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ABsTrACT. This paper begins the project of adapting the 1992 book by Adams,
Barbasch and Vogan on the Langlands classification of admissible representations of
real groups, to p-adic groups, continuing in the direction charted by Vogan in his
1993 paper on the Langlands correspondence. This paper presents three theorems
in that direction. The first theorem shows how Lusztig’s work on perverse sheaves
arising from graded Lie algebras may be brought to bear on the problem; the second
theorem proves that Arthur parameters determine strongly regular conormal vectors
to a parameter space of certain Langlands parameters; the third theorem shows how
to replace the microlocalisation functor as it appears in the work of Adams, Barbasch
and Vogan with a functor built from Deligne’s vanishing cycles functor. The paper
concludes with three conjectures, the first of which is the prediction that Arthur
packets are Adams-Barbasch-Vogan packets for p-adic groups. This paper is the first

in a series.
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Let F' be a local field of characteristic zero and G be a connected reductive linear
algebraic group over F. According to the local Langlands conjecture, the set II(G(F))
of isomorphism classes of irreducible admissible representations of G(F') can be naturally
partitioned into finite subsets, called L-packets. Moreover, the local Langlands conjecture
predicts that if an L-packet contains one tempered representation, then all the repres-
entations in that L-packet are tempered, so tempered L-packets provide a partition of
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tempered irreducible admissible representations. Tempered L-packets enjoy some other
very nice properties. For instance, every tempered L-packet determines a stable distri-
bution on G(F') by a non-trivial linear combination of the distribution characters of the
representations in the packet. Tempered L-packets also have an endoscopy theory, which
leads to a parametrisation of the distribution characters of the representations in the
packet. These properties fail for non-tempered L-packets. To remedy this, in 1989 Ar-
thur introduced what are now know as Arthur packets, which enlarge the non-tempered
L-packets in such a way that these last two properties do extend to the non-tempered
case. Arthur’s motivation was global, arising from the classification of automorphic rep-
resentations, so the local meaning of Arthur packets was unclear when they first appeared.

Shortly after Arthur packets were introduced, Adams, Barbasch and Vogan suggested
a purely local description of Arthur packets for real groups, in 1992, using microlocal
analysis of certain stratified complex varieties built from Langlands parameters. In 1993,
Vogan used similar tools to make a prediction for a local description of Arthur packets for
p-adic groups. The packets of admissible representations they described may be referred
to as ABV packets, in both the real and p-adic cases. Since these constructions are purely
local, and since the initial description of Arthur packets was global in nature, it was not
easy to compare ABV packets with Arthur packets. The conjecture that Arthur packets
are ABV packets has remained open since the latter were introduced.

When Arthur finished his monumental work on the classification of automorphic rep-
resentations of symplectic and special orthogonal groups in 2013, the situation changed
dramatically. Not only did he prove his own conjectures on Arthur packets given in [7],
but he also gave a local characterization of them, using twisted endoscopy. This opened
the door to comparing Arthur packets with ABV packets and motivated us to compare
Arthur’s work with Vogan’s constructions in the p-adic case. This paper is the first in a
series making that comparison.

We now describe the main results in this paper. From now on, we assume F is p-adic.

To begin, let us review Arthur’s main local result in the endoscopic classification of
representations. Suppose now that the connected reductive algebraic group G over F is
quasi-split. An Arthur parameter for G is a homomorphism, ¢ : Lr x SL(2,C) — LG,
where Ly is the local Langlands group, to the Langlands group G = G W, satisfying
a number of conditions. One important condition is that the image of /(W) under the
projection onto G must have compact closure. When G is symplectic or special ortho-
gonal, Arthur [2, Theorem 1.5.1] assigns to any 1 a multiset IL,(G(F')) over II(G(F)),
known as the Arthur packet of G associated with . It is a deep result of Moeglin [25]
that IL, (G (F)) is actually a subset of II(G(F)). Endoscopy theory [2, Theorem 2.2.1] in
this case gives rise to a canonical map

L, (G(F)) = Sy
™ < : ,7T>¢

(1)

to 31\/,, the set of irreducible characters of Sy, = Z5()/Z5 (w)OZ(CAT')FF. If the Arthur
parameter ¥ : Lp x SL(2,C) — LG is trivial on SL(2,C) then II,(G(F)) is a tempered
L-packet and the map (1) is a bijection. In general, II;(G(F)) contains the L-packet
Iy, (G(F)), where ¢y is the Langlands parameter given by ¢y, (u) :=1(u, d,), where for

u € Lp we set d, = diag(|u|1/2, \u|71/2) with | | the pullback of the norm map on Wg.
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The map (1) determines a stable distribution on G(F') by

(2) 0f = Z (29, 7),, On.

melly (G(F))

where z, is the image of ¥(1,—1) in Sy with (1,—1) € Lp x SL(2,C) where —1 is the
non-trivial central element of SL(2,C).

In this paper we express Arthur’s conjectural generalisation of (1) for inner twists of
G using pure rational forms of G as articulated by Vogan. A pure rational form (also
known as a pure inner form) of G is a cocycle § € Z1(F,G). An inner rational form is a
cocycle o € Z'(F,Inn(G)). Using the maps

ZNF,G) — Z'(F,G,q) = Z'(F,Inn(G)) — Z'(F, Aut(Q@)),

every pure rational form of G determines an inner rational form of G and every inner
rational form of G determines a rational form of G. Following [32], a representation
of a pure rational form of G is defined to be a pair (m,d), where ¢ is a pure rational
form of G' and 7 is an equivalence class of admissible representations of Gg(F). Then
G (F)-conjugation defines an equivalence relation on such pairs, which is compatible with
the equivalence relation on pure rational forms Z!(F,G) producing H'(F,G). Again
following [32], we write II,y..(G/F) for the equivalence classes of such pairs. Then, after

choosing a representative for each class in H(F,G), we may write

Mouwe(G/F)= || T(Gs(F),0),
[6]eHL(F,G)

where II(G4(F),0) :=={(m,0) | m € II(Gx(F))}.

An inner twist of G is a pair (G, ), where G is a rational form of G and ¢ is an
isomorphism between G and G such that v — @ ov(p)~! is a 1-cocycle in Z(T'r, Inn(G).
Every inner rational form o of G determines an inner twist (G, ¢,) such that the action
of v € T'r on G, (F) is given through the o-twisted action on G(F). We use the notation
(Gs,@s) for the inner twist of G determined by the pure rational form J. An Arthur
parameter i for G is relevant to G if any Levi subgroup of LG that v factors through is
the dual group of a Levi subgroup of Gs. In [2, Conjecture 9.4.2], Arthur assigns to any
relevant ¢ a multiset I, (G5(F)) over II(G5(F)), which is called the Arthur packet for G5
associated to 1. Moeglin’s work shows that, since G; comes from a pure rational form,
I, (Gs(F)) is again a subset of II(G4(F)). To extend (1) to this case, Arthur replaces
the group Sy, with a generally non-abelian group Sy sc [2, Section 9.2], which is a central
extension of Sy by Zp,sc; compare with (25). Let 5G5 be a character of Zw,sc and let

Rep(SwysC,Egé) be the set of isomorphism classes of fGa—equivariant representations of
Sysc and (-, ) 4 sc is the character of the associated representation of Sy sc.
Endoscopy theory [2, Conjecture 9.4.2] gives a map

(3> Hw (G6 (F)) — Rep(s't/J,sca ZGé);

the character of the representation attached to an irreducible representation 7 of the inner
twist (Gs, ps) is denoted by (-, ), ... The map (3) depends only on (1) and the pure
rational form 6. For any Arthur parameter 1) for G and any pure rational form § of G
we define

Iy (G5 (F),0) := {(m,8) | m € Ty (Gs(F))}
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where, if 1 is not relevant to G then II,(G3(F')) and thus II,(Gys(F),d) is empty. Now
we introduce

(4) Iy (G/F) :={[m, 6] € Upure(G/F) | (m,6) € Iy (G5(F),6)}-
After choosing a representative pure rational form § for every class in H'(F,G), we have
Mpuwe (G/F) = || Tu(G5(F),9).
[(]eH(F,G)
Now, set

Ay =m(Zg(W) = Zg (W) ) Zg (0)°
and let x5 : m0(Z(G)FF) — C* be the character matching [§] € H(F,G) under the Kot-
twitz isomorphism H'(F,G) = Hom(mo(Z(G)"'F),C"). Let Rep(Ay, xs) denote the set of
equivalence classes of representations of A, such that the pullback of the representations
along

0(Z(G)'") = m0(Z5 (1))
is x5. In Proposition 1.10.3 we show that (3) defines a canonical map

(5) Hpure,y (G/F) — Rep(Ay)

and we write ( -, [m,d]),, for the representation attached to [, 0] € Hpure,(G/F). built
from canonical maps

(6) Hw(Gé(F)a 6) - Rep(Aw, Xé)'

The maps (6) depend only on ¢ and (1), as discussed in Section 1.10. When § = 1, (6)
recovers (1) and if ¢ = ¢ is tempered (6) gives a canonical bijection

(7) Iy (G5(F),0) = 11(Ag, xs),

where II(Ay, xs5) denotes the set of ys-equivariant characters of A.

In this paper we give a geometric and categorical approach to calculating a generalisa-
tion of (5), and therefore of (6) also, which applies to all quasi-split connected reductive
algebraic groups G over p-adic fields, by assuming the local Langlands correspondence
for its pure rational forms, as articulated by Vogan in [32]. Our approach is based on
ideas developed for real groups in [I] and on results from [32] for p-adic groups. After
specializing to the case of quasi-split symplectic and special orthogonal p-adic groups,
we conjecture that this geometric approach produces a map that coincides with (6) from
Arthur. The generalisation of (6) that we propose leads quickly to what should be a
generalisation of Arthur packets. To acknowledge the debt we owe to [1] and [32], we
refer to the packets appearing in this paper as ABV packets for p-adic groups. Much of
this paper is concerned with assembling the tools needed to give a precise and workable
definition of ABV packets for p-adic groups and a precise and testable conjecture that
they generalise Arthur packets.

We now sketch our generalisation of (6). Let F' be a p-adic field and let G be any
quasi-split connected reductive algebraic group over F. Every Langlands parameter ¢
for G determines an “infinitesimal parameter” Ay : Wr — LG by Ap(w):=¢(w,dy,)
where d,, = diag(|w|1/2, |w\_1/2). The map ¢ — A, is not injective, but the preimage
of any infinitesimal parameter falls into finitely many equivalence classes of Langlands
parameters under G-conjugation. Set Ay =Ny, . Let Tlpure,n, (G/F') be the set of [r,d] €
pure(G/F) such that the Langlands parameter ¢, whose associated L-packet contains ,
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satisfies Ay = Ay. The generalisation of (6) that we define, following [1] and [32], takes
the form of a map

(8) Hpuren, (G/F) — Rep(Ay).

The genesis of the map (8) is the interesting part, as it represents a sort of geometrisation
and categorification of (6).

To order to define (8), in Section 2 we review the definition of a variety Vj, following
[32], that parametrises the set Py (XG) of Langlands parameters ¢ for G such that A, = .
The variety V) is equipped with an action of Z5()). Then, again following [32], we
consider the category Per Za( ») (V) of equivariant perverse sheaves on V). Together with
(7), the version of the Langlands correspondence that applies to G and its pure rational
forms determines a bijection between Il,ye A(G/F) and isomorphism classes of simple
objects in Perz_ x) (Vi)

Hpure(G/F) — Perzé(,\)(v/\fimplcv

/iso
©) [7r, 8] — P(m,9).

Inspired by an analogous result in [1] for real groups, in Proposition 4.6.1 we show that
every Arthur parameter ¢ determines a particular element in the conormal bundle to V)

(zy, &) € TE, (Va,),

where Cy, C V), is the Z5(A\y)-orbit of 2, € Vi, such that the Zz(Ay)-orbit of (zy,&y)
is the unique open orbit T¢, (Vx, )sreg in T¢:, (Va, ). Then we use (zy,&y) to show that
Ay is the equivariant fundamental group of T¢, (V)reg- Thus, (zy,&y) determines an
equivalence of categories

Locz, () (T¢, 7(VA)sreg) = Rep(Ay),
where Rep(Ay) denotes the category of representations of Ay. This means that the
spectral transfer factors ( - , ) bosc for 1) appearing in (3) can be interpreted as equivariant

local systems on Téw (Vi )sreg
In Section 5.1 we use the vanishing cycles functor to define an exact functor

(10) EVCw,ﬁ : Perzé ()\)(V)\) — Perzé()\)(Té«w (V/\)reg)

which plays the role of the microlocalisation functor as it appears in [1] for real groups.
Vanishing cycles of perverse sheaves on V) are fundamental tools for understanding the
singularities on the boundaries of strata in V) and their appearance here is quite natural.
The restriction of H™ ™ Bvg, 5 P to T¢, (Vi )steg 15 an equivariant local system on
T, a} (Va, )sreg and thus a representation of Ay. Using deep facts about vanishing cycles,
we show that if P is an equivariant perverse sheaf on Vy, then Evc, ; P is cohomologically
concentrated in degree V), allowing us to introduce the exact functor

(11) EVOCW,—] = Evcwﬁ[_ dim V)\] : PerZé(A)(VA) — LOCZé(A)(Té'w’ﬁ(V)\)reg)-
When combined with restriction
LOCZ@(A) (Téq/”ﬁ(v)\)reg) — LOCZ@(A) (Téq/,,ﬁ(v)\)sreg)

and the equivalence
LOCZé()\) (Té‘wﬁ(V)\)sreg) — Rep(Aw)
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from above, this defines an exact functor
(12) EVU} : Perzé(,\)(V,\) — Rep(Aw).

Passing to isomorphism classes of objects, this functor defines a map

simple

Perz () (Va)jieo  — Rep(Ay) /iso-

When composed with (9), this defines (8).
We now explain the conjectured relation between (5) and (8). With reference to (12),
consider the support of (8), called the ABV packet for i:

(13) IA0Y (G /F) :={[r, 6] € Hpure \(G/F) | Evy P(m,0) # 0}.
We can break the ABV packet IIABY (G /F) apart according to pure rational forms of
G:
Ipe(G/F) =[] IRV (Gs(F),9),
[6]eHY(F.G)
where
I,V (Gs(F),0):={(m,8) € I(G5(F),d) | [r,0] € WPY(G/F)},
S0

Hisz(Gé(F),(S) = {(7‘—’5) € H(Gd(F)’(S) | Evy 'P(ﬂ',(S) # 0}'

We may now state the main conjecture of this paper, given in a slightly stronger form as
Conjectures 1 and 2 in Section 6.

Conjecture. Let 1) be an Arthur parameter for a quasi-split symplectic or special or-
thogonal p-adic group G. Then
pure,s (G/F) = TI50Y (G /F).

pure,)

Moreover, for all pure rational forms ¢ of G' and for all [x, 6] € yurer, (G/F),
(+,[md]), = trace Bvy P(m,d).

The pithy version of this conjecture is Arthur packets are ABV packets for p-adic
groups, but that statement obscures the fact that Arthur packets are defined separately
for each inner rational form (more precisely the corresponding inner twist), while ABV
packets treat all pure rational forms in one go. More seriously, this pithy version of the
conjecture obscures the fact that the conjecture proposes a completely geometric approach
to calculating the characters ( - 77T>w,sc appearing in Arthur’s endoscopic classification of
representations.

To simplify the discussion, in this introduction we have only described ABV packets
for Arthur parameters; however, as we see in this paper, it is possible to attach an ABV
packet to each Langlands parameter. Consequently, there are more ABV packets than
Arthur packets. So, while the conjecture above asserts that every Arthur packet in an
ABYV packet, it is certainly not true that every ABV packet is an Arthur packet. If the
conjecture is true, it gives credence to the idea that ABV packets may be thought of as
generalised Arthur packets.

