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Abstract. This paper begins the project of adapting the 1992 book by Adams,
Barbasch and Vogan on the Langlands classification of admissible representations of
real groups, to p-adic groups, continuing in the direction charted by Vogan in his
1993 paper on the Langlands correspondence. This paper presents three theorems
in that direction. The first theorem shows how Lusztig’s work on perverse sheaves
arising from graded Lie algebras may be brought to bear on the problem; the second
theorem proves that Arthur parameters determine strongly regular conormal vectors
to a parameter space of certain Langlands parameters; the third theorem shows how
to replace the microlocalisation functor as it appears in the work of Adams, Barbasch
and Vogan with a functor built from Deligne’s vanishing cycles functor. The paper
concludes with three conjectures, the first of which is the prediction that Arthur
packets are Adams-Barbasch-Vogan packets for p-adic groups. This paper is the first
in a series.
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Introduction

Let F be a local field of characteristic zero and G be a connected reductive linear
algebraic group over F . According to the local Langlands conjecture, the set Π(G(F ))
of isomorphism classes of irreducible admissible representations of G(F ) can be naturally
partitioned into finite subsets, called L-packets. Moreover, the local Langlands conjecture
predicts that if an L-packet contains one tempered representation, then all the repres-
entations in that L-packet are tempered, so tempered L-packets provide a partition of
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tempered irreducible admissible representations. Tempered L-packets enjoy some other
very nice properties. For instance, every tempered L-packet determines a stable distri-
bution on G(F ) by a non-trivial linear combination of the distribution characters of the
representations in the packet. Tempered L-packets also have an endoscopy theory, which
leads to a parametrisation of the distribution characters of the representations in the
packet. These properties fail for non-tempered L-packets. To remedy this, in 1989 Ar-
thur introduced what are now know as Arthur packets, which enlarge the non-tempered
L-packets in such a way that these last two properties do extend to the non-tempered
case. Arthur’s motivation was global, arising from the classification of automorphic rep-
resentations, so the local meaning of Arthur packets was unclear when they first appeared.

Shortly after Arthur packets were introduced, Adams, Barbasch and Vogan suggested
a purely local description of Arthur packets for real groups, in 1992, using microlocal
analysis of certain stratified complex varieties built from Langlands parameters. In 1993,
Vogan used similar tools to make a prediction for a local description of Arthur packets for
p-adic groups. The packets of admissible representations they described may be referred
to as ABV packets, in both the real and p-adic cases. Since these constructions are purely
local, and since the initial description of Arthur packets was global in nature, it was not
easy to compare ABV packets with Arthur packets. The conjecture that Arthur packets
are ABV packets has remained open since the latter were introduced.

When Arthur finished his monumental work on the classification of automorphic rep-
resentations of symplectic and special orthogonal groups in 2013, the situation changed
dramatically. Not only did he prove his own conjectures on Arthur packets given in [5],
but he also gave a local characterization of them, using twisted endoscopy. This opened
the door to comparing Arthur packets with ABV packets and motivated us to compare
Arthur’s work with Vogan’s constructions in the p-adic case. This paper is the first in a
series making that comparison.

We now describe the main results in this paper. From now on, we assume F is p-adic.
To begin, let us review Arthur’s main local result in the endoscopic classification of

representations. Suppose now that the connected reductive algebraic group G over F is
quasi-split. An Arthur parameter for G is a homomorphism, ψ : LF × SL(2,C) → LG,
where LF is the local Langlands group, to the Langlands group LG = ĜoWF , satisfying
a number of conditions. One important condition is that the image of ψ(WF ) under the
projection onto Ĝ must have compact closure. When G is symplectic or special ortho-
gonal, Arthur [2, Theorem 1.5.1] assigns to any ψ a multiset Πψ(G(F )) over Π(G(F )),
known as the Arthur packet of G associated with ψ. It is a deep result of Moeglin [28]
that Πψ(G(F )) is actually a subset of Π(G(F )). Endoscopy theory [2, Theorem 2.2.1] in
this case gives rise to a canonical map

(1)
Πψ(G(F ))→ Ŝψ

π 7→ 〈 · , π〉ψ

to Ŝψ, the set of irreducible characters of Sψ = ZĜ(ψ)/ZĜ(ψ)0Z(Ĝ)ΓF . If the Arthur
parameter ψ : LF × SL(2,C) → LG is trivial on SL(2,C) then Πψ(G(F )) is a tempered
L-packet and the map (1) is a bijection. In general, Πψ(G(F )) contains the L-packet
Πφψ (G(F )), where φψ is the Langlands parameter given by φψ(u) :=ψ(u, du), where for
u ∈ LF we set du = diag(|u|1/2, |u|−1/2

) with | | the pullback of the norm map on WF .
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The map (1) determines a stable distribution on G(F ) by

(2) ΘG
ψ =

∑
π∈Πψ(G(F ))

〈zψ, π〉ψ Θπ.

where zψ is the image of ψ(1,−1) in Sψ with (1,−1) ∈ LF × SL(2,C) where −1 is the
non-trivial central element of SL(2,C).

