = y1/y2 when s = 0,

and asymptotically approach the real axis from above (below) at Re(z1/z2) = m as s→∞ when m > 0

(and from below the axis if m < 0).

We assume n 6= 0, since the n = 0 case is similar. Fix a compact set K ⊆ γpn and any ε > 0. Since

(y1, y2) 7→ y1/y2 is continuous on K it will achieve its maximum and minimum, so there is a δ > 0 such

that the estimate δ ≤ y1/y2 ≤ 1/2 − δ holds uniformly over K. Since the numerator of In(z1, z2) is

slowly increasing (it is a polynomial), it suffices to prove that:∣∣∣∣ e−ε |Re(z)|

sin(2πz1/z2)

∣∣∣∣→ 0

uniformly in K as Re(z)→∞.

(z1, z2) z1/z2

x1

x2 R
x1/x2 = 1

2

δ ≤ y1/y2 ≤ 1/2− δ

Figure 5.3: Proof that In(z1, z2) is slowly increasing. The left side of the figure demonstrates the (x1, x2)
plane; the right hand side is demonstrating the image of the map (z1, z2) 7→ z1/z2 when we fix various
values of (y1, y2). The red filled region is showing the image of the line x1 = x2/2 as (y1, y2) varies over
K, with max {|x1|, |x2|} ≤ R. The blue curve is showing the image of the line x1 = x2 (fixing (y1, y2)
such that y1/y2 = δ). The poles of csc(2πz) are demonstrated with ×.

First, we notice that if we fix y1/y2 as above, then for every R sufficiently large we have:

max {|x1|, |x2|} = R⇒ | csc(2πz1/z2)| ≤
∣∣∣∣ csc

(
2π
R2/2 + y1y2

R2 + y2
2

+ i
Ry1 −Ry2/2

R2 + y2
2

) ∣∣∣∣
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This estimate follows from the observation that the maximum of csc(2πz1/z2) on the box occurs at

the point (x1, x2) such that the distance from z1/z2 to a pole of csc(2πz) is minimized; this condition

is satisfied on the line x1 = x2/2. A uniform bound over K can be found because of our previous

estimate on y1/y2. Figure 5.3 demonstrates these estimates. The proof is completed by noticing that

csc(2πz1/z2) has linear growth (which is dominated by any exponential) as x2 → ∞ because all of its

poles are simple.

By Proposition 5.8.3, LΩSU(2)(x1, x2) is a slowly increasing hyperfunction, so we may take its Fourier

transform. Let Sn be a contour in Lie(T × S1)C chosen so that (y1, y2) ∈ γpn . After choosing a holo-

morphic partition of unity χσ(z), we may write the following expression for the Duistermaat-Heckman

hyperfunction:

DH(ξ1, ξ2) =
1

(2πi)2

∑
σ∈Σ

∑
n∈Z

b−σ◦

(∫
Sn

e−i(ζ1−n)z1−i(ζ2−n2/2)z2
2π(n+ z1/z2)

sin(2πz1/z2)
χσ(z1, z2) dz1 dz2

)

One might try and proceed with the computation of this integral, as in the example of section 5.3;

however, if one uses the standard holomorphic partition of unity then the computation of the contour

integrals by a method of iterated residues becomes very complicated. The difficulty essentially arises from

the fact that the integrand of the resulting multivariable contour integral has a polar locus consisting of

triples of lines that intersect. If one uses the following partition of unity:

1 =
1

1 + ez1
1

1 + eπz2
+

1

1 + e−z1
1

1 + eπz2
+

1

1 + ez1
1

1 + e−πz2
+

1

1 + e−z1
1

1 + e−πz2

then polar locus of the integrand defining the Fourier transform consists of isolated singularities which

are locally cut out by a pair of equations. The residues near such singularities are readily computed,

but do not appear to re-sum in any obvious way. We leave a further examination of the form of the

Duistermaat-Heckman hyperfunction of ΩSU(2) as an open problem.
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92



Bibliography 93

[DH82] J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic

form of the reduced phase space, Inventiones mathematicae 69 (1982), no. 2, 259–268.

[GH14] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, 2014.

[Gin86] V. Ginsburg, Characteristic varieties and vanishing cycles, Inventiones mathematicae 84

(1986), no. 2, 327–402.

[GLS88] V. Guillemin, E. Lerman, and S. Sternberg, On the Kostant multiplicity formula, Journal

of Geometry and Physics 5 (1988), no. 4, 721–750.

[GR14] D. Gaitsgory and N. Rozenblyum, Crystals and d-modules, arXiv preprint arXiv:1111.2087

(2014).

[Har98] M. Harris, The local Langlands conjecture for GL(n) over a p-adic field, n < p, Inventiones

mathematicae 134 (1998), no. 1, 177–210.

[Hen86] G. Henniart, On the local Langlands conjecture for GL(n): the cyclic case, Annals of Math-

ematics 123 (1986), no. 1, 145–203.

[HT01] M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties,

vol. 151, Princeton university press, 2001.

[HTT08] R. Hotta, K. Takeuchi, and T. Tanisaki, D-modules, perverse sheaves, and representation

theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008,
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