The main features of this paper are:

(1) in Section 1, a quick review of the main local result from [2] as it specialises to
pure rational forms of quasi-split connected reductive groups over p-adic fields;
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(2) in Section 2, a brief description of Vogan’s parameter variety for p-adic groups
and a review of Vogan’s perspective on the local Langlands conjecture for pure
rational forms of quasi-split connected reductive groups over p-adic fields, using
based on [32];

(3) Theorem 3.1.1, showing that the Vogan variety for an arbitrary infinitesimal para-
meter coincides with the Vogan variety for an unramified infinitesimal parameter
and also showing that the category of equivariant perverse sheaves is related to
the category of equivariant perverse sheaves on a graded Lie algebra, thereby
putting tools from [25] at our disposal;

(4) Theorem 4.1.1, showing that Arthur parameters determine conormal vectors to
Vogan’s parameter space and further that representations of the component group
attached to the Arthur parameter correspond exactly to equivariant local systems
on the orbit of that conormal vector, as in the case of real groups [1];

(5) Theorem 5.3.1 on a functor of vanishing cycles, replacing microlocalisation;

(6) Vogan’s conjectures from [32] expressed in terms of vanishing cycles as Conjec-
tures 1, 2 and 3, in Section 6.

Although we do not prove the conjecture above in this paper, we do have in mind a
strategy for a proof using twisted spectral endoscopic transfer and its geometric counter-
part for perverse sheaves on Vogan varieties; we will do this for unipotent representations
of odd orthogonal groups in a subsequent paper. In this paper we have more modest goals:
following [32], adapting conjectures from [1] to p-adic groups and casting them in a form
amenable to calculations. In [10] we provide additional evidence for these conjectures by
verifying them in examples chosen to illustrate features of the three theorems above.

Acknowledgements: Our thanks to Jim Arthur for suggesting this problem at The Fu-
ture of Trace Formulas workshop and to the Banff International Research Station where
that workshop took place. Thanks also to Pramod Achar, Jeff Adams, Anne-Marie Au-
bert, Patrick Brosnan, Aaron Christie, Paul Mezo, Dipendra Prasad and Kam-Fai Tam
for helpful conversations. We happily acknowledge the hospitality of the Mathematisches
Forschungsinstitut Oberwolfach where CC first encountered Langlands parameter variet-
ies at a Research in Pairs program with Pramod Achar, Masoud Kamgarpour and Hadi
Salmasian and where CC and BX presented this paper at the 2017 Conference on Har-
monic Analysis and the Trace Formula.

1. ARTHUR PACKETS AND PURE RATIONAL FORMS

The goal of this section is primarily to set some notation, recall some definitions,
and set the stage for the geometric description of the characters of Ay appearing in the
introduction.

1.1. Local Langlands group. Let F' be a p-adic field; let ¢ = gp be the cardinality
of the residue field for F. Let F' be an algebraic closure of F' and set I'p := Gal(F/F).
There is an exact sequence

1 IF FF Gal(Fq/IFq) E— 1,

where [r is the inertia subgroup of I'r and ]Fq is an algebraic closure of F,. Since

Gal(F,/F,) = Z, it contains a dense subgroup Wy, = Z, in which 1 corresponds to the
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automorphism z +— z9 in Fq. We fix a lift Fr in I'p of  — 297 in W},.. The Weil group
Wpg of F is the preimage of Wy, in I'p,

K_\
1 —— Ip —— Wp —— Wi, —— 1,

topologised so that the compact subgroup Iy is open in Wg. Let
| |p: Wp — R

be the norm homomorphism, trivial on Ir and sending Fr to gr. Then | |5 is continuous
with respect to this topology for Wg.
The local Langlands group of F' is the trivial extension of Wg by SL(2,C):

e~

1.2. L-groups. Let G be a connected reductive linear algebraic group over F. Let
Uo(G) = (X*, A, X, AY)

be the based root datum of G. The dual based root datum is
UY(G) = (X, AV, X* A).

A dual group of G is a complex connected reductive algebraic group G together with a
bijection

ng Vo (G) = Wo(G).
The Galois group I'r acts on ¥o(G) and VY (G); see |7, §1.3]. This action induces a
homomorphism

p: T — Aut(Uo(G)) = Aut(¥y (Q)).

Let G be a dual group of G. Then we can compose 75 with p and get a homomorphism

o~

pa T — Aut(¥o(G)).

An L-group data for G is a triple (6’, p,Splg), where G is a dual groupof G, p: T'p —
Aut(G) is a continuous homomorphism and Splg := (B, T, {X,}) is a splitting of G such

that p preserves Spls and induces pg on Wo(G) (see |7, Sections 1, 2| for details.)

~

The L-group of G determined by the L-group data (G, p, Splg) is
LG = é X WF,

where the action of Wy on G factors through p. Since p induces pug on \Ilo(é) and since
Aut(Wo(G)) is finite, the action of Wx on @ factors through a finite quotient of Wp. We
remark that the L-group, “G, only depends on G and p and is unique up to conjugation
by elements in G fixed by I'r.

Henceforth we fix an L-group, “G, of G and make G a topological group by giving G
the discrete topology and Wy the profinite topology.
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1.3. Langlands parameters. If ¢ : Ly — "G is a group homomorphism that commutes
with the projections Ly — Wr and “G — Wp, then we may define ¢° : Lr — G by
o(w,z) = ¢°(w,z) X w. Then we have the following map of split short exact sequences:

1 — SL(2, 1

L~
C) Lp Wr
o7 k|
~ VR
G Lg Wr

A Langlands parameter for G is a homomorphism ¢ : Lr — “G such that

1 1.

(P.i) ¢ is continuous;
(P.ii) ¢ commutes with the projections Lr — Wp and 1'G — Wp;
(P.iii) ¢°[sr(2) : SL(2) — Gisa morphism of algebraic groups;
(P.iv) the image of ¢|w, consists of semisimple elements in G.
Let P(*G) be the set of Langlands parameters for G. For ¢ € P(*G), we refer to

Ay =m0(Zz(9)) = Z5(9)/Z5(9)°

as the component group for ¢.

Langlands parameters are equivalent if they are conjugate under G. The set of equi-
valence classes of Langlands parameters of G is denoted by ®(G/F); it is independent of
the choice of L-group “G' made above.

1.4. Arthur parameters. If ¢ : Lp x SL(2,C) — %G is a group homomorphism that
commutes with the projections Lp x SL(2,C) — Lr — Wp and “*G — Wp, then we
define ¢° : Lp x SL(2) — G by ¥(w,z,y) = ¢°(w,z,y) X w, where (w,x) € Lp and
y € SL(2).

An Arthur parameter for G is a homomorphism v : Ly x SL(2,C) — G such that

(Q.i) ¢|r, is a Langlands parameter for G;
(Q.ii) ¥°|sp(2) : SL(2) — Gisa morphism of algebraic groups;
(Q.iii) the image ¢°|w, : Wi — @ is bounded (its closure is compact) in the complex
topology for G.

The set of Arthur parameters for G' will be denoted by Q(*G). The set of @—conjugacy
classes of Arthur parameters will be denoted by ¥(G/F).

For ¢ € Q(*G), we refer to

Ay =mo(Z5(W) = Zg()/Zg()°
as the component group for 1.

1.5. Langlands parameters of Arthur type. Define d : Wr — SL(2,C) by

\w|1/2 0
14 dy = _ .
(1) ( A

Note that w — (w,d,,) is a section of Lp — Wpg. For ¢ : Lp x SL(2,C) — LG, define
gf)w Ly — La by
¢¢,(w7x) = w(w7w7 dw)
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This defines a map
Q(*G) — P(*G)
(L S
We will refer to ¢, as the Langlands parameter for 1. The function i — ¢, is neither

injective nor surjective. Langlands parameters in the image of the map Q(*G) — P(*G)
are called Langlands parameters of Arthur type. The function

V(G/F) = (G/F),
induced from Q(*G) — P(*G), is injective.

(15)

1.6. Pure rational forms. We suppose now that the connected reductive algebraic
group over F' is quasi-split.

An inner rational form o of G is a 1-cocycle of I'r in G4, where G, is the adjoint
group of G. It determines an inner twist (G, %) of G as follows. Let G, (F) := G*(F)
and ¢, be the identity map. The action of v € 'z on G, (F) is given through the twisted
Galois action on G(F), i.e., v : g — Ad(a(7))(v - g) for g € G(F), where « - g refers to
the action of I'r on G(F) defining G over F. We will represent the inner twist by G,
and identify G_(F) as a subgroup of G (F) through ¢,. Two inner rational forms oy, o9
of G are equivalent if they give the same cohomology class in H'(F,G,,), or equivalently
G, (F) and G,,(F) are conjugate under G(F). There is a canonical isomorphism

HY(F,G,q) = Hom(Z(G,,)'r,CY)

where CA?SC is the simply connected cover of the derived group of G. The character of
Z(Gy)'r determined by [0] € H'(F,G,,) will be denoted (,.

A pure rational form 6 of G is a 1-cocycle of I'p in G. It determines an inner rational
form o := §(o) by the canonical map

(16) ZNF,G) — ZHF,G ).

We will denote the inner twist G, by G. Two pure rational forms of G are equivalent if
they give the same cohomology class in H(F, G, ;). There is also a canonical isomorphism

H'(F,G) = Hom(mo(Z(G)'7),CY).

The character of m(Z(G)Fr) corresponding to the equivalence class of § will be denoted
by xs. By [2], Proposition 6.4], the homomorphism G — G,, induces a commuting
diagram:

Q

HY(F.G) HY(F,

I- |

Hom(mo(Z(G)Fr),C) ——— Hom(Z(G,)'r,Ch).

ad)

1R

So (, is the image of ys and we will also denote it by (s.

1.7. Langlands packets for pure rational forms. An isomorphism class of repres-
entations of a pure rational form of G is a pair (m,d), where 7 is an isomorphism class
of admissible representations of G5(F). Then G(F)-conjugation defines an equivalence
relation on such pairs, which is compatible with the equivalence relation on pure rational
forms Z'(F,G). We denote the equivalence class of (m,8) by [r,d], and following [32],
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write e (G/F) for the set of these equivalence classes. The local Langlands corres-
pondence for pure rational forms of G can be stated as in the following conjecture. There
is a natural bijection between I1,,,.(G/F) and C?-conjugacy classes of pairs (o, p) with
¢ € P(YG) and p € Trrep(Ay). We will call the pair (¢, p) in this conjecture a complete
Langlands parameter. For ¢ € P(“G'), we define the corresponding pure Langlands packet

Mpure,¢(G/F)

to be consisting of [, d] in I,y (G/F), such that they are associated with G-conjugacy
classes of (¢, p) for any p € Irrep(A4,) under the local Langlands correspondence for pure
rational forms. This is also known as the Langlands-Vogan packet.

1.8. Arthur packets for quasi-split symplectic or special orthogonal groups.
From now on until the end of Section 1, we will assume G is a quasi-split symplectic or
special orthogonal group over F. In [2, Theorem 1.5.1], Arthur assigns to 1 € Q(*G) a
multiset IT; (G (F)) over II(G(F)), which is usually referred to as the Arthur packet of G
associated with 1. It is a deep result of Moeglin [25] that I1,(G(F')) is actually a subset
of II(G(F')). Arthur [2, Theorem 2.2.1] also associates I, (G (F)) with a canonical map

I (G(F)) > S,

17

17) T (T
where

(18) Sy = Zg()/Z5W)°2(G)T,

and 3‘; denotes the set of irreducible characters of Sy,. We use (17) to define a stable
virtual representation of G (F) by

(19) ngi= > lem, T
€Tl (G (F))

where z, € Sy is the image of ¢(1, —1) under the mapping Z5(¢) — Sy, here (1,-1) €
Lp with —1 is the non-trivial central element in SL(2,C). Every semisimple s € Z5 (1))
determines an element x of Sy, and thus a new virtual representation

(20) 17575 = Z (2pz,m),, .
TEly (G (F))

Turning to the stable distributions on G (F'), we set

(21) 0= > (7)), 6,
mElly (G (F))

and

(22) 0f = Z (zyp2, ), Or.
melly (G (F))

The pair (1, s) also determines an endoscopic datum (G’, Ly s, ) for G and an Arthur
parameter v’ for G’ so that ¢ = £ o4)’. In fact, G’ is a product group, whose factors
consist of symplectic, special orthogonal and general linear groups. So one can extend
the above discussions about G to G’ without difficulty as done in [2].
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Arthur’s main local result shows that, for locally constant compactly supported func-
tion f on G(F'), we have

(23) 05 .(f) =05 (f,

where f’ is the Langlands-Shelstad transfer of f from G(F') to G'(F'). It is in this sense
that the maps (17) are compatible with spectral endoscopic transfer to G(F').

On the other hand, there is an involution § of G := GL(N) over F such that
(G,1G, 5,&n) is a twisted endoscopic datum for G (F):= GL(N, F) x () in the sense
of [23, Section 2.1|, for suitable semisimple s € G’ the component of § in G+ := G x <§>,
where 8 is the dual involution. Arthur’s main local result also shows that, for locally
constant compactly supported function f¢ on G?(F) := G(F) x 0,

(24) OF (f) = 0F,..(f").

where f is the Langlands-Kottwitz-Shelstad transfer of f? from GY(F) to G*(F) and
@g;s is the twisted character of a particular extension of the Speh representation of
GL(N, F) associated with Arthur parameter ¥y := £y o ¢ to the disconnected group
Gt (F). It is in this sense that the maps (17) are compatible with twisted spectral
endoscopic transfer from G (F).

Arthur shows that the map (17) is uniquely determined by: the stability of ©F; prop-
erty (23) for all endoscopic data G'; and property (24) for twisted endoscopy of GL(N). In
particular, the endoscopic character identities that are used to pin down ( - , ) » involve
values at all elements of Sy.

When # is trivial on the second SL(2, C), it becomes a tempered Langlands parameter.
In this case, Arthur shows (17) is a bijection. By the Langlands classification of II(G(F)),
which is in terms of tempered representations, this bijection extends to all Langlands
parameters of G. Moreover, it follows from Arthur’s results that there is a bi/j\ection
between II(G(F)) and G-conjugacy classes of pairs (¢, €) for ¢ € P(LG) and € € Ss.

1.9. Arthur packets for inner rational forms. A conjectural description of Arthur
packets for inner twists of G is presented in [2, Chapter 9|, though the story is far
from complete. Let o be an inner rational forms of G. An Arthur parameter v of
G, is said to be relevant if any Levi subgroup of XG, that ¢ factors through is the L-
group of a Levi subgroup of G,. We denote the subset of relevant Arthur parameter by
Qrel(G,). In [2, Conjecture 9.4.2], Arthur assigns to ¢ € Qre(G,,) a multiset IL, (G, (F))
over II(G,(F)), which is called the Arthur packet of G, associated with 4. This time
Moeglin’s results [28] only show IL, (G, (F')) is a subset of II(G, (F)) in case when o comes
from a pure rational form; see also [2, Conjecture 9.4.2, Remark 2|. For the purpose of
comparison with the geometric construction of Arthur packets, in this paper we define
II,(G,(F)) simply as the image of this multiset in II(G,(F)).

To extend (17) to this case, one must replace the group S, with a larger, finite,
generally non-abelian group Sy sc, which is a central extension

(25) 1 —— Zyse Syse S, 1

of Sy by the finite abelian group
Dy se:=2(G5)/2(G) N 8} o
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To explain the group in this exact sequence, we introduce the following notations. Set
Sy=Zg () and Sy :=Zg. (¥)/Z(G)FF
So Sy is the image of Sy in G* 4> whose prelmage in G* is Sd,Z(G). Let Sy s be the

prelmage of Sd, under the projection G — Ga 4> Which is the same as the preimage of
SwZ(G) in G;‘C. Let Sﬁ . be the preimage of Sw in G* and Zri be the preimage of

Z(é)FF in (/}\';‘c Let us erte Z(G*) (resp. Z(G;‘C)) for Z (resp. ZSC). It is clear that
ZEr < 7% . Then we have the following commutative diagram, which is exact on each
row:

1 — ZFF Sﬂ, 51/, 1

1 7t S — Sy —— 1

1 Z\SC Sﬂ’ sc —— 571’ — 1.
Note Sy = S’w chsm and hence SO = (Sﬁ) SC)O. After passing to the component
groups, we have the following commutatlve diagram, which is again exact on each row:

1 —— Z\iF A¢ 1

11— 7 St 1

P,sc P,sc
1 — Zwﬁsc Sw’sc 1.