In this paper we express Arthur’s conjectural generalisation of (1) for inner twists of
G using pure rational forms of G as articulated by Vogan. A pure rational form (also
known as a pure inner form) of G is a cocycle δ ∈ Z1(F,G). An inner rational form is a
cocycle σ ∈ Z1(F, Inn(G)). Using the maps

Z1(F,G)→ Z1(F,Gad) = Z1(F, Inn(G))→ Z1(F,Aut(G)),

every pure rational form of G determines an inner rational form of G and every inner
rational form of G determines a rational form of G. Following [32], a representation
of a pure rational form of G is defined to be a pair (π, δ), where δ is a pure rational
form of G and π is an equivalence class of admissible representations of Gδ(F ). Then
G(F̄ )-conjugation defines an equivalence relation on such pairs, which is compatible with
the equivalence relation on pure rational forms Z1(F,G) producing H1(F,G). Again
following [32], we write Πpure(G/F ) for the equivalence classes of such pairs. Then, after
choosing a representative for each class in H1(F,G), we may write

Πpure(G/F ) =
⊔

[δ]∈H1(F,G)

Π(Gδ(F ), δ),

where Π(Gδ(F ), δ) := {(π, δ) | π ∈ Π(Gδ(F ))}.
An inner twist of G is a pair (G,ϕ), where G is a rational form of G and ϕ is an

isomorphism between G and G such that γ 7→ ϕ◦γ(ϕ)−1 is a 1-cocycle in Z1(ΓF , Inn(G).
Every inner rational form σ of G determines an inner twist (Gσ, ϕσ) such that the action
of γ ∈ ΓF on Gσ(F̄ ) is given through the σ-twisted action on G(F̄ ). We use the notation
(Gδ, ϕδ) for the inner twist of G determined by the pure rational form δ. An Arthur
parameter ψ for G is relevant to Gδ if any Levi subgroup of LG that ψ factors through is
the dual group of a Levi subgroup of Gδ. In [2, Conjecture 9.4.2], Arthur assigns to any
relevant ψ a multiset Πψ(Gδ(F )) over Π(Gδ(F )), which is called the Arthur packet for Gδ
associated to ψ. Moeglin’s work shows that, since Gδ comes from a pure rational form,
Πψ(Gδ(F )) is again a subset of Π(Gδ(F )). To extend (1) to this case, Arthur replaces
the group Sψ with a generally non-abelian group Sψ,sc [2, Section 9.2], which is a central
extension of Sψ by Ẑψ,sc; compare with (25). Let ζ̃Gδ be a character of Ẑψ,sc and let
Rep(Sψ,sc, ζ̃Gδ) be the set of isomorphism classes of ζ̃Gδ -equivariant representations of
Sψ,sc and 〈 · , π〉ψ,sc is the character of the associated representation of Sψ,sc.

Endoscopy theory [2, Conjecture 9.4.2] gives a map

(3) Πψ(Gδ(F ))→ Rep(Sψ,sc, ζ̃Gδ);

the character of the representation attached to an irreducible representation π of the inner
twist (Gδ, ϕδ) is denoted by 〈 · , π〉ψ,sc. The map (3) depends only on (1) and the pure
rational form δ. For any Arthur parameter ψ for G and any pure rational form δ of G
we define

Πψ(Gδ(F ), δ) := {(π, δ) | π ∈ Πψ(Gδ(F ))}
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where, if ψ is not relevant to Gδ then Πψ(G∗δ(F )) and thus Πψ(Gδ(F ), δ) is empty. Now
we introduce

(4) Πψ(G/F ) := {[π, δ] ∈ Πpure(G/F ) | (π, δ) ∈ Πψ(Gδ(F ), δ)}.
After choosing a representative pure rational form δ for every class in H1(F,G), we have

Πpure,ψ(G/F ) =
⊔

[δ]∈H1(F,G)

Πψ(Gδ(F ), δ).

Now, set
Aψ :=π0(ZĜ(ψ)) = ZĜ(ψ)/ZĜ(ψ)0

and let χδ : π0(Z(Ĝ)ΓF )→ C× be the character matching [δ] ∈ H1(F,G) under the Kot-
twitz isomorphism H1(F,G) ∼= Hom(π0(Z(Ĝ)ΓF ),C1). Let Rep(Aψ, χδ) denote the set of
equivalence classes of representations of Aψ such that the pullback of the representations
along

π0(Z(Ĝ)ΓF )→ π0(ZĜ(ψ))

is χδ. In Proposition 1.10.3 we show that (3) defines a canonical map

(5) Πpure,ψ(G/F )→ Rep(Aψ)

and we write 〈 · , [π, δ]〉ψ for the representation attached to [π, δ] ∈ Πpure,ψ(G/F ). built
from canonical maps

(6) Πψ(Gδ(F ), δ)→ Rep(Aψ, χδ).

The maps (6) depend only on δ and (1), as discussed in Section 1.10. When δ = 1, (6)
recovers (1) and if ψ = φ is tempered (6) gives a canonical bijection

(7) Πφ(Gδ(F ), δ)→ Π(Aφ, χδ),

where Π(Aφ, χδ) denotes the set of χδ-equivariant characters of Aψ.
In this paper we give a geometric and categorical approach to calculating a generalisa-

tion of (5), and therefore of (6) also, which applies to all quasi-split connected reductive
algebraic groups G over p-adic fields, by assuming the local Langlands correspondence
for its pure rational forms, as articulated by Vogan in [32]. Our approach is based on
ideas developed for real groups in [1] and on results from [32] for p-adic groups. After
specializing to the case of quasi-split symplectic and special orthogonal p-adic groups,
we conjecture that this geometric approach produces a map that coincides with (6) from
Arthur. The generalisation of (6) that we propose leads quickly to what should be a
generalisation of Arthur packets. To acknowledge the debt we owe to [1] and [32], we
refer to the packets appearing in this paper as ABV packets for p-adic groups. Much of
this paper is concerned with assembling the tools needed to give a precise and workable
definition of ABV packets for p-adic groups and a precise and testable conjecture that
they generalise Arthur packets.