Here Ay, Sy, Sf/) o> Sy sc are the corresponding component groups and
e 22 S
0
d)sc'_Zﬁ/ mS’L/),SC
Zpse=Zse| Zsc N 8Y 40
Let (, be the character of ZF F corresponding to the equivalence class of 0. We will

also fix an extension of ¢, to Zs and denote that by (,. By [3, Lemma 2.1], an Arthur
parameter ¢ of G is relevant if and only if the restriction of {, to ZF N SS} < 18 trivial.

Lemma 1.9.1. ZECF N 52175 = ZyeN SSJ e

Proof. Tt suffices to show Zg QS&SC - ZSFCF. Let Lp x SL(2,C) act on @:C by conjugation
of the preimage of ¥)(Lr x SL(2,C)) in *G,.. Then we can define the group cohomology
H)(Lp x SL(2,C),G%,), which is the group of fixed points in G, under the action of
Lp x SL(2,C). It is clear that HY(Lp x SL(2,C),G%,) C 8% . In fact, it is also not hard
to show that R

(H)(Lr x SL(2,0), G))° = (5,.0)"
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As a result, we have
Zoe N8 € Zse N (HY(Lp x SL(2,C),G%,))° C Zy N HY(Lp x SL(2,C), G2,) = ZLr
This finishes the proof. O

So, if 1 is relevant, it follows from Lemma 1.9.1 that Eo descends to a character of Z/,’SC.
Let Rep(Sy sc, (o) be the set of isomorphism classes of (,-equivariant representations of
Sy.sc. In [2, Conjecture 9.4.2], Arthur conjectures a map

(26) Iy (G, (F)) = Rep(Sy sc; 60)

and writes ( -, ) 4 sc for the character of the associated representation of Sy sc. Because

of our definition of IT,(G, (F)) here, one can not replace Rep(Sy.sc;Cs) by the subset
II(Sy scs C}) of Eo—equivariant irreducible characters of Sy . as in Arthur’s original for-
mulation. The map (26) is far from being canonical for it depends on (17) and various
other choices implicitly.

When 1 = ¢ is a tempered Langlands parameter, Arthur states all these results as a
theorem [2, Theorem 9.4.1]. In particular, he claims (26) gives a bijection

(27) Iy (G (F)) = I(Spsc, Co)-

By the Langlands classification of II(G_(F')), which is in terms of tempered represent-
ations, this bijection extends to all relevant Langlands parameters of G,. Moreover,
it follows from [2, Theorem 9.4.1] that there is a bijection between II(G,(F)) and G-
conjugacy classes of pairs (¢, €) for ¢ € Pry(“G.,) and € € TI(Sy ac, Co)-

1.10. Pure Arthur packets. Let § be a pure rational form of G and % be an Arthur
parameter of G;. Let x5 be the character of mo(Z(G)"'F) corresponding to the equivalence
class of 6. We will also denote its pull-back to Z(G)'F by xs. Let (5 := Co(5) be the

character of Z(G,.)T7, which is also the pull-back of x4 along

Z(G)"F — mo(Z(G)T7).

sc

Lemma 1.10.1. x5 is trivial on AXES 52} if and only if (s is trivial on ZECF N Sv,%,sc-

Proof. One just needs to notice that sz} is the product of (Z\FF)0 with the image of SO’SC
in Sw. O

As a direct consequence, we have the following corollary.

Corollary 1.10.2. An Arthur parameter ¢ of G is relevant if and only if xs is trivial
on Z'F N SS,.

Let us assume ) is relevant. Then x4 descends to a character of ZEF . Let Rep(Ay, xs)
be the set equivalence classes of xs-equivariant representations of A. Let (1; be a char-
acter of ch extending (s, so that its restriction to Esﬂc is the pull-back of xs. Since ® is
relevant, CN(; descends to a character of stc. Let Rep(Sy sc, 55) be the set of equivalence
classes of (s-equivariant representations of Sy sc-
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Proposition 1.10.3. Let x a character of mo(Z(G)'F). Let C be a character of Z(@SC)
Suppose the pull-back of x along Z*, — Z(G)'F — mo(Z(G)'F) coincides with the re-
striction of ¢ to Z%, — Z(G,,). Then there is a canonical bijection

(28) Rep(Ay, X) = Rep(Sy e, €).

Proof. Since

Ker(S* o 7 Ay) = Ker(Z*

72
P ,sc - ZwF)>

there is a canonical bijection
Rep(AﬂM X) - Rep(‘gi,sm gﬁ)a
where (¥ is the pull-back of ys to Z, . Since

811’750 = Zﬂ%SC Sf[;,sc and Zd;’sc n Sﬁ p,sc?

h,sc
there is also a canonical bijection

Rep(Sy sc; €) — Rep(SﬁwC, ¢H.
Combining the two isomorphisms above, we obtain the canonical bijection promised

above. O

Let us take 6 among various other choices to be made in defining (26). To emphasize
this choice, we will define

Iy (G5(F),0) :={(m,0) | m € Iy (G;(F))}-
Then by composing (26) with (28) modulo isomorphisms, we can have a canonical map
II,(Gs(F),0) = Rep(Ay, xs)
(7775) = < ' ,(77,(5)>w

which only depends on ¢ and (17). In particular, it becomes (17) when § = 1. For
equivalent pure rational forms ¢; and d2 of G, it follows from the construction of (26)
that the following diagram commutes.

(29)

I, (Gy, (F),61) — Ty (Gy, (F), 82)

| |

Rep(A,/,, Xé1 )/iso E— Rep(Ai/J» X62)/iso

As a result, (29) is also well-defined for the equivalence class [, d].

Let ¥ be an Arthur parameter of G. For pure rational form ¢ such that v is not
relevant, we will define IL,(G4(F'),d) to be empty. Then we can define the pure Arthur
packet associated with v to be

(30) Mpue,p(G/F) = | ] Tyu(Gs(F),d)
[6leH'(F,G)
as a subset of I,y (G/F). It is equipped with a canonical map
Mpure,uy(G/F) = Rep(Ay)

(31) [0, 6] = (-, [, 6])y
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When ¢ = ¢ is a tempered Langlands parameter, this induces a bijection
Mpure,s(G/F) — I1(Ag)
[Wvé] = <'7 [ﬂ—v 5]>¢
This bijection also extends to all Langlands parameters ¢ of G, according to the discussion
in the end of Section 1.9. Combined with the local Langlands correspondence for each

pure rational form of G, we can conclude the local Langlands correspondence for pure
rational forms of G appearing in Section 1.7.

1.11. Virtual representations of pure rational forms. Let KII,u..(G/F) be the free
abelian group generated by the set Iue(G/F). Define 1y € Kllpue(G/F) by

(32) Ny = Z 6(6) <a1l)7 [777 6]>¢ [ﬂ-? 6]a

[7715]€Hpureﬂ/z(G/F)
where e(§) = e(Gy) is the Kottwitz sign [22] of the group G, and ay is the image of
¥(1,—1) in Ay. Using (30) we have

=y e n
[6]eHY(F,G)
where, for each pure rational form § of G,
7’3) = Z <a1/1a(7r76)>¢; [’”a(g]'
(m,6)€lly (G5 (F),5)
For semisimple s € Zz (1)), we define 7y, s € Kllpue(G/F) by
Myp,s = Z 6(6) <CL¢CLS, (ﬂ-v 5)>¢ [ﬂ-a 6]a
[7,0]€Mpure,w (G/F)

where a; is the image of s in Ay. As above, we can break this into summands indexed
by pure rational form by writing

Mp,s = Z 6(6) ni,s
[6]eHY(F,G)
where, for each pure rational form § of G,
772;,3 = Z <awafsv (777 5)>¢ [777 5]
(m,8)€lly (G5 (F),9)
Then 173},1 = 771‘2 and 7,1 = 1. We note that, with reference to (19) and (20),
ny=ng and oy =nJ ..

Turning from virtual representations to distributions, we see that each 772) and 773}75
determines a distribution on G4(F') by

09 = Z (ayas, (m,6)),, Ox.
(m,0) €My (G4 (F),5)
This extends (21) and (22) from G(F') to G4(F') arising from pure rational forms ¢ of G
@111) = @g and @1111,5 = @G’S.
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1.12. A quick preview of the rest of the paper. Inspired by ideas developed for real
groups in [1] and without assuming G is symplectic or special orthogonal, the remainder
of this paper is devoted to offering a geometric, categorical and calculable description of
a map

Hpure,)\u, (G/F) — Rep(Aw)/isov

(33) [77,5] — EVw P(W,5)7

for any quasi-split G’ and for any Arthur parameter v : Ly x SL(2) — “G, and also to
explaining the conjecture that the map provides a generalisation of (31). Here Rep(Ay)
denotes the category of representations of Ay so Rep(Ay) iso includes the representation
of Ay on the vector space 0, in particular. In fact, more generally, we will define a map

Hpure,)\¢ (G/F) - Rep(ﬂ-l( rg;e»/ism

(34)
[Wv 6] = EV¢ P(ﬂ’ 5)3

for any Langlands parameter ¢ for G, such that when ¢ = ¢y, it coincides with (33).
Then

(35) MABY (G /F) i={[7, 8] € Tpuor(G/F) | Evy P(r,0) 0},

pure,¢

Note that this extends the definition given in (13) to all Langlands parameters. After
defining (34), we build virtual representations

(36)  mpPVi= > (—1)dim(Ce)=d(m) () rank Evy P(,d) [r, 4],
[7,6]€Mpure.x,, (G/ F)

where d(, ) := dim supp(P(n,0)), and more generally,

7725\/ _ Z (_l)dim(Cq;)*d(‘fTﬁ)e((S) trace EV¢ 73(7"7 5) (as) [7"7 5]7
[7.6]€pure, x4 (G/F)

for s € Zz(1)) and a, is the image of s in Ay,.
The conjectures in Section 6 can all be phrased in terms of these virtual representations.

1) Conjecture 1: if ¢ is an Arthur parameter for symplectic or special orthogonal
] p ymp P g
G, then 77{2}3\/ = 7Ny.

(2) Conjecture 2: if ¢ is an Arthur parameter for symplectic or special orthogonal G
then BV = 5y 4, for all s € Zg (). This implies the statement above, taking
the case s = 1.

(3) Without assuming G is symplectic or special orthogonal, though still connected
and quasi-split, Conjecture 3 asserts that the virtual representations n(‘;BV, as
¢ ranges over ®(G/F), forms a basis for the space of strongly stable virtual

representations as defined in [32, 1.6].

In [10] we provide evidence for all three conjectures by providing examples. We prove
Conjecture 2 (and therefore Conjecture 1 also) for Arthur parameters for unipotent rep-
resentations of G = SO(2n + 1) in [11].

2. EQUIVARIANT PERVERSE SHEAVES ON PARAMETER VARIETIES

In this section we drop the quasi-split hypothesis and let G be an arbitrary connected
reductive algebraic group over a p-adic field F.
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2.1. Infinitesimal parameters. An infinitesimal parameter for G is a homomorphism
X : Wr — LG such that

(R.i) A is continuous;

(R.ii) A is a section of LG — Wpg;
(R.iii) the image of \ consists of semisimple elements in LG.
Let R(“G) be the set of infinitesimal parameters for G. We will use the notation \° :
Wr — G for the function defined by A(w) = A°(w) x w. The component group for X is
(37) Axi=mo(Z5(N) = Z5(N)/Zg(\)".

The set of @—conjugacy classes of infinitesimal parameters is denoted by A(G/F).
For any Langlands parameter ¢ : Ly — “G, define the infinitesimal parameter of ¢ by
)\¢ : WF — LG
w = (w,dy),
where d : Wr — SL(2,C) was defined in Section 1.1. This defines
pPlta@) — R(*G)

The function ¢ — A, is surjective but not, in general, injective. For any fixed A € R(LQ),
set
P\(*G):={¢ € P(LG) | Ay = A}
We write ®(G/F) for the set of Z5(\)-conjugacy classes of Langlands parameters with
infinitesimal parameter \.
With reference to Section 1.7, for any quasi-split G over F', we set

Hpure A (G/F) = U Mpure,s (G/F),
EPA(LG)
with the union taken in Il,y.(G/F). Then, after choosing a representative for each class
in ®,(XG), we have
Hpurc,)\(G/F) == |_| Hpurc,d)(G/F)-
[le@A(LG)

Now the local Langlands correspondence for pure rational forms of G (cf. Section 1.7)
provides a bijection

(39) Hpure A(G/F) ¢+ {(6.p) | ¢ € PA("G), p € Irrep(Ay)} /-,

where the equivalence on pairs (¢, p) is defined by Zz(\)-conjugation.

2.2. Vogan varieties. Fix A\ € R(*G). Define

(40) Hyi=Z5(\):={g € G| (gx DA(w)(g x 1)~ = ANw), Yw € W}
and

(41)  Kx:=Zg\Ip)):={g€ G| (gx DA(w)(g x 1)~ = Aw), Yw € Ir}.

The centraliser Ky of \(Ip) in G consists of fixed points in G under a finite group of
semisimple automorphisms of CA;, so K is a reductive algebraic group. Since H) can be
viewed as the group of fixed points in K, under the semisimple automorphism Ad(A(Fr)),
then K is also a reductive algebraic group. Neither Hy nor K is connected, in general.
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Following [32, (4.4)(e)], define
(42) Va:=W(*G) :={z € Lie K\ | Ad(\(Fr))z = qra},
called the Vogan variety for A\. Then H) acts on V) by conjugation.
Lemma 2.2.1. V) is a conical subvariety in the nilpotent cone of Lie K.

Proof. Set €5 = Lie K. Decompose £, according to the eigenvalues of Ad(A(Fr)):
(43) =P aw).
veC*
Then, using the Lie bracket in £, we have
(44) [, ]:8\(v1) X Er(v2) = Ex(v11).

It follows that all elements in V), are ad-nilpotent in §. So it is enough to show that V)
does not intersect the centre 3 of g. Since the adjoint action of A(Wx) on 3 factors through
a finite quotient of I'r, the Ad(A\(Fr))-eigenvalues on } are all roots of unity. In particular,
they can not be ¢qr, so V) does not intersect 3. This shows that all elements in V) are
nilpotent in §. It is clear from (42) that Vy(*G) is closed under scalar multiplication by
C* in &) O

With reference to decomposition of €y, = Lie K in the proof of Lemma 2.2.1, observe
that

E)\(qF) :V)\ and B)\(l) :LieH)\.

Proposition 2.2.2. For each infinitesimal parameter X € R('G), the Hy-equivariant
function
PA("G) — Wi ("0,

0 1
¢>+—>x¢:—d<p<0 0),

where ¢ :=¢°|sp2,c) : SL(2,C) — (A;, is surjective. The fibre of P\(*G) — VA(*G) over
any © € VA(YG) is a principal homogeneous space for the unipotent radical of Zy, ().
The induced map between the sets of Hx-orbits

(I))\(LG) — V)\(LG)/f[)\7
[¢] = Cy
s a bijection.