We now sketch our generalisation of (6). Let F be a p-adic field and let G be any
quasi-split connected reductive algebraic group over F . Every Langlands parameter φ
for G determines an “infinitesimal parameter” λφ : WF → LG by λφ(w) :=φ(w, dw)

where dw = diag(|w|1/2, |w|−1/2
). The map φ 7→ λφ is not injective, but the preimage

of any infinitesimal parameter falls into finitely many equivalence classes of Langlands
parameters under Ĝ-conjugation. Set λψ :=λφψ . Let Πpure,λψ (G/F ) be the set of [π, δ] ∈
Πpure(G/F ) such that the Langlands parameter φ, whose associated L-packet contains π,
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satisfies λφ = λψ. The generalisation of (6) that we define, following [1] and [32], takes
the form of a map

(8) Πpure,λψ (G/F )→ Rep(Aψ).

The genesis of the map (8) is the interesting part, as it represents a sort of geometrisation
and categorification of (6).

To order to define (8), in Section 2 we review the definition of a variety Vλ, following
[32], that parametrises the set Pλ(LG) of Langlands parameters φ for G such that λφ = λ.
The variety Vλ is equipped with an action of ZĜ(λ). Then, again following [32], we
consider the category PerZĜ (λ)(Vλ) of equivariant perverse sheaves on Vλ. Together with
(7), the version of the Langlands correspondence that applies to G and its pure rational
forms determines a bijection between Πpure,λ(G/F ) and isomorphism classes of simple
objects in PerZĜ (λ)(Vλ):

(9)
Πpure,λ(G/F )→ PerZĜ (λ)(Vλ)simple

/iso ,

[π, δ] 7→ P(π, δ).

Inspired by an analogous result in [1] for real groups, in Proposition 4.6.1 we show that
every Arthur parameter ψ determines a particular element in the conormal bundle to Vλ

(xψ, ξψ) ∈ T ∗Cψ (Vλψ ),

where Cψ ⊆ Vλψ is the ZĜ(λψ)-orbit of xψ ∈ Vλ, such that the ZĜ(λψ)-orbit of (xψ, ξψ)
is the unique open orbit T ∗Cψ (Vλψ )sreg in T ∗Cψ (Vλψ ). Then we use (xψ, ξψ) to show that
Aψ is the equivariant fundamental group of T ∗Cψ (Vλ)reg. Thus, (xψ, ξψ) determines an
equivalence of categories

LocZĜ(λ)(T
∗
Cψ,η̄

(Vλ)sreg)→ Rep(Aψ),

where Rep(Aψ) denotes the category of representations of Aψ. This means that the
spectral transfer factors 〈 · , π〉ψ,sc for ψ appearing in (3) can be interpreted as equivariant
local systems on T ∗Cψ (Vλψ )sreg

In Section 5.1 we use the vanishing cycles functor to define an exact functor

(10) EvCψ,η̄ : PerZĜ (λ)(Vλ)→ PerZĜ (λ)(T
∗
Cψ

(Vλ)reg)

which plays the role of the microlocalisation functor as it appears in [1] for real groups.
Vanishing cycles of perverse sheaves on Vλ are fundamental tools for understanding the
singularities on the boundaries of strata in Vλ and their appearance here is quite natural.
The restriction of H− dimVλ EvCψ,η̄ P to T ∗Cψ (Vλψ )sreg is an equivariant local system on
T ∗Cψ (Vλψ )sreg and thus a representation of Aψ. Using deep facts about vanishing cycles,
we show that if P is an equivariant perverse sheaf on Vλ, then EvCψ,η̄ P is cohomologically
concentrated in degree Vλ, allowing us to introduce the exact functor

(11) Ev0
Cψ,η̄

:= EvCψ,η̄[−dimVλ] : PerZĜ (λ)(Vλ)→ LocZĜ(λ)(T
∗
Cψ,η̄

(Vλ)reg).

When combined with restriction

LocZĜ(λ)(T
∗
Cψ,η̄

(Vλ)reg)→ LocZĜ(λ)(T
∗
Cψ,η̄

(Vλ)sreg)

and the equivalence
LocZĜ(λ)(T

∗
Cψ,η̄

(Vλ)sreg)→ Rep(Aψ)
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from above, this defines an exact functor

(12) Evψ : PerZĜ (λ)(Vλ)→ Rep(Aψ).

Passing to isomorphism classes of objects, this functor defines a map

PerZĜ (λ)(Vλ)simple
/iso → Rep(Aψ)/iso.

When composed with (9), this defines (8).
We now explain the conjectured relation between (5) and (8). With reference to (12),

consider the support of (8), called the ABV packet for ψ:

(13) ΠABV
pure,ψ(G/F ) := {[π, δ] ∈ Πpure,λ(G/F ) | Evψ P(π, δ) 6= 0}.

We can break the ABV packet ΠABV
pure,ψ(G/F ) apart according to pure rational forms of

G:
ΠABV

pure,ψ(G/F ) =
⊔

[δ]∈H1(F,G)

ΠABV
ψ (Gδ(F ), δ),

where
ΠABV
ψ (Gδ(F ), δ) := {(π, δ) ∈ Π(Gδ(F ), δ) | [π, δ] ∈ ΠABV

ψ (G/F )},
so

ΠABV
ψ (Gδ(F ), δ) = {(π, δ) ∈ Π(Gδ(F ), δ) | Evψ P(π, δ) 6= 0}.

We may now state the main conjecture of this paper, given in a slightly stronger form as
Conjectures 1 and 2 in Section 6.