Proof. Fix x € V) = £)y(¢r). By Lemma 2.2.1, z is nilpotent. There exists an sly-triple
(z,y,h) in €, such that

(45) z e Vy=2t(qr) and z e by =€\(1) and y € ex(gpt);
see, for example, [17, Lemma 2.1]. Let ¢ : SL(2,C) — K be the homomorphism defined

by
0 1 1 0 0 0

and define ¢ : Wr x SL(2,C) — £G by
$(w,g) = ¢(g)p(dy" )M (w).
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Then ¢ € Py(*G) and
o 0 1 0 1
d(¢°|sL2,c)) <O 0) =de (0 O) =z

This shows the map Py (*G) — V) (£YG) is surjective.
Now, suppose that ¢ is also mapped to x under the map Py(*G) — Vi (*G) and set
©1:=#%|sn(2,c)- Then ¢; determines an slo-triple (x,y1, 21) in €, such that

z1 € by =£\(1) and y1 € {?,\(qgl).

The two sly-triples (z,y,z) and (z,y1,21) are conjugate by an element of Zy, (x); see,
for example, the second part of [17, Lemma 2.1]. Thus, ¢ and ¢; are conjugate under
Zy, (z). We can also write ¢, as

$1(w, 9) = p1(9)¢r(d, )\ (w).
It is then clear that ¢ and ¢; are also conjugate under Zg, (z). This shows that the map
Py(*G) — V\(*G) induces a bijection between Hy-orbits and also that the fibre above
any x € Vy is in bijection with Zp, (z)/Zg, (¢) for ¢ — x and that Zy, (v) = Zy, (¢)U
where U is the unipotent radical of Zy, (x). O

We remark that Proposition 2.2.2 is analogous to [1, Proposition 6.17] for real groups.
However, Proposition 2.2.2 might appear to contradict with [32, Corollary 4.6]. The
apparent discrepancy is explained by the two different incarnations of the Weil-Deligne
group: we use Lp = Wy x SL(2,C) while [32] uses Wi = Wg x G,q4(C) and we use
pullback along Wr — Lp given by w — (w, d,,) to define the infinitesimal parameter of
a Langlands parameter while [32] uses restriction of a parameter W — LG to Wr to
define its infinitesimal parameter. We find Lp preferable to W}, here because it stresses
the analogy to the real groups case. However, there is a cost. In the optic of [32], V) is
exactly a moduli space for Langlands parameters ¢ : W} — LG with ¢|w, = A, while
in this paper the map Py(*G) — Vi (*G) from Langlands parameters ¢ : Lp — “G with
Ay = A to V) is not a bijection, as we saw in Proposition 2.2.2.

2.3. Parameter varieties. Recall from Section 2.1 that elements of A(G/F) are G-
conjugacy class of elements of R(XG). We will use the notation [\] € A(G/F) for the
class of A € R('G); then [)] is an infinitesimal character in the language of [32]. Consider
the variety

(46) Xy :=X\(*G) =G x g, V\(*Q).
Then [A] = [\V] implies X (YG) = X,/ (YG). Set
Py("G):={¢ € P("G) | Ay = Ad(g)\, 3g € G}
It follows immediately from Proposition 2.2.2 that the function
(47) Py (G) = X\ (fG),
induced from Py (fG) — Vi (*G) is G-equivariant, surjective, and the fibre over any z €
X, (¥G) is a principal homogeneous space for the unipotent radical of Zg(z).

Let Homyy, (W, G) be the set of homomorphisms that satisfy conditions (R.i) and
(R.ii). Observe that

R(*G) = {)\ € Homy,. (Wr,G) | A(Fr) € LGy}
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where “G, C PG denotes the set of semisimple elements in “G. Now let Homy,. (I, *G)
be the set of continuous homomorphisms that commute with the natural maps Ir — Wg
and “G — Wpr. As explained in [29, Section 10], the set Homy, (W, G) naturally
carries the structure of (locally finite-type) variety over C and its components are in-
dexed by @-conjugacy classes of those ¢g € Homyy, (I, G) that lie in the image of
Homy, (Wr,LG) — Homy, (Ir,“G) given by restriction. We remark that G-orbits in
Homyy, (Wr, LG) are closed subvarieties.
Now consider the (locally finite-type) variety

XE@) = {(\ =) € Hompy, (Wr,LG) x LieG | z € Vx(*G)}
This (locally finite-type) variety comes equipped with morphisms

X(LG) — HOHIWF(WF,LG) — HOHIWF(IF7LG)
ANz) = A = Az

The components of X (*G) are again indexed by @—conjugacy classes of those ¢g €
Homyy,, (Ir, LG) that lie in the image of Homyy, (Wr, L G) — Homy, (Ir,LG). The fibre
of X(XG) — Homy,,(Wg,LG) above A € R(*G) C X(LG) is precisely the affine variety
X, (FG) defined in (46).

Now, with reference to the definition of Ay from (38) and the definition of x4 in
Proposition 2.2.2, consider the map

PtG) — X(G)

¢ = (A7)
It follows from Proposition 2.2.2 that the image of this map is {(\,z) € X(*G) | A €
R(XG)} and the fibre of P(*G) — X (LG) above any (A, z) in its image is a principal
homogeneous space for the unipotent radical of Zz(x), and moreover that PtG) —
X (EG) induces a bijection

(48)

o(“G) — X (*G)/G,
4] = Sy

Though the map (48) is neither injective nor surjective, in general, and though X (*G) is
not of finite type over C, in general, we refer to X (“G) as the parameter variety for G.

We note that X(LG) is stratified into G-orbit varieties, locally closed in X (“G); this
stratification is not finite, in general, but it is closure-finite. For each G-orbit S C X (XG),
there is some A € Homyy, (Wg,LG) such that S C X,(XG). Then S, the closure of S
in X(XG), is also contained in X, (YG). It is essentially for this reason that this paper

is concerned with the affine varieties X, (XG), for [\] € A(G/F), rather than the full
parameter variety X (1G).

2.4. Equivariant perverse sheaves. The definitive reference for perverse sheaves is [0],
and we will use notation from that paper here, but equivariant perverse sheaves do not
appear in [0], so we now briefly describe that category and some properties that will be
important to us. Our treatment is consistent with [9, Section 5].

Let m: H x V — V be a group action in the category of algebraic varieties. So, in
particular, H is an algebraic group, but need not be connected. Consider the morphisms

S
may,mz2,Mms3

m
HxHxV ——F%HxV — —3V
mo
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where mg : H x V. — V is projection, s : V. — H X V is defined by s(z) = (1,z) and
my,mo,m3: Hx HxV — H xV are defined by

my(h1, he,x) = (hihz, )
ma(hi, he,x) = (hy,m(ha, x))
mg(h]_,hg,l') = (hQ’x)'

These are all smooth morphisms. An object in Perg (V) is a pair (A, «) where A € Per(V)
and

(49) a:m*[dim H)A — mg[dim H]A
is an isomorphism in Per(H x V') such that
(50) s* () = id 4[dim H]

and such that the following diagram in Per(H x H x V'), which makes implicit use of
[6, 1.3.17] commutes:

m3[dim Hjm*[dim H]A — 728 H© i H]mg[dim H] A
J{momlzmomg moomzzmomgl

(51) m’[dim H]m*[dim H].A mi[dim H]m*[dim H].A
lmr [dim H](a) m3[dim HJ(a)l

m’ [dim H)m[dim H]A <70 =00M [ dim H]mg[dim H]A.

We remark that PHY™ ¥ y* = m*[dim H] on Per(V) and PHY™ # ;¥ = m?[dim H] on
Per(H x V) for i = 1,2, 3; see [0, 4.2.4]. This does not require connected H.

Morphisms of H-equivariant perverse sheaves (A, «) — (B, 3) are morphisms of per-
verse sheaves ¢ : A — B for which the diagram

m*[dim H]A — A HO) i BB
(52) al lﬁ
. mg[dim H]($) .
mg[dim H]A mg[dim H|B

commutes. This defines Pergy (V'), the category of H-equivariant perverse sheaves on V.
The category Perg (V) comes equipped with the forgetful functor

Perg (V) — Per(V)

trivial on morphisms and given on objects by (A,«a) — A. This is a special case of
a more general construction called equivariant pullback. Let m : H x V — V and
m' : H x V' — V'’ be actions. Let u : H — H be a morphism in the category of
algebraic groups and suppose H' acts on V and H acts on V. A morphism f: V' — V
is equivariant (with respect to ) if

H x V' -y

el

HxV 25V
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commutes. Then for every i € Z there is a functor PH’, f* : Pery (V) — Pery (V') making

Persy: (V') 22T Pery (V)

forgetl lforget

Per(V") LT M Per(V)
commute; we call this equivariant pullback. The forgetful functor above is just pH(l) idy,,
where u : 1 — H.
The category Perg (V) also comes equipped with the forgetful functor

Pery (V) — PerHo (V)

where HY is the identity component of H. The category Peryo (V) is easier to study than
Perg (V), since the functor Pergo(V) — Per(V) is faithful, which is generally not the
case for Pery (V) — Per(V) when H is not connected. The following lemma shows how
Perg (V) is related to Pergo (V).

Lemma 2.4.1. Let m : H XV — V be a group action in the category of algebraic
varieties. Suppose V is smooth and connected. We have a sequence of functors
Er Ey [dim V] forget: P—"Py

Pergy (V) Pergo (V)

T

Rep(mo(H))

such that:

(a) for every E € Rep(mo(H)), (Ev[dimV]) = 18m E(dim V];

(b) the functor Rep(mo(H)) — Perg(V) is fully faithful and its essential im-
age is the category of perverse local systems L[dimV] € Pery (V) such that
(L[dim V])o = 1¢m £[dim V];

(c) the forgetful functor Perg (V) — Pergo(V) is exact and admits isomorphic left
and right adjoints m, : Pergo (V) — Perg(V);

(d) every P € Pery (V) is a summand of . Py.

Proof. The identity idy : V — V is equivariant with respect to the inclusion v : H® — H
of the identity component of H. Consider the functor

PHY id}, : Pery (V) — Pergo (V).
The trivial map 0: V — 0 is equivariant with respect to the quotient 7y : H — mo(H).

HxV ———V

| |

mo(H) x0 —— 0
Consider the functor
pHiiomH 0" : Pery,(s)(0) — Pergy (V).
Then
(PHAI 0%) (PHYidy) = PG 00
and we have a sequence of functors

forget

Pero () (0) ——— Perg(V) Pergo(V)
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The tensor category Perq (z)(0) is equivalent to Rep(mo(H)), the category of representa-
tions of the finite group mo(H). Property (a) now follows from the canonical isomorphism
of functors above.

Since V' is smooth, the functor Rep(mo(H)) — Pery (V) is given explicitly by E —
Ey[dim V]; this functor is full and faithful by, for example, [6, Corollaire 4.2.6.2], from
which we also find the adjoint functors Pery (V) — Rep(mo(H)) and Property (b). Con-
nectedness of V' plays a role here. )

To see Property (c), set V = H xgo V and consider the closed embedding i : V — V
given by i(x) = [1, 2] go. By descent, equivariant pullback

PHY i* : Pery (V') — Pergo (V)
is an equivalence. Now consider the morphism
c: VoV
[h,ﬂ?}HO — h-x.

Then ¢ : V — V is an H-equivariant finite etale cover with group mg (H) = H/H°. In
fact, V = V x H/Hy and c is simply the composition of this isomorphism with projection
V x H/Hy — V. Since ¢ is proper and semismall, the adjoint to pullback

PHO ¢* : Per(V) — Per(V)
takes perverse sheaves to perverse sheaves,

PHC ¢, : Per(V) — Per(V)
and coincides with PH® ¢;; see also [0, Corollaire 2.2.6]. To see that the adjoint extends
to a functor of equivariant perverse sheaves, define

PHY, ¢, : Perg (V) — Perg (V)

as follows. On objects, pH% (A, @) = (A, o) with A = PH’ ¢, A while the isomorphism
o PHIH g A pHAI™H s A in Per(H x V) is defined by the following diagram of
isomorphisms.

pHdlmHm*A a pHdlmHmEk)A
pHdlmH m*(pHO C*A) pHdlmH mé(pHO C*A)
lsmooth base change smooth base changei

HO(idg xc). (&)

PHO (id gy xc), PHEMH (7)c 4 PHO (id g xc¢), PHY™H (7ng)* A

It is straightforward to verify that « satisfies (50) and (51) as they apply here and also
that if A — B is a map in Pergy (V) then PH'¢ (A — B) satisfies condition (52), so
is a map in Pery(V). By this definition of PH% ¢, : Peryz(V) — Perg(V), it follows
immediately that the diagram

~ PH(}I Cx

Pery (V) —————— Perg (V)

for gctl lforget

- c,=PH ¢,

Per(V) —————— Per(V)
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commutes. Now, we define the adjoint 7, : Pergo(V) — Perg (V) by the following diagram

PerHo(V) ks PerH(V)
equiv.
”H‘/ﬂi\ /H(}I Cu
PerH(V).

This shows Property (c). )
Property (d) follows from the Decomposition Theorem applied to ¢: V — V. O

2.5. Equivariant perverse sheaves on parameter varieties. Our fundamental ob-

ject of study is the category Pers(Xy) of @—equivariant perverse sheaves on X (YG), for
fixed [A\] € A(G/F). Consider the closed embedding

V)\ — X,\
x — [1,2]m,.

By a simple application of equivariant descent, the functor obtained by equivariant pull-
back along V) — X,
PeI’H)\ (VA) — Per@(X,\),

is an equivalence. Consequently, it may equally be said that our fundamental object of
study is the category Perg, (V)\) of Hy-equivariant perverse sheaves on V.
Now define

(53) Xn=G xg0 V.

Then

V,\ — X)\
z =[]y
induces an equivalence
Peré(XA) — Peng(V,\).

Define
C) X)\ — X)\
(h, @] o = [h, 2] my

Arguing as in Section 2.4, it follows that there is a sequence of exact functors

E—Ex, [dim X,] (ex)” -
Rep(Ay) X * Per@(XA) o~ Pera(XA)
CX ) ®
lequiv lequiv
Perg, (Vi) Pergo(V)

enjoying the properties of Lemma 2.4.1.
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2.6. Langlands component groups are equivariant fundamental groups. Now
that we have a precise definition of Perp, (Vi), we consider its simple objects.

Every simple object in Perg, (V) takes the form ZC(C, L), where C is an Hx-orbit in
Vy and £ is a simple equivariant local system on C. Thus, simple objects in Perg, (V3)
are parametrised by pairs (C, p) where C is an Hy-orbit in V) and p is an isomorphism
class of irreducible representations of the equivariant fundamental group A¢c of C. To
calculate that group, we may pick a base point x € C so

(54) Ac = m(C,x) .
We are left with a canonical bijection:

Perp, (Va )5 &5 {(C,7) | Hx-orbit C C Vi, p € Irrep(Ac)}.

/iso
Lemma 2.6.1. For any Langands parameter ¢ : Lp — G,
AC¢ = A(ba
where Cy C V), is the Hy, -orbit of xy; see Proposition 2.2.2.

Proof. Recall from Section 1.3 that the component group for a Langlands parameter ¢ is
given byAy = mo(Z5(9)) = Zg(6)/Z5(9)°. Since As(Wr) C ¢(Lr), Ay = m0(Zn,, (9))-
On the other hand, the equivariant fundamental group of Cy is m(Cy,xe) Hy,
7T0(ZH)\¢ (x4)). From the proof of Proposition 2.2.2 we see that ZH,, (xy) = Zn,, (p)U,
where U is a connected unipotent group. It follows that

m0(Zu,, (€9)) = 70(Zh,, (O)U) = 70(Zn, , (9)),

which concludes the proof. O

The following proposition is one of the fundamental ideas in [32]. Because our set up
is slightly different, however, we include a proof here.

Proposition 2.6.2. Suppose G is quasi-split. The local Langlands correspondence for
pure rational forms determines a bijection between the set of isomorphism classes of simple
objects in Perg, (Vi) and those of Upyre x\(G/F) as defined in Section 2.1:

Per s, (Va) 5™ 5 Tppre r (G F).