Conjecture. Let ψ be an Arthur parameter for a quasi-split symplectic or special or-
thogonal p-adic group G. Then

Πpure,ψ(G/F ) = ΠABV
pure,ψ(G/F ).

Moreover, for all pure rational forms δ of G and for all [π, δ] ∈ Πpure,λψ (G/F ),

〈 · , [π, δ]〉ψ = traceEvψ P(π, δ).

The pithy version of this conjecture is Arthur packets are ABV packets for p-adic
groups, but that statement obscures the fact that Arthur packets are defined separately
for each inner rational form (more precisely the corresponding inner twist), while ABV
packets treat all pure rational forms in one go. More seriously, this pithy version of the
conjecture obscures the fact that the conjecture proposes a completely geometric approach
to calculating the characters 〈 · , π〉ψ,sc appearing in Arthur’s endoscopic classification of
representations.

To simplify the discussion, in this introduction we have only described ABV packets
for Arthur parameters; however, as we see in this paper, it is possible to attach an ABV
packet to each Langlands parameter. Consequently, there are more ABV packets than
Arthur packets. So, while the conjecture above asserts that every Arthur packet in an
ABV packet, it is certainly not true that every ABV packet is an Arthur packet. If the
conjecture is true, it gives credence to the idea that ABV packets may be thought of as
generalised Arthur packets.

The main features of this paper are:
(1) in Section 1, a quick review of the main local result from [2] as it specialises to

pure rational forms of quasi-split connected reductive groups over p-adic fields;
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(2) in Section 2, a brief description of Vogan’s parameter variety for p-adic groups
and a review of Vogan’s perspective on the local Langlands conjecture for pure
rational forms of quasi-split connected reductive groups over p-adic fields, using
based on [32];

(3) Theorem 3.1.1, showing that the Vogan variety for an arbitrary infinitesimal para-
meter coincides with the Vogan variety for an unramified infinitesimal parameter
and also showing that the category of equivariant perverse sheaves is related to
the category of equivariant perverse sheaves on a graded Lie algebra, thereby
putting tools from [25] at our disposal;

(4) Theorem 4.1.1, showing that Arthur parameters determine conormal vectors to
Vogan’s parameter space and further that representations of the component group
attached to the Arthur parameter correspond exactly to equivariant local systems
on the orbit of that conormal vector, as in the case of real groups [1];

(5) Theorem 5.3.1 on a functor of vanishing cycles, replacing microlocalisation;
(6) Vogan’s conjectures from [32] expressed in terms of vanishing cycles as Conjec-

tures 1, 2 and 3, in Section 6.
Although we do not prove the conjecture above in this paper, we do have in mind a

strategy for a proof using twisted spectral endoscopic transfer and its geometric counter-
part for perverse sheaves on Vogan varieties; we will do this for unipotent representations
of odd orthogonal groups in a subsequent paper. In this paper we have more modest goals:
following [32], adapting conjectures from [1] to p-adic groups and casting them in a form
amenable to calculations. In [10] we provide additional evidence for these conjectures by
verifying them in examples chosen to illustrate features of the three theorems above.

Acknowledgements: Our thanks to Jim Arthur for suggesting this problem at The Fu-
ture of Trace Formulas workshop and to the Banff International Research Station where
that workshop took place. Thanks also to Pramod Achar, Jeff Adams, Anne-Marie Au-
bert, Patrick Brosnan, Aaron Christie, Paul Mezo, Dipendra Prasad and Kam-Fai Tam
for helpful conversations. We happily acknowledge the hospitality of the Mathematisches
Forschungsinstitut Oberwolfach where CC first encountered Langlands parameter variet-
ies at a Research in Pairs program with Pramod Achar, Masoud Kamgarpour and Hadi
Salmasian and where CC and BX presented this paper at the 2017 Conference on Har-
monic Analysis and the Trace Formula.

1. Arthur packets and pure rational forms

The goal of this section is primarily to set some notation, recall some definitions,
and set the stage for the geometric description of the characters of Aψ appearing in the
introduction.

1.1. Local Langlands group. Let F be a p-adic field; let q = qF be the cardinality
of the residue field for F . Let F̄ be an algebraic closure of F and set ΓF :=Gal(F̄ /F ).
There is an exact sequence

1 IF ΓF Gal(F̄q/Fq) 1,

where IF is the inertia subgroup of ΓF and F̄q is an algebraic closure of Fq. Since
Gal(F̄q/Fq) ∼= Ẑ, it contains a dense subgroup WkF

∼= Z, in which 1 corresponds to the
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automorphism x 7→ xqF in F̄q. We fix a lift Fr in ΓF of x 7→ xqF in WkF . The Weil group
WF of F is the preimage of WkF in ΓF ,

1 IF WF WkF 1,

topologised so that the compact subgroup IF is open in WF . Let

| |F : WF −→ R×

be the norm homomorphism, trivial on IF and sending Fr to qF . Then | |F is continuous
with respect to this topology for WF .

The local Langlands group of F is the trivial extension of WF by SL(2,C):

1 SL(2,C) LF WF 1.

1.2. L-groups. Let G be a connected reductive linear algebraic group over F . Let

Ψ0(G) = (X∗,∆, X∗,∆
∨)

be the based root datum of G. The dual based root datum is

Ψ∨0 (G) := (X∗,∆
∨, X∗,∆).

A dual group of G is a complex connected reductive algebraic group Ĝ together with a
bijection

ηĜ : Ψ∨0 (G) ∼= Ψ0(Ĝ).

The Galois group ΓF acts on Ψ0(G) and Ψ∨0 (G); see [7, §1.3]. This action induces a
homomorphism

µ : ΓF −→ Aut(Ψ0(G)) ∼= Aut(Ψ∨0 (G)).