/iso

Proof. We have already seen (39) that the local Langlands correspondence for pure ra-
tional forms gives a bijection between Il e (G /F') and

{(g].e) | [¢] € @A("G), € € Trrep(Ag)}

Proposition 2.2.2 gives a canonical bijection between ®,(“G) and the set of Hy-orbits in
V. When C + [¢] under this bijection, Lemma 2.6.1, gives a bijection between Irrep(Ac¢)
and Irrep(Ay). O

We introduce some convenient notation for use below. For [, 0] € II\(G/F), let
P(m,d) be a simple perverse sheaf in the isomorphism class determined by [, ] using
Proposition 2.6.2:

Mpure A (G/F) = Pery, (V3)7mr'
[m,0] — P(m,9).
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Conversely, for a simple perverse sheaf P = ZC(C, L) in Perg, (Vi), let xp be the character
of m9(Z(G)V'F) obtained by pullback along

(55) m(Z(G)'F) = mo(Z(x))

from the representation of 7o(Zz(x)) determined by the choice of a base point 2 € C' and

the equiviariant local system £ on C. Let ép € Z'(F,G) be a pure rational form of G

representing the class determined by xp under the Kottwitz isomorphism. Let 7mp be an

admissible representation of G5 (F') such that [7p, dp] matches P under Proposition 2.6.2:
Perpr, (Va)5P = Tpuen(G/F)

/iso

P - [7'('73, (573]
3. REDUCTION TO UNRAMIFIED PARAMETERS
Let G be an arbitrary connected reductive algebraic group over a p-adic field F'.

3.1. Unramification. In this section we show that the study of Perz (X)) may be re-
duced to the study of Perg (X,,,) for a split connected reductive group G and an
unramified infinitesimal parameter A, : Wr — Gy. Moreover, we show how the tools
developed in [25] may be brought to bear on Perg (X,,). The group G that appears in
Theorem 3.1.1 is sometimes an endoscopic group for G , but not in general; nonetheless,
the principle of functoriality applies here through the inclusion of L-groups ry : “G — G.

Theorem 3.1.1. Let A : Wr — LG be an infinitesimal parameter.

(a) There is a connected reductive group Gy, split over F, and an infinitesimal para-
meter A, : Wp — LGy for Gy, trivial on Ip, and an inclusion of L-groups
rx : PGy = UG such that the following diagram commutes

WF%LG

T Tm

Wp 2y L@G,,
where Wg — Wy is trivial on Ip and Fr — Fr (chosen in Section 1.1).
(b) By equivariant pullback, the inclusion of L-groups ry : *Gx — LG defines an
equivalence 3
Perg(Xi) — Perg (X»,,)

where Xy is defined in Section 2.5, (53).
(c) There is a sequence of exact functors

E—Ex, [dim X (ex)”
e d Perz (X)) . Perg, (Xi.,)

(ex)«

Rep(Ay)

enjoying the properties of Lemma 2.4.1, where Ay is defined by (37).
(d) There is a connected complex reductive algebraic group M)y, a co-character ¢ :
G, — My and an integer n such that

Per@A (X,\M) = PerM; (m)\’n)7
where my ,, is the weight-n space of Ad(r) acting on my = Lie M.

The proof of Theorem 3.1.1 will be given in Section 3.5.
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3.2. Elliptic and hyperbolic semisimple elements in L-groups. Recall that a
semisimple element x of a complex reductive group is H is called hyperbolic (resp. elliptic)
if for every torus D containing = and every rational character x : D — G,,,(C) of D, x(z)
is a positive real number (resp. x(z) has complex norm 1). An arbitrary semisimple
element can be uniquely decomposed as a commuting product of hyperbolic and elliptic
semisimple elements. An element commutes with = if and only if it commutes with its
hyperbolic and elliptic parts separately.

Recall that an element g € G is semisimple if Int(g) is a semlslmple automorphism
of G. Then g = f X w € LG is semisimple 1f and only if f' € G is semisimple where
(f xw)N = f' xw" and w" acts trivially on G.

The hyperbolic and elliptic parts of a semisimple g = fxFr € LG are defined as follows.
Let N be as above, so (f x Fr)N = f/ x Fr™ and Fr"V acts trivially on G. Then fe G
is semisimple. Let s’ € G be the hyperbolic part of /' and let t/ E G be the elliptic part
of f'. Let s be the unique hyperbolic element of G such that sV . It is clear that s
is independent of N. Set t = s~ f. We call s x 1 the hyperbolic part of f xFrand ¢t x Fr
the elliptic part of f x w. Then Ad(s) € Aut(g) is the hyperbolic part of the semisimple
automorphism Ad(f x Fr) € Aut(g) and Ad(t x Fr) € Aut(g) is the elliptic part of the
semisimple automorphism Ad(f x Fr) € Aut(g). Moreover, ™s =t"1st, so

(sx1)(txFr)=(t xFr)(sx1).

Lemma 3.2.1. Write \(Fr) = f\ x Fr; let sy x 1 be the hyperbolic part of A(Fr) and let
tx X Fr be the elliptic part of A\(Fr). Then sy € HY and K is normalised by f\ x Fr and
by tx x Fr.

Proof. let I}, be the kernel of p : Tp — Aut(G) restricted to Ip. Then I}, is an
open subgroup of Ir and Iy is normalised by Fr¥ in Wg, with N as above. Set
I9 = X\Y(1 x I};) C I,. By continuity of A\, I% is an open subgroup of Ir. Then
A(Fr™) normalises A(1%). Since A(FrY) also normalises A(Ir), we see A(Fr™¥) acts on the
finite group A(Ir)/A(I%). In particular, replacing N by a larger integer if necessary, it
follows that A(Fr™) acts on A(Ir)/A(I2) trivially.

Recall the notation A(Fr) = fy x Fr and A(Fr") = f/ x Fr. We now show f’ €
Z&(A(IF)) = Kx. For any h xw € A\(Ir),

MENY (B w)AEFENY) 7 = b xoww'
for some w’ € I%. Since A(Fr™¥) = f' x Fr™ = (1 x Fr™V)(f’ x 1), we get
BN f/(h o w) f/ RN = h xoww'.
This implies
frw(f Y xw=FN(h xww )Y = h x Fr Y ww'FrY .

Therefore, f'hw(f~') = h and w = Fr NYww'Fr™. From the first equality, we can
conclude f'(h 3 w)f'~' = h xw. Hence f € Zz(A(Ir)) = K.

Since some power of f’ will lie in Zg(A(Ip))? = KY, replacing N by a larger integer if
necessary, we may conclude that f” actually belongs to Z5(A(Ir))" = KY. In particular,
we can take both s’ and ¢’ in K¥.

Since A(Fr™¥) = A(Fr) " A(Fr™)A(Fr), we have

FxEN = (Ao F) 7N < BN (A o) Fr) = (A o Fr) 7/ (f @ Fr)) < B,
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Thus, f/ = A(Fr)~! f/A(Fr). Since A(Fr) normalises Z5(A(Ir))? = K3, we have
= AEF) "L A(Fr) = (A(Fr) "t/ A\(Fr)) (A(Fr) 1 A(Fr)),

where, as above, s’ is the hyperbolic part of f/ and t’ is the elliptic part of f’. Since the
decomposition of a semisimple element of G into hyperbolic and elliptic parts is unique,
we have
s" = M(Fr)~'s'A(Fr) and t' = \(Fr) "' A(Fr).

In particular, it now follows that s’ € Zz(\)? = HY. Since s = ¢, it follows that
sx € Zz(\)? = HY, also.

The Frobenius element Fr normalises I, so AM(Fr) = f\ x Fr normalises A(Ir) and
hence normalises K, as well. Since sy € HY = Z5(\)° C Zz(A(Ir)) = K3, it follows now
that s, normalises K ; likewise, £y x Fr normalises K. O

3.3. Construction of the unramified parameter. Define
(56) In=Z5NIFr)) N Zg(tx x Fr) = Zk, (tx x Fr).

Lemma 3.2.1 shows that Jy is a complex reductive algebraic group. It follows from
Section 3.2 that s\ € J) and ¢ normalises J3.
We now have the following complex reductive groups attached to A € R(*G):

H\,CJy,CK\CG.

Let G be the split connected reductive algebraic group over F so that

(57) LGy = J) x Wp.
Define
(58) PGy =G by hx1lehxl and 1xFrety xFr.

Then 7y : “Gy — LG is a homomorphism of L-groups. Using Lemma 3.2.1, we define an
unramified (i.e., trivial on Ir) homomorphism

Anr : W — LG,

(59)
Fr — sy x Fr.

Lemma 3.3.1. Let A\ : Wr — LG be an infinitesimal parameter. Define Apy: Wg — LGy
as above. Then

=V» and  Hy, = HY.

Consequently,
PerHMT(V,\M) = Peng(V)\).
Proof. Applying (40) to A\n, : Wr — £G) gives
H,, = ZJQ (Anr) = ZJQ (sx) = H&)-
Applying (41) to Ay, : Wr — LGy gives
K. = ZJ;’ (Anrlzz) = Jg-
Applying (42) to An : Wp — LG gives
V., = Vi, (FGy\) = {z € Lie Zg, (Aurl1p) | Ad(Anr(Fr))z = gp 2}
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Since Gy, = JY and Ap|7. = 1, and since Fr acts trivially on JY in LGy, we have

(60) Vaee ={z €jx | Ad(sr)z = gr z}.
Then V), = V), because Ad(fx xFr)z = gz if and only if Ad(ty xFr)z = z and Ad(sy)z =
qx. Il

Lemma 3.3.1 tells us that the category Peryo(Vy) determined by A : Wr — LG can
always be apprehended as the category for an unramified infinitesimal parameter Ay, :
Wr — LGy. Note, however, that it is Perg, (Vy), not Per 0 (Vx) which is needed to study
Arthur packets of admissible representations of pure rational forms of G(F); fortunately,
Lemma 2.4.1 describes the relation between these two categories.

Remark 3.3.2. Without defining Gj\' itself, let us set LG;\F :=J) X Wg and define A\, :
Wgp — LG;\F by the composition of Ay, and ‘G — LG; Then (57) may also be used to
define rj\r : LG: < LG and extends ry. Arguing as in the proof of Lemma 3.3.1, it follows

that
V/\jr =V and H/\jr = Hj,
SO
PerHAir (V/\:r) = Perg, (V).
We pursue this perspective elsewhere.

3.4. Construction of the cocharacter. From Section 3.3, recall the definition of sy €
G and the fact that s) lies in the identity component of the subgroup Jy C G. Decompose
the Lie algebra jy of Jy according to Ad(s))-eigenvalues:

= P W) )=z i | Ad)@) = v,
veCx
Following [25], define

J'T\ = @jA(CI%)~

TEZL

Lemma 3.4.1. There is a connected reductive algebraic subgroup My of JY and a cochar-
acter v : G,, — M) such that

Mi=H,, and wmy=jl,

where my := Lie M and an integer n so that, for every r € Z,

M rn = ]/\(qz‘)a
where my o :={x € m | Ad(c(t))x ="z, Vt € Gy }. In particular,

Vi =ijalgr) = my .

Proof. Decompose the Lie algebra jy of Jy according to Ad(s))-eigenvalues:

=P i)

veC*

Fix a maximal torus S of JY such that s, € S and denote the set of roots determined by
this choice by R(S,JY). For a € R(S, JY), denote the root space in j by u,. Then

(61) B = D

a€R(S,JY)
a(sy)=v
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Let (-,-) be the natural pairing between X*(S) and X.(S). First, let us consider all
a € R(S,JY) such that a(sy) are integral powers of g. For these roots we can choose
X € X.(S) ®z Q so that (a, x) = r if a(sx) = ¢" for some integer r. Let n be an integer
such that ny € X,.(S), and we set t = (nx)((q'/™) € S, where ( is a primitive n-th root
of unity. Now for a € R(S, JY) such that a(sy) = ¢", we have

a(t) = a((m)(¢g"™) = alx(¢a"™)" = (C¢"/™)™ = ¢" = a(s»).
Next, consider those o € R(S,JY) such that a(sy) are not integral powers of g. We
have two cases: if (o, x) € Z, then «(t) is an integral power of ¢; if (o, %) ¢ Z, then
a(t) € ¢('Rs for some 0 < [ < n. Since s, is hyperbolic, a(sy) € Rs for all a« € R(S, JY),
so a(sy) # a(t) in either case. Therefore, we can define My = Z,, (sxt~!)%and take
L= ny. O

3.5. Proof of Theorem 3.1.1. The essential facts about the groups Ky, Hy, J) and
M)y are summarised in the following diagram.

— Q)

K)\ = Zé‘()\([p))

I

Mg\) = M)\ — Jg — J)\ZZZK/\(t)\ X Fr) —_— 7T0(J)\)

I ] I I

M/L\ _— Hg — H,\ = ZJA(S,\) —_— 770(H/\)

From the definitions of G\ (57), Any (59) and ry : LGy — LG (58), we have
(62) A(Anr(Fr)) = ra(sy X Fr) = (sy @ 1)(¢x x Fr) = fi x Fr = A\(Fr).

Now, Theorem 3.1.1 follows from a direct application of Lemmas 2.4.1 and 3.4.1, as in
the diagram below.

(ex)”
Rep(Ax) Pera (X)) e Perg (Xi..)
H PWES

equivJ{ J{cquiv

forget

Rep(mo(Hy)) —— Perp, (Vi) Perzo (Vi)

PerM; (mhn)
3.6. Further properties of Vogan varieties. From the proof of Theorem 3.1.1 we get
a very concrete description of V) as a variety, for any A € R(!G), following (61):
Vy =AY for d=|{a€ R(S,JY) | a(sy) =qr}|

Proposition 3.6.1. The space V) is stratified into Hy-orbits, of which there are finitely
many, with a unique open orbit.

Proof. With Proposition 3.4.1 in hand, this follows immediately from [25, Proposition 3.5]
and [25, Section 3.6]. O
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A different proof is given in [32, Proposition 4.5].
Proposition 3.6.2. Every Hy-orbit in V) is a conical variety.

Proof. By Proposition 3.4.1, it suffices to prove that every Mj-orbit C' in my, is a
conical variety. Arguing as in the proof of [17, Lemma 2.1], for z € C, we can find a
homomorphism ¢ : SL(2,C) — M, such that for t € C*

t . 0 1\
cp( t—1>€M>\ and dg0<0 0>x.

Then

so t?z € C. O

4. ARTHUR PARAMETERS AND THE CONORMAL BUNDLE

In this section we see how Arthur parameters may be apprehended as certain regular
conormal vectors & € T¢ (V) reg-

Let G is an arbitrary connected reductive linear algebraic group over the p-adic field
F.

4.1. Regular conormal vectors. For A € R(!G) and every Hy-orbit C C Vj, let
TE(Va)reg C T (V) be the subvariety defined by

(63) T (Vs =T5 (VO \ | T2, (Vo).
CcCy
Also define
T;-(I)\ (V/\)reg = UTE(VA)regv
c

the union taken over all H-orbits C'in V. Then T, (V\)reg is open subvariety of T4, (V)
and each T¢(Vy)reg is a component in N (M )reg-
We may compose (15) and (38):
(64) Qta) — PlG) — R(*G)
1/1 — ¢¢ — /\¢w .
To simplify notation, we set Ay :=Ay,. We will refer to Ay, as the infinitesimal parameter
of ¥. Using Proposition 2.2.2, define

Top =Ty, S V,\w
and let Cy C V), be the Hy-orbit of zy, € V.

Theorem 4.1.1. Let) : LpxSL(2,C) — LG be an Arthur parameter. Let Ay : Wp — LG
be its infinitesimal parameter. Then 1 determines a regular conormal vector

gw € Téw,r¢ (VA)TEQ’

with the property that the Hx-orbit of (x4, &y) in Téw (V) is open and dense in 1z, (VA) reg-
The equivariant fundamental group of this orbit is Ay.

The proof of Theorem 4.1.1 will be given in Section 4.8.
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4.2. Cotangent space to the Vogan variety. Consider
(65) Wi = {z € &y | Ad(AFY))(2) = g5 'x},

which clearly comes equipped with an action of H) just as V) comes equipped with an
action of Hy. Compare V) with Vy defined in (42). In fact, the variety 'V) has already
appeared: see the proof of Proposition 2.2.2. We note

Va =t(gr") = irlgr") = mx—n,

where ¢ and m,, are defined in Sections 2.2 and 3.4, respectively.
For ¢ : Ly — G, we can define

P)\(LG) — tVA7
(66) 0 0
(bH:vqs::dcp(l 0),

where ¢ :=¢°|sp2,c) : SL(2,C) — G. This map satisfies all the properties of the map
P\(*!G) — VA(*G) in Proposition 2.2.2, from which it follows that there is a canonical
bijection between Hy-orbits in Vy and Hy-orbits in 'V}, so that the following diagram
commutes.

P\(*G)/H) P\(*G)/H)
V)\/H)\ i) tV)\/H)\

Proposition 4.2.1. There is an H-equivariant isomorphism
T*(Vy) = Vi x 'V,
and consequently,
T*(Va) Zjr(gr) ®ir(gp') = my, S my .
Proof. As V), is an affine H)y-space there is a standard Hx-equivariant isomorphism
T*(Vy) ~ Vi x V¥, so it suffices to exhibit an Hy-equivariant isomorphism
Vi Ty,
To do this, let Jy be the reductive group defined in (56) and write j for Lie Jy, as in
Section 3.3. From Proposition 3.4.1, we have
Vi=ji(gr) and  byr=jx(1)  and WV =ialgg).
As Jy is reductive, its Lie algebra decomposes into a direct sum of its centre and a
semisimple Lie algebra, jx =~ Z(jx) @ [jx,jr]. We choose any non-degenerate symmetric
bilinear form on Z(j)) and extend to a bilinear form on j, using the Cartan-Killing
form, while insisting that the direct sum decomposition above is orthogonal, that is, the
components in the direct sum are pairwise perpendicular. The result is a non-degenerate,
symmetric, Jy-invariant bilinear pairing
( ‘ )Zj,\Xj)\—>A1.
Now, if jx(v) and jx(v') are two Ad(sy)-weight spaces, then the invariance of the pairing
implies that (jx(v) |ix(v')) # 0 ifand only if »’ = v~1. Since the pairing is non-degenerate
this gives an Zj, (sn) = Hy-equivariant isomorphism

Vi =ix(gr)* 2ir(gr') = Va.
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A similar argument using the cocharacter ¢ : G, — M) and the graded Lie algebra

my = - @My @My, BmyoDmy_,) Bmy _2, D
= - om,d(Vadh e Vy)emy _2,® -

produces an My = Hg—equivariant isomorphism
(67) V; = m’j\,n Emy_, = tV,\.

This allows us to view T*(V)) as a subspace of my, even with Hy-action, and gives
H-equivariant isomorphisms

T*(Va) 2 ia(gr) @irlgr') = man G my o,
as desired. g
4.3. Conormal bundle to the Vogan variety.
Proposition 4.3.1. Let C' C V), be an Hy-orbit in Vy; then
Te(Va) ={(2,§) € T"(Vx) | 2 € C, [z, ] = 0},
where | , | denotes the Lie bracket on j and where we use Proposition 4.2.1 to identify
T*(Vy) 2 ix(qr) @ir(gn"). Consequently,
Tr,(Va) = {(,§) € T*(Va) | [, €] = 0}
Proof. The map hy — T,(C) given by X ~ [z, X] is a surjection. So for any ¢ € jx(¢z"),
we have £ € T (Vy) if and only if 0 = (| [z, X]) = ([§,z][ X ) for all X € hy. As we

saw in the proof of Proposition 4.2.1, the pairing restricts non-degenerately to b, so this
is also equivalent to require [z,£] = 0. O

Corollary 4.3.2. Tj (Vx) < (-]-)7*(0).
Proof. If (x,&) € Vy x V' lies in Tj; (Vi) then [z,£] = 0. Choose an sly-triple (z,y, 2)
such that y € *Vy, and z € h,. Then,
1 1
(21€) = 2 ([=a]1€) = 5(=|[r.)) =0. 0

4.4. Orbit duality. Using the Hj-equivariant isomorphism Vi — ‘V) of Proposi-
tion 4.2.1, we define an Hy-equivariant isomorphism

T*(V,\) — T*( tV)\)
(z,8) = (& ),

which we refer to as transposition. Just as every Hy-orbit C' C V) determines the conormal
bundle

(68)

TE(Va) ={(z,§) e Vax "Vy |z € C, [z, =0},
every Hy-orbit B C 'V} determines a conormal bundle in 7% (V}):
Té(tvx\) = {(f,ﬂ?) € tV)x X V)\ ‘ § S B7 [5,96] = O} :

Lemma 4.4.1. For every Hy-orbit C in Vy there is a unique Hy-orbit C* in 'Vy so that
transposition (68) restricts to an isomorphism

Te(Va) = Teu (PVa).

The rule C +— C* is a bijection from Hyx-orbits in Vy to Hy-orbits in V).
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Proof. This is a well-known result. See [30, Corollary 2] for the case when H) is connected.
The result extends easily to the case when H) is not connected. O

The orbit C* is called the dual orbit of C C Vy; likewise, the dual orbit of B C tV, is
denoted by B*.

Lemma 4.4.2. If (2,§) € TE (V) reg then £ € C*, so
TE(Va)reg € {(2,6) € C x C* | [z,£] = 0}.

Proof. Since (x,€) € T (Va)reg, then (x,€) is not contained in any other closures of
conormal bundles except for that of C'. On the other hand, (¢, ) € T, (V{) where Bg is

the Hy -orbit of £ in 'V, so T (Va) = T, (V). Hence B = C*, i.e., £ € C*. O

Proposition 4.4.3. If (x,§) € TS (V)) then (z,§) € CxC* and [z,§] =0 and (2 £) = 0.
Proof. Combine Lemma 4.3.2 with 4.4.2. O

We remark that (z,&) € C' x C* implies neither [z,£] = 0 nor (z|€&) = 0 in general;
several examples to illustrate this fact appear in [10].

We denote the canonical bijection between Hy-orbits in Vy and Hy-orbits in V), and
vice versa, by

C — C and B —~ B
Note the equivariant fundamental groups (54) are preserved:
AC = A C and A B = A Bt-

For C C V), (resp, B C 'Vy) we refer to ‘C' (resp. B') as the transposed orbit of C' (resp.
B). Composing orbit transposition with orbit duality defines an involution

(69) Cws C:=1C
on the set of Hy-orbits in V).

4.5. Strongly regular conormal vectors. We say that (x,§) € Tg(Vh) is strongly
regular if its Hx-orbit is open and dense in T4 (Vy). We write T (V) )sreg for the strongly
regular part of T (V) )reg. We set

TI?A (Vk)sreg = U Té(vx\)sreg-
C

Proposition 4.5.1.
T;b\ (VA)sreg g T;IA (V)\)reg
and if (z,&) € T&(Va) is strongly regqular then its Hx-orbit is TE (V) sreg-

Proof. First we show T (Vy)sreg € T (V)reg. From the definition of T (Vi )reg (63) it is
clear that it is open and dense in T¢(Vy). Fix (z,§) € T4(Va) and let Op, (x,&) denote
the Hy-orbit of (z,&). If (z,€) is not regular, then (z,¢) € T, (Vy) for some Cy # C with
C C (1, so all of Oy, (z,€) and its closure also does not intersect T¢(Vy)req. Suppose,
for a contradiction, that (z,¢) is strongly regular also. Then the closure of Oy, (x,&) is
T&(V), which certainly does intersect T (Vy)reg. S0, if (,€) is not regular, then it is
not strongly regular.
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Now suppose Té,x(VA)Sreg is not empty, then it is enough to show T¢ , (VA)sreg forms
a single Zy, (z)-orbit. Note

Té’,m(V)\)sreg = {g € Té‘,z(v)\) | [Lle(ZHA (m)),f] = Té’z(v)\)}
which is open, dense and connected in 7¢; ,(Vx). Moreover, Zp, (v)-orbits in T¢; , (V) )sreg
are open, and hence they are also closed in Tam(V)\)sreg By the connectedness of
T¢. (V) )sreg, We can conclude it is a single Zp, (z)-orbit. O

The equivariant fundamental group of T (V) )sreg Will be denoted by ATé(VA)sreg Since
H) acts transitively on T5(V))sreg:

(70) AT (V)orew = T0(Za, (1,€)) = Zi, (2,€)/ Zn, (2, €)°,

for every (z,£) € TE(Va)sreg- Consequently, each (x,€) € T&(Va)sreg determines an
equivalence

Locu, (T (Va)sreg) = ReP(ATs (vy)rer)-
4.6. From Arthur parameters to strongly regular conormal vectors. For ¢ €
Q(r@), define

Yo =9°[sLe0)xsuee) : SL(2,C) x SL(2,C) » G
and
1 i=dolsLzopxa i SL2,C) = G and 4 i=volixsuec) t SL(2,C) = G,
Set

0 1\ - 0 1\ - 0 0\ -~
(71) @y :=diy (0 O)eg Yy :=dipy (0 O>€9 and  {y=dyp (1 O)EQ-

It follows easily from these definitions that
Top, Yy € Vir, and &y € tVAw
and
(zy, &) € TG, (Vi)
Proposition 4.6.1. For any ¢ € Q(*G),
(2.€0) € Tit (Vo Doy

Proof. Set A = A\y. Define fy,sx, 15 € G as in Section 3.3. Then
sx ¥ 1 =¢(1, dpy, dgy) and ty x Fr =¢(Fr, 1,1).
Recall Ay, : Wg — JY from Section 3.3. By Proposition 3.4.1,
Vi =V, =ixe2:
Since the image of 1)y : SL(2,C) x SL(2,C) — G lies in JY, we may define
Yo : Wr x SL(2,C) x SL(2,C) — J3

such that its restriction to Wy is trivial and its restriction to SL(2,C) x SL(2,C) is ).
Let

I
be the cocharacter obtained by composing

Gm — Wr x SL(2,C) x SL(2,C), z2 1% (Z z_1> X (z Z_1>
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with of ¢, : Lp x SL(2,C) — J). Then

1/2
Lw(qF/ ) = Ane(Fr).

Recall Hy C J), C K, C G from Sections 2.2 and 3.3. For the rest of the proof we
set J = Jx. We must show that the orbit Oz, (s,)(§y) is open and dense in T¢; , (Vi),
where Cy, = O, (vy). With Lemma 3.6.1 in hand, it is enough to show the tangent
space to the orbit Oz, (4,)(§y) at & is isomorphic to T¢,, . (Vi); in other words, it is
enough to show

[LieZHA (ww)v&b] ={{€j2| [ffwaf] = 0}.
The adjoint action of SL(2,C) x SL(2,C) on j through 1, gives two commuting repres-
entations of SL(2,C), which induce the weight decomposition

(72) n = @ jr,s
r4+s=n
where r, s € Z. Note Lie(H))) = jo. So it is enough to show
(73) o NLie(Zg(wy)), &u] = j—2 NLie(Zg(xy)).

For this we can consider the following diagram in case r + s = 0.

. ad(zy) .
Jr,s ? Jr42,s
ad(es) | Jaates)
ad(zy)

jT,S—Q j7"+2,s—2

It is easy to see

LHS(73) = €D ad(éy)(ker(ad(zy)l;,..))

r+s=0

RHS(73) = €D ker(ad(zy)l;, . )
r+s=0

By sly-representation theory, ad(zy) in the diagram are injective for » < 0 and surjective
for r > 0. So we only need to consider r > 0 and hence s < 0. In this case, the two
instances of ad(&y) in the diagram above are surjective by sly-representation theory again.

It is obvious that LHS(73) € RHS(73). For the other direction, let us choose = € j, s_2
such that [zy,2] = 0. So z is primitive for the action of the first sly, and it generates an
irreducible representation V. Let Z be a preimage of = in g, s and W be the representation
of the first sly generated by Z. Then ad({y) induces a morphism of sly-representations
from W to V. By the semisimplicity of W, this morphism admits a splitting and we can
denote the image of x by £. It is clear that £ € j, s and [zy,£] = 0. This finishes the
proof. O

Corollary 4.6.2. Let 1) : Wp x SL(2,C) x SL(2,C) — G be an Arthur parameter with
infinitesimal parameter X. If Cy C V) is the Hy-orbit of xy, then

él\b = Cﬁ’
where @ = 'Cy, (69) and where the map ¥ We x SL(2,C) x SL(2,C) — LG is defined
by P(w, z,y) :==p(w,y, z).
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4.7. Arthur component groups are equivariant fundamental groups. Recall the
definition of Téw(V)\)srcg from Section 4.5 as well as the notation ATé (V2 )sres for its
p A

equivariant fundamental group. Also recall Ay :=mo(Z5(¢)) from Section 1.4.
Proposition 4.7.1.
Are (R = Au-

Proof. We use the notation from the proof of Proposition 4.6.1. It is clear that Z5(¢) =
Zy(nr) = Zy(¢1) N Zj(1h2). By Lemma 3.3.1, we also have

ZaN (@) = Z1(Aar) N Zy(2y) N Z5(Ey)-
First we would like to compute the right hand side of the above identity. Note

Zj(Aar) N ZJ(%) =(Z;(1) N Zy(Aar)) - U

where U is the unipotent radical of the left hand side. Moreover,

Zy(1) N Zy(Ane) = Z5 (Y1) N Z(ty)
and

Lie(U) S €D irs
r+s=0
>0

in the notation of (72). For u € U, we have

Ad(w)(&y) €&+ ED irs
r+s=—2
s<—2

Suppose Ad(lu) stabilises &y for | € Z;(¢1) N Z;(ty) and w € U. Since Ad(l) preserves
jr,s, we have

& = Ad(lu)(€y) € Ad)(E) + D ins

r4+s=—2
s<—2

Note &y € jo,—2. It follows & = Ad(l)(&y). Hence &y = Ad(u)(&y). As a result,
Zy(ar) NV Zy(xg) N Z5 (&) = (Z5 (1) N Zs(ty) N Z5(Ey)) - (U N Z5(Ey))-
Since U N Z;(&y) is connected, we only need to show
Zy(1) N Zy(ty) N Z5(Ey) = Z1 (1) N Z5(t2).
Take any g € Zy(¢1) N Zy(ty) N Z;(&y), it suffices to show Ad(g) stabilises y,. Note
[y, €y] = dipa(In([Fx])),
and
[Ad(9)(y), &) = [Ad(9)(ys), Ad(9)€y] = Ad(g)(dy2(In([Fr]))) = dez(In([Fr]))

Since [, &y] is injective on jo 2 and Ad(g)(yy) € jo,2, it is necessary that Ad(g)(yy) = Yuy-
This finishes the proof. O

4.8. Proof of Theorem 4.1.1. Theorem 4.1.1 is now a direct consequence of Proposi-
tions 4.5.1, 4.6.1 and 4.7.1.
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4.9. Equivariant Local systems. We close Section 4 with a practical tool for under-
standing local systems on strata C' C V) and on T (V) )sreg and on C* C V. Pick a base
point (z,€) € TE(V)sreg- Recall T (Vy)reg by Lemma 4.4.2 and T (VA )sreg © TE (VA )reg
by Proposition 4.5.1. The projections

C —— TE(VA)sreg — CF

induce homomorphisms of fundamental groups:

AT (VA)oress Ac-

Ac
H | |

Zi, () ) Zw, (2)° —— Zp, (2,€)/Zm, (2,6)° —— Zu,(£)/Zm,(£)°.