Let Ĝ be a dual group of G. Then we can compose ηĜ with µ and get a homomorphism

µĜ : ΓF −→ Aut(Ψ0(Ĝ)).

An L-group data for G is a triple (Ĝ, ρ,SplĜ), where Ĝ is a dual group of G, ρ : ΓF −→
Aut(Ĝ) is a continuous homomorphism and SplĜ := (B, T, {Xα}) is a splitting of Ĝ such
that ρ preserves SplĜ and induces µĜ on Ψ0(Ĝ) (see [7, Sections 1, 2] for details.)

The L-group of G determined by the L-group data (Ĝ, ρ,SplĜ) is

LG := ĜoWF ,

where the action of WF on Ĝ factors through ρ. Since ρ induces µĜ on Ψ0(Ĝ) and since
Aut(Ψ0(Ĝ)) is finite, the action of WF on Ĝ factors through a finite quotient of WF . We
remark that the L-group, LG, only depends on Ĝ and ρ and is unique up to conjugation
by elements in Ĝ fixed by ΓF .

Henceforth we fix an L-group, LG, of G and make LG a topological group by giving Ĝ
the discrete topology and WF the profinite topology.
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1.3. Langlands parameters. If φ : LF → LG is a group homomorphism that commutes
with the projections LF → WF and LG → WF , then we may define φ◦ : LF → Ĝ by
φ(w, x) = φ◦(w, x) o w. Then we have the following map of split short exact sequences:

1 SL(2,C) LF WF 1

1 Ĝ LG WF 1.

φ
φ◦

A Langlands parameter for G is a homomorphism φ : LF → LG such that
(P.i) φ is continuous;
(P.ii) φ commutes with the projections LF →WF and LG→WF ;
(P.iii) φ◦|SL(2) : SL(2)→ Ĝ is a morphism of algebraic groups;
(P.iv) the image of φ|WF

consists of semisimple elements in LG.
Let P (LG) be the set of Langlands parameters for G. For φ ∈ P (LG), we refer to

Aφ :=π0(ZĜ(φ)) = ZĜ(φ)/ZĜ(φ)0

as the component group for φ.
Langlands parameters are equivalent if they are conjugate under Ĝ. The set of equi-

valence classes of Langlands parameters of G is denoted by Φ(G/F ); it is independent of
the choice of L-group LG made above.

1.4. Arthur parameters. If ψ : LF × SL(2,C) −→ LG is a group homomorphism that
commutes with the projections LF × SL(2,C) → LF → WF and LG → WF , then we
define ψ◦ : LF × SL(2) → Ĝ by ψ(w, x, y) = φ◦(w, x, y) o w, where (w, x) ∈ LF and
y ∈ SL(2).

An Arthur parameter for G is a homomorphism ψ : LF × SL(2,C) −→ LG such that
(Q.i) ψ|LF is a Langlands parameter for G;
(Q.ii) ψ◦|SL(2) : SL(2)→ Ĝ is a morphism of algebraic groups;
(Q.iii) the image ψ◦|WF

: WF → Ĝ is bounded (its closure is compact) in the complex
topology for Ĝ.

The set of Arthur parameters for G will be denoted by Q(LG). The set of Ĝ-conjugacy
classes of Arthur parameters will be denoted by Ψ(G/F ).

For ψ ∈ Q(LG), we refer to

Aψ :=π0(ZĜ(ψ)) = ZĜ(ψ)/ZĜ(ψ)0

as the component group for ψ.

1.5. Langlands parameters of Arthur type. Define d : WF → SL(2,C) by

(14) dw :=

(
|w|1/2 0

0 |w|−1/2

)
.

Note that w 7→ (w, dw) is a section of LF → WF . For ψ : LF × SL(2,C) → LG, define
φψ : LF → LG by

φψ(w, x) = ψ(w, x, dw).
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This defines a map

(15) Q(LG) → P (LG)
ψ 7→ φψ.

We will refer to φψ as the Langlands parameter for ψ. The function ψ 7→ φψ is neither
injective nor surjective. Langlands parameters in the image of the map Q(LG)→ P (LG)
are called Langlands parameters of Arthur type. The function

Ψ(G/F )→ Φ(G/F ),

induced from Q(LG)→ P (LG), is injective.

1.6. Pure rational forms. We suppose now that the connected reductive algebraic
group over F is quasi-split.

An inner rational form σ of G is a 1-cocycle of ΓF in Gad, where Gad is the adjoint
group of G. It determines an inner twist (Gσ, ϕ

∗
σ) of G as follows. Let Gσ(F̄ ) := G∗(F̄ )

and ϕσ be the identity map. The action of γ ∈ ΓF on Gσ(F̄ ) is given through the twisted
Galois action on G(F̄ ), i.e., γ : g 7→ Ad(σ(γ))(γ · g) for g ∈ G(F̄ ), where γ · g refers to
the action of ΓF on G(F̄ ) defining G over F . We will represent the inner twist by Gσ,
and identify Gσ(F ) as a subgroup of G(F̄ ) through ϕσ. Two inner rational forms σ1, σ2

of G are equivalent if they give the same cohomology class in H1(F,Gad), or equivalently
Gσ1

(F ) and Gσ2
(F ) are conjugate under G(F̄ ). There is a canonical isomorphism

H1(F,Gad) ∼= Hom(Z(Ĝsc)
ΓF ,C1)

where Ĝsc is the simply connected cover of the derived group of Ĝ. The character of
Z(Ĝsc)

ΓF determined by [σ] ∈ H1(F,Gad) will be denoted ζσ.
A pure rational form δ of G is a 1-cocycle of ΓF in G. It determines an inner rational

form σ := δ(σ) by the canonical map

(16) Z1(F,G)→ Z1(F,Gad).