The horizontal homomorphisms are surjective by an application of [I, Lemma 24.6]. This
can be used to enumerate all the simple local systems on Hy-orbits in V and T%, (V) )sreg
and tV)\.

5. VANISHING CYCLES OF PERVERSE SHEAVES ON VOGAN’S MODULI SPACE

We now turn to a study of the vanishing cycles of the equivariant perverse sheaves on
Vy with respect to integral models determined by regular covectors (x,&) € T (V))reg-
In this section, is G is an arbitrary connected reductive algebraic group over a p-adic field
F.

Although we will use [14, Exposés XIII, XIV] freely, we begin by recalling a few essential
facts and setting some notation. Let R:=C[[t]] and K :=C((¢)), the fraction field of R.
Set S = Spec(R) and n = Spec(K) and s = Spec(C). Observe that S is a trait with generic
fibre n and special fibre s. Because S is an equal characteristic trait the morphism s — §
admits canonical section, corresponding to C — CJ[t]].

.jv] ~—
77>—>S<i—<s
s

For any s-scheme Z, we will use the notation Zg:=7 x4 S. Since S — s is flat, the
functor Z — Zg is exact from s-schemes to S-schemes.

Let 7 be a geometric point of S localised at 7; thus, 7 is a morphism Spec(K) — 1 — S,
where K is a separable closure of K. Then Gal(7j/n) = Z. Let R be the integral closure
of R in K; then R has residue field s. Set S = Spec(R). Then for any morphism X — S
we have the cartesian diagram

Jxy

X
J XS
S

is
s

/
7
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From [14, Exposé XIII| we recall the nearby cycles functor RUx, : D(X,) — D(Xs xsn);
in particular, we recall that, for any F € D(X,), the object RUx F in D(X, x4 ) is the
sheaf
R\I’Xﬁ./_‘.tz (iX;,)*(jXﬁ)*(bXn)*-F

on X; equipped with an action of Gal(7j/n), called the action of inertia, obtained by
transport of structure from the canonical action of Gal(n/n) on (bx,)*F. From [14,
Exposé XIII] we also recall the functor RUx : D(X) — D(X; x5 S); in particular, recall
that when followed by D(X, x, §) — D(Xj), this is given by RUx, (jx,)*. Finally,
the vanishing cycles functor R®x : D(X) — D(Xs x5 S) is defined by the following
distinguished triangle in D(X; x4 S).

R® x
(74) w7 I
i RW

5.1. Functor of vanishing cycles. Let ( | ) : T*(Vy) — Al be the s-morphism ob-
tained by restriction from the non-degenerate, symmetric Jy-invariant bilinear form of
Section 4.2. Let f : T*(Vy) — S be the unique s-morphism so that (| ) : 7% (V) — AL
is the composition of f : T*(Vy) — S and S — A}. Using f, we view T*(V)) as an
S-scheme; as such, its ring of global sections is R[T*(V))] = k[T*(VA)] @k R/(f — 1) =
Cli])le. €1/ (f(z. ) — b).

For any Hy-orbit B C V), consider the locally closed subvariety Vy x B C T*(Vy)
and let fp : V), x B — S be the restriction of f : T*(V)) — S to V) x B. Using fp, we
may view V) x B as an S-scheme: let

fB : XB — S
be the S-scheme with structure sheaf
OXB = R®c OVA Kc OB/(f - t).
Then the special fibre of Xp is the s-scheme
Xps=1[5'(s)=f5'(0) ={(z,6) e VA x B | (]¢) =0}

and the generic fibre of Xp is the K-scheme obtained by base change from the generic
fibre of (| ): T*(Vy) — AL:

Xpp=1[g'(n)={(x,8) e VaxB|(x]|§)#0}xsn.

In this way, fp : Xp — S defines

(75) RO, :=R®x,, : D(f5'(n) — D(f5'(0) x, S).
and
(76) RPx, : D(X5) — D(f5'(0) x5 9).

Now, as an s-scheme, V), x B comes equipped with an H)-action. Applying base change
along S — s gives an action of Hy X, S on (V) x B)s. Because fp is Hy-invariant, this
defines an action of Hy xS on {(z,£,t) € (Va x B)s | f(x,€&) = t}. But this is precisely



42 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI, AND B. XU

V) x B as an S-scheme, via fg : Xp — S. So, H) xS acts on Xp in the category of
S-schemes and we have the exact functor

(77) DH)\(VA XB)—)DH)\XSs(XB).

See [9, Section 2| for the equivariant derived category Dy (X). Combining this with the
vanishing cycles functors above defines an exact functor

(78) RO, : Dryx,s(Va x B) = Du, (f5'(0) x5 ).

Finally we come to the main definition for Section 5: For any H-orbit C C V), let
(79) Bve : Day (Va) = D (TG (Va)reg X5 1)
be the functor defined by the diagram

D, (V2) B Dty (T2 (Va)reg X S)

l - K(Q) o+ restriction]\
DHA (V)\ X C*)

R x .
Dayx,s(Xo+) ———— Du, (fo- (0) x5 S),

base change

where:

(1) - ®(Qp)c+ : Da, (Va) — Dg, (Vi xC*) is pullback along the projection Vy x C* —
Vi

(2) D, (VA x C*)) = Dy, x.s(Xce+) is (77) in the case B = C*;

(3) R®x.[—1] : Dy x,5(Xcw) = Dp, (f1(0) x, S) is (76) in the case B = C*;

(4) Dp, (f51(0) x5 S) — Do, (TE(Va)reg X5 S), is obtained by pullback along the
inclusion T (V3 )reg < for (0), using Proposition 4.4.3.

When we wish to ignore the action of inertia, we write
(80) Bvon i Day (VA) = D (T6(Va)res)

for Eve followed by the forgetful functor D, (T (Va)reg X5 S) = Dy (TE(Va)reg)-

The main properties of Evg are given in Theorem 5.3.1.

We has used notation Eve to make oblique reference to [8, Notation 1.14], where one
finds a sheaf on TI*{A(V)\)reg with the same stalks, after shift, as our Evg. That sheaf is
described in [8, Proposition 1.15] and [8, Remarque 1.13|. From [8, Théoréme 1.9] we also
see that the sheaf in 3, Notation 1.14] is produced by a functor. Both of these results rely
on [8, Théoréme 1.9|, which is attributed to [20, Théoréme 3.2.5]. Sadly, [20, Théoréme
3.2.5] does not exist in the published version of the original notes, and we have not been
able to procure the original notes, so we have been obliged to rebuild this result — as far
as we need it — in Theorem 5.3.1.

5.2. Proper base change.

Lemma 5.2.1. Suppose m: W — V) is proper with fibres of dimension n. Suppose H)
acts on W and 7w : W — V) is equivariant. Then

Bve m€ = (7)1 (R®ge. (E W (Qe) =))Wk C)rrey)
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' is its restriction to special fibres, gow = fox o', and 7! and
(W X C*)r-reg are defined by the cartesian diagrams below.

where @ ;=7 x idg«, 7!

w <T W x C* (gC*)il(O) — (W X C*)ﬂ'—reg
A A
VA 45— ax CF fat(0) —— TE(Va)reg
fc*l l
S s

Proof. Suppose € € Dg, (W). Then m& € Dy, (Va). Let pox : Vi x C* — Vy be
projection. Then, by repeated application of proper base change,

Bve mE = (R® f0. poeME) T2 (Vi e
= (R® 0. ()1 (P )" E T (Vi) e
= (T )IR®y . (D) E) Tt (Vi) e
= (1) (R®y. (€T (Qe) o )| (Wx O pres) - O
5.3. Main properties of vanishing cycles. Using the s-morphism S — A} corres-

ponding to C[t] < C[[t]], every S-scheme is a scheme over A}. Using this, we will
consider schemes over S as schemes over Aé, also.

n S s

o

A" —— AL <0

For any &y € 'Vy, define f¢, : Vi — S by fe,(2) := f(x,&). This allows us to view V)
as an S-scheme; when we wish to emphasise this perspective, we denote this scheme by
X¢,, with structure sheaf

Ox¢, = R®c Ov,/(fe — 1)
Thus, the special fibre of X¢, — S is
Xeos = fe, (0) = (= &) 71(0) = {z € Va | (z]&) = 0}
and the generic fibre of X¢, is the base change of the generic fibre of (—|&o):
Xegn = fo,'(n) ={z e Va | (x]&) # 0} x4 1.
Using this, we define
R® ;. : D, (Va) = Dz (e) (e 1(0) x5 1)

by

RO s B
D, (V2) © Dz, (e (fe ' (0) X m)

iforget R<I>X§0 [—1]1\

base change
Dzu, (6)(V2) Dzu, (60)x.5(Xeo)-

We are now ready to state the main properties of Eve.
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Theorem 5.3.1. Let C C V) be an Hy-orbit.
(a) The functor
Bvoq i Dy (Va) = Dy (T (Va) reg)

18 ezact.
(b) If P € Pery, (Vi) then R®y,.[—1] (PR (Q¢)c+[dc+]) is an equivariant perverse
sheaf on f51(0) and Eveq P[—1 + dim C*] is its restriction to T (V) reg-
(c) If P € Perp, (V) then Eve 3 P is cohomologically concentrated in one degree.
(d) IfP e PEI’HA (V)\) then

Evge P =0 unless C CsuppP.

(e) For every F € Du, (Va) and every (x0,&0) € TE(Va)reg, there is a canonical

isomorphism
(EVCﬂ? ‘F)(zo,go) = (R(I)fgof)ro'
(f) If P € Perg, (V) then Eve; P is an Hy-equivariant local system concentrated in
one degree.

(g) For every local system L on C,

Eve; IC(C, L) = (ﬂ[dim CIX (@g)c*) T5(V2 ) reo-

Theorem 5.3.1 will be proved in Section 5.5.
Using Theorem 5.3.1, let

(81) Bv: : Perp, (VA) = Locs, (T&(Va)reg Xs 1)
be the exact functor so that
Eve = Bvg[dim V).
Recall that dim 75 (V) ) = dim V). Thus, the exact functor
(82) Bvg = EVOC [dim T (V)] : Perp, (Vi) = Perg, (T (Va)reg Xs 1)
produces only H-equivariant local systems shifted to degree dim T (V)), and is given by
Eve P = (ROs.. (PR(Qu)cs)) Iz (va)res-

Since T¢(Va)reg is a component of Tj (Vi)reg (Section 4), the exact functors Bve
uniquely determine an exact functor

(83) EV)\ : PeI’H/\ (V)\> — PeI’H/\ (T[*{/\ (V)\)reg Xg ’I])
so that
EVC P = (EV>\ P)|T5(V>\)reg
for every P & Perg, (V). The functor Evy 5
(84) EV)\,ﬁ : PerHA (V)\) — PerHA (TE)\ (V)\)reg).

appeared in the Introduction (10).
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5.4. Descent.
Lemma 5.4.1. For every §y € B

XBg (H,\ XSS)X( Xgo

Ziy (§0)% s 8)

i S-schemes.

Proof. First we must show that (H) x5 S) X ( X¢, exists in S-schemes. To do

ZH)\ (‘EO)XSS)
that, it will be helpful to prove: for every § € Al and &, € B there is an H-isomorphism

f5'(6) = Hy X Z, (€0) fg_ol((s)

in s-schemes, where H) x fgol(é) — HxXz, (go)fgol(é) is an Zp, (§o)-torsor in C-varieties.
Since Zg, (o) is a closed subgroup of H), the quotient Hy — Hyx/Zg, (§o) exists in C-
varieties. Consider the monomorphism

Hy % fg'(8) = (Hx/Zp, (&) x T*(V2)

given by (h,z) — (hZm, (&), h - (z,&)). Note that fgol(é) is a closed subvariety of V).

The promised Zp, (o)-quotient Hx Xz, (4 fgol(é) is this morphism restricted to the
image:

H % f1(8) = {(hZm, (&), h - (2,€0)) € (HA/Zn, (€0)) x Va x B | h™' -z € f ' (0)}-

Following standard practice, we use the notation (h, z) — [h, z] Zn, (&) for this map. Now,
projection to the second coordinate

Hy Xz, (¢0) fe, (0) = 51 (5)

is given by [h, Jn]ZHA (¢0) +* P (2,&0), which is the promised isomorphism. This shows that
Z, (&)-torsor Hy x fgol(é) = H X7, (¢0) fgol(é) exists in C-varieties and also that the
map

Hy Xz (¢0) fo, (0) = T*(V), [z, () = b+ (,60),

is an H-isomorphism onto fgl(é) C T*(Vy).

Applying pull-back along the flat morphism S — s to Zy, (§0) — Hx — Hx/Zu, (&)
determines the cokernel of Zy, (§0) X5 S — Hy x5 S and also shows that the local trivi-
alisation of Hyx — Hx/Zp, (§) determines a local trivialisation of Hy xs S — (Hy X
8)/(Zn,(€) x55). Now we may argue as above to see that (Hx xs.5) Xz, (¢,)x.5) Xeo —
T*(Vy) x5 S, defined by [h,m]ZHA (c0)xo8 F B+ (2,&), is an isomorphism onto Xp over
S. O

For each & € B, the map = — (x,&y) is a section of projection V) x B — V) over
5. We have now seen how to view both V) x B and V) as S-schemes using fp and f¢,,
respectively. While V) x B — V) does not extend to a map of these S-schemes, the
section V), x B — V) above, does. The following lemma shows why this is important.

Lemma 5.4.2. For every Hy-orbit B C 'Vy and every & € B, the S-morphism
ifo : Xfo — XB
T = (1’750)
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is equivariant for the Zg, (§0) X5 S-action on X¢, and the Hy X, S-action on Xp. Using
equivariant pullback, the induced functor

ig,[—dim B] : Dp, x,5(XB) = Dz, (60)x.5(Xe,)

s an equivalence of categories, taking equivariant perverse sheaves to equivariant perverse
sheaves.

Proof. This follows directly from Lemma 5.4.1 by using equivariant descent [9, Sec-
tion 2.6.2]. The shift by — dim B is needed to preserve perversity. O

5.5. Proof of Theorem 5.3.1. With reference to the diagram below (79), we see that
Eve is exact since it is defined as the composition of four exact functors. This gives
Theorem 5.3.1, Part (a).

We now prove Theorem 5.3.1, Part (b). From the definition of Eve we have

Bven P = (R‘I’fc* (PX (QZ)C*)) |T5(V)reg-

Since C* is smooth, (Q¢)c-[dc+] is perverse, and it follows that P X (Qq)c~[do+] is a
perverse sheaf on Vy x C*; or argue using [0, 4.2.4]. It follows from [6, Proposition 4.4.2]
(see also [3, Théoreme 1.2]) that R®;,. [—1](P K (Q¢)c-[dim C*]) is perverse. It is also
H)-equivariant by transport of structure. Thus, the exact functor

RO .. (=B (Q)c-)[~1 + dim C*] : Dpr, (Vo) = Du(f+(0))
takes equivariant perverse sheaves to equivariant perverse sheaves. This proves The-
orem 5.3.1, Part (b).

Theorem 5.3.1, Part (c) is a consequence of [8, Théoréme 1.9] which is attributed
there to [20]. Alternatively, using [14, Exposé XIV, Théoréme 2.8] we may pass from
the algebraic description of R® given above, which is based on [14, Exposé XII], to the
analytic version of R®, given in [14, Exposé XIV]. Then the fact that the restriction of the
perverse sheaf R® ., [—1](PX(Qy) ¢+ [dim C*]) to T (V) )reg) is concentrated in one degree
follows from [16, Section II.6.4] and [16, Section I1.6.A.3]. In fact, that degree is dim V) +
dim C* — 1. Equivalently, Eve P is concentrated in degree dim Vy = dim T (V) )reg. This
proves Theorem 5.3.1, Part (c).

We now prove Theorem 5.3.1, Part (d). Without loss of generality, we may assume
P =1IC(Cy,L1). Let ig, : Cy = V) be inclusion. Then

IC(Cy, L) = (ig, (i, )" IC(Ch, L)
Since ig, is proper, we may apply Lemma 5.2.1 to this case with W = Ci and 7 = e,
and go- = f|g, xo+- Then " =is xidg- and
9cH(0) = {(z,6) € CL x C* | (2 |€) = 0}
and B
(W X C%)reg = (C1 X C*) NTE(V )reg = T (V)reg-

Thus,

EVCIC(Chﬁl) = EVC(iél)!(iél)*E(Cl;ﬁl) B

= (R®g.. ((ig, ) ZC(C1, L£1) B (Qr) )| T2 (VA veg s

by Lemma 5.2.1. The support of (ig,)*ZC(C, £1) K (Q¢)c+ is contained in Cy x C*, so
the support of

RO ((ic, ) IC(Cy, £1) B (Qr)c-)
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is contained in g5!(0) N (Cy x C*) so the support of Eve ZC(Cy, £1) is contained in
TE(Va)reg N (C1 x CF).

Since Tg(Va)reg € C x C*, this is empty unless C' C C;. This concludes the proof of
Theorem 5.3.1, Part (d).

By the definition of Eve, Theorem 5.3.1, Part (e) is equivalent to the following state-
ment: for all F € Dy, (V)),

(85) (R(I)fc* (]:& (@5)0*))(% £) (Rq)fgof)xov

compatible with the natural Zg, (zo,&p)-action. First, note that (zo,&) € Xc= s by
Proposition 4.4.3, since (20, &) € T¢:(Va)reg- Thus,

ier (FR(Qe)c-

<XSC ( Qo ))(Ioéo)
as Zg, (xo, &o)-spaces. So, using (74) with B = C*, it suffices to show
(86) (R‘I’fc* (}"X (QZ)C*))(% &) (R\ijﬁof)

Lemma 5.4.2 determines the equivalences in the commuting diagram below.

D, .o (f&r (1)) D, (f& (0))

= }—zo = (izo}—)moa

(Jox,s)« (icx,5)"

D, x.s(Xc)
equiv. igoﬂl[_ dim C*] equiv. iz(),S[_ dim C*] equiv. izo_’s[— dim C*]

(Jeg,5)+
RALEN

_ (i )
DZH/\(ﬁo)Xsn(fgol(n)) DZH/\(€O)>< S(XEO) % DZH/\(&) (fgo ( ))

Thus,
R\IJfC* iZOJI = izo,s R\I’f&)'
We find this equation at the heart of the following commuting diagram.

“ox [dim C*
DH; (V)\) re-l ] DHA (V)\ X C*)

l |

DZHA (&0) % gn(fg)l(??)) i ;iu;;nc*] DHAxsn(fg*l (7))

lepféo JRxpr*

equiv

D2y, ¢y (fe, (0) igos[idw*] D, (f51(0))

|

DZH/\(ZE(J,EO)({('IO’&))}) [~ dim C*] DH(Té(V)\)STGg)

This proves (86). Since the isomorphism in (86) comes from this commuting diagram
of functors, it is compatible with the Zg, (xo,&y)-actions. This concludes the proof of
Theorem 5.3.1, Part (e).

To prove Theorem 5.3.1, Part (f) we again use [14, Exposé XIV, Théoréme 2.8] to
pass from the algebraic description of the vanishing cycles functor to the analytic version
of the vanishing cycles functor. It now follows from [16, Section II.6.A.2| that for fixed
xz € C, the stalks of Evg,, P at (2,§) € TE(Va)reg are canonically identified with the
Morse groups AE(P)7 after shifting to where these are non-trivial. It now follows from [16,
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We note too that by [I, Definition 24.11] these stalks are given by (Q™)(P).¢)
H=4mC(J K:P), where J and K are as defined in |1, (24.10)(a)]. So Theorem 5.3
Part (f) may also be deduced from |1, Theorem 24.8].

Arguing as above, Theorem 5.3.1, Part (g) may be deduced from [I, Theorem 24.8

(b)]-

5.6. Vanishing cycles and Arthur parameters. Suppose the stratum C C V) is of
Arthur type, so C' = Cy for an Arthur parameter ¢, unique up to Hy-conjugacy. Then
TE(Va)sreg © TE(Va)reg is @ non-empty open Hy-stable subvariety. With reference to

(81), define

Section I1.6.A.1] that these are the stalks of a local system, giving Theorem 5.3.1, Part (f).
1,

(87) Evsc : Perg, (V) = Locw, (TG (Va)sreg)
by
Bvsc = BV 75 (V) ares -
It follows from [6, Lemme 4.3.2] that
(88) EVC P = %(Té(v,\)sreg, EVSC 'P)

Now, the choice of an Arthur parameter ¢ with C'= C, determines an equivalence
Locw, (TE(Va)sreg) — Rep(Ay).

Define

(89) Ev, : Perg, (Va) — Rep(Ay)

by composing these two functors. This is the functor appearing in the Introduction (12).

If the stratum C' C V) is not of Arthur type, we do not know if T (V) )sreg iS nON-
empty. So in this case we use [1, Lemma 24.3 (f)] and choose a non-empty open Hy-stable
subvariety U C T (V) )reg and define

Evsc : Pergy, (V) — Locy, (U)
by
Evsc = B¢ |v.
We do not know if such U is unique, but regardless of the choice of U, we again have
Eve P =ZIC(U,Bvsc P)
by [6, Lemme 4.3.2]. By [1, Lemma 24.3 (f)], each (x,&) € U determines an equivalence
Locy, (U) — Rep(mo(Zw, (,£))).

By [l, Lemma 24.3 (g)|, the isomorphism type of mo(Zg, (x,&)) is independent of the
choice of (x,€) € U. Indeed, by [l, Definition 24.7] mo(Zpu, (x,€)) is the microlocal

fundamental group A% of T¢(VA)reg, given up to isomorphism by
(90) Ay =m U, (2,8)n, = m0(Zn, (z,£)).
Define

(91) EV(xé) : PEFHA (V)\) — Rep(A(xﬁf))

by composing these two functors.
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5.7. Relation to microlocalisation. As we saw in the proof of Theorem 5.3.1, for
(1’,6) € T;IA (V)\)rcgv

(92) QBP = Ev, ; P = (RDy, P)y[— dim V.

The functor Q¥ is ultimately defined by [16, Proposition I1.6.A.1] but, as the discussion
following [1, Theorem 24.8] makes plain, it coincides with the microlocalisation functor
as defined in [8, Théoréme 1.9]. Consequently, functors Evg and Q™ may both be
understood as perspectives on the microlocalistion functor.

We found it quite difficult to calculate Q™¢ in examples using the tools outlined in [1],
even drawing on [16]. By contrast, and as the examples presented in [10] show, we found
that the vanishing cycles perspective is amenable to making calculations.

6. ARTHUR PACKETS AND ADAMS-BARBASCH-VOGAN PACKETS

In this section we review the main ideas of this paper and articulate the conjectures
which, taken together, lie at the heart of the concept of p-adic ABV packets. In this
section, G is a quasi-split connected reductive linear algebraic group over F. When
referring to work of Arthur, we will further assume G is a symplectic or special orthogonal

group.

6.1. Adams-Barbasch-Vogan packets. We fix an admissible homomorphism A

Wpg — LG and recall the Vogan variety V) from Section 2. As above, set H)y := Zg(N).
From Proposition 2.6.2 recall that the local Langlands correspondence for pure rational
forms determines a canonical bijection between isomorphism classes of simple objects in

PEI’HA (V)\) and Hpure)\(G/F)t
Perpy, (Va )P & e n (G/F).

/iso

We use the notation P(w,d) for a simple Hy-equivariant perverse sheaf on V) matching
a representation (m,d) of a pure rational form of G under this correspondence.
For any A € R(*G), and any Hj-orbit C in V), the ABV packet for C is

(93) ABY (G/F):={[r,0] € Mpuen(G/F) | Bvg P(m,6) # 0}.

pure,C

If C = Cy for a Langlands parameter ¢, we may use the notation

MABY (G/F):=TABY ., (G/F),

pure,¢ pure,Cy
as in (35).
6.2. Arthur perverse sheaves. For any H)-orbit C in V), consider the Arthur perverse
sheaf Ac € Perg, (V) defined (up to isomorphism) by
(94) Ac = @ rank (EVOC P) P.

PePergy, (Va) P

/iso
By Theorem 5.3.1, Part (d), the summation can be taken the over simple P € Perg, (V1)
supported by C":
Ac = @ rank (Evg: P) P.

PePery, (Vy)SimPle - supp(P)CC

/iso
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Taking the cases when P = ZC(C, L), consider the summand pure packet perverse sheaf

(95) Be = &y rank (v ZC(C, £)) ZC(C, L)

LeELoch, (C)simple

/iso

where the sum runs over all simple Hy-equivariant local systems £ on C. By The-
orem 5.3.1, Part (g), rank(Eve: ZC(C, £)) = rank(L), so

Be = &P rank(£) ZC(C, L).

LeLocw, (C’)SimpIC

/iso
The simple perverse sheaves appearing in B correspond exactly to the irreducible ad-

missible representations in the pure Langlands packet Il yre ¢ (G/F), where ¢¢ is the
Langlands parameter matching C' under Proposition 2.2.2. The perverse sheaf

(96) Co = &b rank (Evy: ZC(C1, £1)) ZC(Ch, L)

IC(Cl,El)EPerH/\ (V)\)Simple, C §C

/iso

is called the coronal perverse sheaf for C, where the sum is taken over all C; C C with
Cy # C and over all simple H)-equivariant local systems £; on Cy. So

(97) Ac = Bc @ Ce.

6.3. Pairing of Grothendieck groups. Consider the pairing
(-,) : Kllpure A(G/F) x KPerg, (Vi) = Z

deduced from [1] and defined on I,y A (G/F) and isomorphism classes of simple objects
in Perg, (Vi) by

e(P)(=1)dimsupp(P)  if P = P(x,d)

0, otherwise,

<[7T’6]’P> = {

where e(P) is the Kottwitz sign [22] of the group Gy, for the pure rational form ép of G
determined by P.

6.4. Virtual representations from stable perverse sheaves. The Arthur perverse
sheaf Ac now determines a virtual representation néB Ve KIl,ue A (G/F) by

(98> né‘BV:: (_1)dimC Z <[7Tv5]a'AC> [71-35]'
[m,6]€Mpure x (G /F)
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Then
gABV = (_p)dimC Z ([m, 6], Ag) [m, 0]
[7,6]€Mpure,x (G /F)
— (—1)dmC Z Z rank (EVOCP) ([m,0],P) [, 0]
[ 0)€Mpure A (G/F) PePers, (Va)3m™®

= (—1)dmC Z rank(Ev%P(w,é)) ([r,0],P(m,0)) [m,0]

[7,6]€TIABY (G/F)

= (—1)dimC > rank (Bvg P(r,6)) e(8)(—1)msuep(Pmo)) [ ]

[0l €lpRY o (G/F)

= (—1)dimC > rank (Evg P(r,6)) e(6) (1)l [, 6],
[m,8]€IABY _(G/F)

pure,C

where C|; 4] is the unique Hy-orbit in V) determined by the Langlands parameter of [r, d].

When C = Cy for an Arthur parameter ¢, we will use the notation nABV —nAfV.

6.5. Pure Arthur packets are ABV packets. From Section 1.11 recall the definition
Ny = Z <a’1!17 [, 0])y €(6) [m, 4]
[W"s]enpure,w(G/F)
based on Arthur’s work. From Section 6.4 recall the definition
BV = (—1)dm e > rank (Evy, P(m,6)) e(6) (=1)1™ el [x, 5],
[r,6]€lIARY (G /F)

where Cl. 5 is the unique Hy-orbit in V) determined by the Langlands parameter of [, d].

Conjecture 1. Let G be a quasi-split symplectic or special orthogonal algebraic group
over a p-adic field F. Let v : Ly x SL(2,C) — G be an Arthur parameter for G. Then
Hpure,w(G/F) = HQEZ,w(G/F)

and
ny ="
In particular, for every [m,d] € Iyure,y (G/F),

<a¢7 [, 5]>w = (_1)dim Co=dim Cir.a) rank(EW/J P(r,6)),
where a,, € Ay is defined in Section 1.11.

We will also find another perspective useful regarding Conjecture 1. Using the pairing
of Section 6.3, it is easy to check

nhBY,P(n,08)) = (—1)4™ % rank (Evy, P(r, ) .
for [m, 0] € Ilpure,n, (G/F). Extend to P € KPerp,  (Vx,) by linearity, we have
(M ABY Py = (—=1)4m % rank (Bvy, P).
Thus, Conjecture 1 is equivalent to:
(99) (g, P) = (=1)4™ “ rank(Evy, P),
for all P € KPerg, | (Vay)-
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6.6. Representations of the component group of an Arthur parameter. Conjec-
ture 1 is itself a consequence of Conjecture 2, below, which claims that Ev,, gives a way
to calculate the functions (26).

From Section 1.11, recall the definition

Nps = > e(6) (ayas, [x,0]),, [, ).
[7,8]€llpure,y (G/F)

for s € Zz (1), where a; is the image of s in Ay. We define

(100) 5BV = > (—1)dim Cv=dim Clns) trace (Evy, P(rr, 0)) (as) e(d) [m,d].
[x,8]€TABY (G/F)

pure,

Conjecture 2. Let G be a quasi-split symplectic or special orthogonal p-adic group. Let
Y : Lp x SL(2,C) — G be an Arthur parameter. Then

Mpure,s (G /F) = Mid s, (G/F)

pure, ¢y,

and
(101) Mps = Mha s

for every s € Zz(¢). Equivalently, for every [r,d] € Ilpue,y(G/F) and for every s €
Zg ()
G bl

(102) (asay,[m,d]),, = (—1)dim Cv=dim Clrs) trace (Bvy, P(1,6)) (as),
where ay, € Ay is defined in Section 1.11 and a, is the image of s in A.

In [11] we use the following version of Conjecture 2. Using the pairing of Grothendieck
groups from Section 6.3, Conjecture 2 is equivalent to:

(103) (g5, P) = (=) 1) trace(Evy, P)(as),

for every s € Z5(¢) and for every P € Perg, (Vi).

Conjecture 2 gives a new way to calculate the character (as, [, d]), when 7 is an
admissible representation of G4 (F') for a pure rational form § of G, and when the complete
Langlands parameter for (m,d) is known; this fact is illustrated with examples in [10].
Conjecture 2 also suggests how to define the character for Langlands parameters that are
not of Arthur type. We also show several examples of this strategy in [10].

6.7. A basis for strongly stable virtual representations. Conjecture 3, below, is an
adaptation of [32, Conjecture 8.15']. It suggests how to extend the definition of Arthur
packets from Langlands parameters of Arthur type to all Langlands parameters and also
how to find the associated stable distributions.

Conjecture 3. Let G be a quasi-split connected reductive linear algebraic group over
F. For any A € A(*G) (Section 2.1), the virtual representations n3BV are strongly stable

in the sense of [32, 1.6] and
{(n&BY'| Hy-orbits C C Wi}

is a basis for the Grothendieck group of strongly stable virtual representations with in-
finitesimal character A.
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It should be noted that strongly stable virtual representations of G produce stable
virtual representations, and thus stable distributions, of all the groups G;(F') as J ranges
over pure rational forms of G. It should also be noted that here we dropped the hypothesis
that G is a quasi-split symplectic or special orthogonal p-adic group, which appeared
in Conjectures 1 and 2, and replaced it with the hypothesis that G is any quasi-split
connected reductive algebraic group over F. The scope of Conjecture 3 is therefore very
broad, as it refers to all pure inner forms of all quasi-split connected reductive p-adic
groups.

In [10] we gather evidence for Conjectures 1, 2 and 3 by verifying them for 38 admissible
representations of 12 p-adic groups.
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