We will denote the inner twist Gσ by Gδ. Two pure rational forms of G are equivalent if
they give the same cohomology class inH1(F,Gad). There is also a canonical isomorphism

H1(F,G) ∼= Hom(π0(Z(Ĝ)ΓF ),C1).

The character of π0(Z(Ĝ)ΓF ) corresponding to the equivalence class of δ will be denoted
by χδ. By [21, Proposition 6.4], the homomorphism G → Gad induces a commuting
diagram:

H1(F,G) H1(F,Gad)

Hom(π0(Z(Ĝ)ΓF ),C1) Hom(Z(Ĝsc)
ΓF ,C1).

∼= ∼=

So ζσ is the image of χδ and we will also denote it by ζδ.

1.7. Langlands packets for pure rational forms. An isomorphism class of repres-
entations of a pure rational form of G is a pair (π, δ), where π is an isomorphism class
of admissible representations of Gδ(F ). Then G(F̄ )-conjugation defines an equivalence
relation on such pairs, which is compatible with the equivalence relation on pure rational
forms Z1(F,G). We denote the equivalence class of (π, δ) by [π, δ], and following [32],
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write Πpure(G/F ) for the set of these equivalence classes. The local Langlands corres-
pondence for pure rational forms of G can be stated as in the following conjecture. There
is a natural bijection between Πpure(G/F ) and Ĝ-conjugacy classes of pairs (φ, ρ) with
φ ∈ P (LG) and ρ ∈ Irrep(Aφ). We will call the pair (φ, ρ) in this conjecture a complete
Langlands parameter. For φ ∈ P (LG), we define the corresponding pure Langlands packet

Πpure,φ(G/F )

to be consisting of [π, δ] in Πpure(G/F ), such that they are associated with Ĝ-conjugacy
classes of (φ, ρ) for any ρ ∈ Irrep(Aφ) under the local Langlands correspondence for pure
rational forms. This is also known as the Langlands-Vogan packet.

1.8. Arthur packets for quasi-split symplectic or special orthogonal groups.
From now on until the end of Section 1, we will assume G is a quasi-split symplectic or
special orthogonal group over F . In [2, Theorem 1.5.1], Arthur assigns to ψ ∈ Q(LG) a
multiset Πψ(G(F )) over Π(G(F )), which is usually referred to as the Arthur packet of G
associated with ψ. It is a deep result of Moeglin [28] that Πψ(G(F )) is actually a subset
of Π(G(F )). Arthur [2, Theorem 2.2.1] also associates Πψ(G(F )) with a canonical map

(17)
Πψ(G(F ))→ Ŝψ

π 7→ 〈 · , π〉ψ
where

(18) Sψ = ZĜ(ψ)/ZĜ(ψ)0Z(Ĝ)ΓF ,

and Ŝψ denotes the set of irreducible characters of Sψ. We use (17) to define a stable
virtual representation of G(F ) by

(19) ηGψ :=
∑

π∈Πψ(G(F ))

〈zψ, π〉ψ π,

where zψ ∈ Sψ is the image of ψ(1,−1) under the mapping ZĜ(ψ)→ Sψ, here (1,−1) ∈
LF with −1 is the non-trivial central element in SL(2,C). Every semisimple s ∈ ZĜ(ψ)
determines an element x of Sψ and thus a new virtual representation

(20) ηGψ,s :=
∑

π∈Πψ(G(F ))

〈zψx, π〉ψ π.

Turning to the stable distributions on G(F ), we set

(21) ΘG
ψ :=

∑
π∈Πψ(G(F ))

〈zψ, π〉ψ Θπ,

and

(22) ΘG
ψ,s :=

∑
π∈Πψ(G(F ))

〈zψx, π〉ψ Θπ.

The pair (ψ, s) also determines an endoscopic datum (G′,LG
′
, s, ξ) for G and an Arthur

parameter ψ′ for G′ so that ψ = ξ ◦ ψ′. In fact, G′ is a product group, whose factors
consist of symplectic, special orthogonal and general linear groups. So one can extend
the above discussions about G to G′ without difficulty as done in [2].
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Arthur’s main local result shows that, for locally constant compactly supported func-
tion f on G(F ), we have

(23) ΘG
ψ,s(f) = ΘG′

ψ′ (f
′),

where f ′ is the Langlands-Shelstad transfer of f from G(F ) to G′(F ). It is in this sense
that the maps (17) are compatible with spectral endoscopic transfer to G(F ).

On the other hand, there is an involution θ of G := GL(N) over F such that
(G,LG, s, ξN ) is a twisted endoscopic datum for G+(F ) := GL(N,F ) o 〈θ〉 in the sense
of [23, Section 2.1], for suitable semisimple s ∈ Ĝθ, the component of θ̂ in Ĝ+ := Ĝo 〈θ̂〉,
where θ̂ is the dual involution. Arthur’s main local result also shows that, for locally
constant compactly supported function fθ on Gθ(F ) := G(F ) o θ,

(24) ΘG
ψ (f) = ΘG+

ψN ,s(f
θ),

where f is the Langlands-Kottwitz-Shelstad transfer of fθ from Gθ(F ) to G∗(F ) and
ΘG+

ψN ,s
is the twisted character of a particular extension of the Speh representation of

GL(N,F ) associated with Arthur parameter ψN := ξN ◦ ψ to the disconnected group
G+(F ). It is in this sense that the maps (17) are compatible with twisted spectral
endoscopic transfer from G(F ).

Arthur shows that the map (17) is uniquely determined by: the stability of ΘG
ψ ; prop-

erty (23) for all endoscopic data G′; and property (24) for twisted endoscopy of GL(N). In
particular, the endoscopic character identities that are used to pin down 〈 · , π〉ψ involve
values at all elements of Sψ.

When ψ is trivial on the second SL(2,C), it becomes a tempered Langlands parameter.
In this case, Arthur shows (17) is a bijection. By the Langlands classification of Π(G(F )),
which is in terms of tempered representations, this bijection extends to all Langlands
parameters of G. Moreover, it follows from Arthur’s results that there is a bijection
between Π(G(F )) and Ĝ-conjugacy classes of pairs (φ, ε) for φ ∈ P (LG) and ε ∈ Ŝφ.

1.9. Arthur packets for inner rational forms. A conjectural description of Arthur
packets for inner twists of G is presented in [2, Chapter 9], though the story is far
from complete. Let σ be an inner rational forms of G. An Arthur parameter ψ of
Gσ is said to be relevant if any Levi subgroup of LGσ that ψ factors through is the L-
group of a Levi subgroup of Gσ. We denote the subset of relevant Arthur parameter by
Qrel(Gσ). In [2, Conjecture 9.4.2], Arthur assigns to ψ ∈ Qrel(Gσ) a multiset Πψ(Gσ(F ))
over Π(Gσ(F )), which is called the Arthur packet of Gσ associated with ψ. This time
Moeglin’s results [28] only show Πψ(Gσ(F )) is a subset of Π(Gσ(F )) in case when σ comes
from a pure rational form; see also [2, Conjecture 9.4.2, Remark 2]. For the purpose of
comparison with the geometric construction of Arthur packets, in this paper we define
Πψ(Gσ(F )) simply as the image of this multiset in Π(Gσ(F )).

To extend (17) to this case, one must replace the group Sψ with a larger, finite,
generally non-abelian group Sψ,sc, which is a central extension

(25) 1 Ẑψ,sc Sψ,sc Sψ 1

of Sψ by the finite abelian group

Ẑψ,sc :=Z(Ĝ∗sc)/Z(Ĝ∗sc) ∩ S0
ψ,sc.
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To explain the group in this exact sequence, we introduce the following notations. Set

Sψ :=ZĜ∗(ψ) and S̄ψ :=ZĜ∗(ψ)/Z(Ĝ)ΓF .

So S̄ψ is the image of Sψ in Ĝ∗ad, whose preimage in Ĝ∗ is SψZ(Ĝ). Let Sψ,sc be the
preimage of S̄ψ under the projection Ĝ∗sc → Ĝ∗ad, which is the same as the preimage of
SψZ(Ĝ) in Ĝ∗sc. Let S]ψ,sc be the preimage of Sψ in Ĝ∗sc and Ẑ]sc be the preimage of
Z(Ĝ)ΓF in Ĝ∗sc. Let us write Z(Ĝ∗) (resp. Z(Ĝ∗sc)) for Ẑ (resp. Ẑsc). It is clear that
ẐΓF

sc ↪→ Ẑ]sc. Then we have the following commutative diagram, which is exact on each
row:

1 ẐΓF Sψ S̄ψ 1

1 Ẑ]sc S]ψ,sc S̄ψ 1

1 Ẑsc Sψ,sc S̄ψ 1.

Note Sψ,sc = S]ψ,scẐsc, and hence S0
ψ,sc = (S]ψ,sc)

0. After passing to the component
groups, we have the following commutative diagram, which is again exact on each row:

1 ẐΓF
ψ Aψ Sψ 1

1 Ẑ]ψ,sc S]ψ,sc Sψ 1

1 Ẑψ,sc Sψ,sc Sψ 1.

Here Aψ,Sψ,S]ψ,sc,Sψ,sc are the corresponding component groups and

ẐΓF
ψ := ẐΓF /ẐΓF ∩ S0

ψ

Ẑ]ψ,sc := Ẑ]sc/Ẑ
]
sc ∩ S0

ψ,sc

Ẑψ,sc := Ẑsc/Ẑsc ∩ S0
ψ,sc

Let ζσ be the character of ẐΓF
sc corresponding to the equivalence class of σ. We will

also fix an extension of ζσ to Ẑsc and denote that by ζ̃σ. By [3, Lemma 2.1], an Arthur
parameter ψ of Gσ is relevant if and only if the restriction of ζσ to ẐΓF

sc ∩ S0
ψ,sc is trivial.

Lemma 1.9.1. ẐΓF
sc ∩ S0

ψ,sc = Ẑsc ∩ S0
ψ,sc.

Proof. It suffices to show Ẑsc∩S0
ψ,sc ⊆ ẐΓF

sc . Let LF ×SL(2,C) act on Ĝ∗sc by conjugation
of the preimage of ψ(LF × SL(2,C)) in LGsc. Then we can define the group cohomology
H0
ψ(LF × SL(2,C), Ĝ∗sc), which is the group of fixed points in Ĝsc under the action of

LF ×SL(2,C). It is clear that H0
ψ(LF ×SL(2,C), Ĝ∗sc) ⊆ S

]
ψ,sc. In fact, it is also not hard

to show that
(H0

ψ(LF × SL(2,C), Ĝ∗sc))
0 = (S]ψ,sc)

0.
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As a result, we have

Ẑsc ∩ S0
ψ,sc ⊆ Ẑsc ∩ (H0

ψ(LF × SL(2,C), Ĝ∗sc))
0 ⊆ Ẑsc ∩H0

ψ(LF × SL(2,C), Ĝ∗sc) = ẐΓF
sc

This finishes the proof. �

So, if ψ is relevant, it follows from Lemma 1.9.1 that ζ̃σ descends to a character of Ẑψ,sc.
Let Rep(Sψ,sc, ζ̃σ) be the set of isomorphism classes of ζ̃σ-equivariant representations of
Sψ,sc. In [2, Conjecture 9.4.2], Arthur conjectures a map

(26) Πψ(Gσ(F ))→ Rep(Sψ,sc, ζ̃σ)

and writes 〈 · , π〉ψ,sc for the character of the associated representation of Sψ,sc. Because
of our definition of Πψ(Gσ(F )) here, one can not replace Rep(Sψ,sc, ζ̃σ) by the subset
Π(Sψ,sc, ζ̃σ) of ζ̃σ-equivariant irreducible characters of Sψ,sc as in Arthur’s original for-
mulation. The map (26) is far from being canonical for it depends on (17) and various
other choices implicitly.

When ψ = φ is a tempered Langlands parameter, Arthur states all these results as a
theorem [2, Theorem 9.4.1]. In particular, he claims (26) gives a bijection

(27) Πφ(Gσ(F ))→ Π(Sφ,sc, ζ̃σ).

By the Langlands classification of Π(Gσ(F )), which is in terms of tempered represent-
ations, this bijection extends to all relevant Langlands parameters of Gσ. Moreover,
it follows from [2, Theorem 9.4.1] that there is a bijection between Π(Gσ(F )) and Ĝ-
conjugacy classes of pairs (φ, ε) for φ ∈ Prel(

LG
∗
σ) and ε ∈ Π(Sφ,sc, ζ̃σ).

1.10. Pure Arthur packets. Let δ be a pure rational form of G and ψ be an Arthur
parameter of Gδ. Let χδ be the character of π0(Z(Ĝ)ΓF ) corresponding to the equivalence
class of δ. We will also denote its pull-back to Z(Ĝ)ΓF by χδ. Let ζδ := ζσ(δ) be the
character of Z(Ĝsc)

ΓF , which is also the pull-back of χδ along

Z(Ĝsc)
ΓF → π0(Z(Ĝ)ΓF ).

Lemma 1.10.1. χδ is trivial on ẐΓF ∩ S0
ψ if and only if ζδ is trivial on ẐΓF

sc ∩ S0
ψ,sc.

Proof. One just needs to notice that S0
ψ is the product of (ẐΓF )0 with the image of S0

ψ,sc
in Sψ. �

As a direct consequence, we have the following corollary.

Corollary 1.10.2. An Arthur parameter ψ of Gδ is relevant if and only if χδ is trivial
on ẐΓF ∩ S0

ψ.

Let us assume ψ is relevant. Then χδ descends to a character of ẐΓF
ψ . Let Rep(Aψ, χδ)

be the set equivalence classes of χδ-equivariant representations of Aψ. Let ζ̃δ be a char-
acter of Ẑsc extending ζδ, so that its restriction to Ẑ]sc is the pull-back of χδ. Since ψ is
relevant, ζ̃δ descends to a character of Ẑψ,sc. Let Rep(Sψ,sc, ζ̃δ) be the set of equivalence
classes of ζ̃δ-equivariant representations of Sψ,sc.
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Proposition 1.10.3. Let χ a character of π0(Z(Ĝ)ΓF ). Let ζ̃ be a character of Z(Ĝsc)

Suppose the pull-back of χ along Ẑ]sc → Z(Ĝ)ΓF → π0(Z(Ĝ)ΓF ) coincides with the re-
striction of ζ̃ to Ẑ]sc ↪→ Z(Ĝsc). Then there is a canonical bijection

(28) Rep(Aψ, χ)→ Rep(Sψ,sc, ζ̃).

Proof. Since
Ker(S]ψ,sc → Aψ) = Ker(Ẑ]ψ,sc → ẐΓF

ψ ),

there is a canonical bijection

Rep(Aψ, χ)→ Rep(S]ψ,sc, ζ
]),

where ζ] is the pull-back of χδ to Ẑ]ψ,sc. Since

Sψ,sc = Ẑψ,sc S]ψ,sc and Ẑψ,sc ∩ S]ψ,sc = Ẑ]ψ,sc,

there is also a canonical bijection

Rep(Sψ,sc, ζ̃)→ Rep(S]ψ,sc, ζ
]).

Combining the two isomorphisms above, we obtain the canonical bijection promised
above. �

Let us take δ among various other choices to be made in defining (26). To emphasize
this choice, we will define

Πψ(Gδ(F ), δ) := {(π, δ) | π ∈ Πψ(Gδ(F ))}.

Then by composing (26) with (28) modulo isomorphisms, we can have a canonical map

(29)
Πψ(Gδ(F ), δ)→ Rep(Aψ, χδ)

(π, δ) 7→ 〈 · , (π, δ)〉ψ
which only depends on δ and (17). In particular, it becomes (17) when δ = 1. For
equivalent pure rational forms δ1 and δ2 of G, it follows from the construction of (26)
that the following diagram commutes.

Πψ(Gδ1(F ), δ1) Πψ(Gδ2(F ), δ2)

Rep(Aψ, χδ1)/iso Rep(Aψ, χδ2)/iso

∼=

As a result, (29) is also well-defined for the equivalence class [π, δ].
Let ψ be an Arthur parameter of G. For pure rational form δ such that ψ is not

relevant, we will define Πψ(Gδ(F ), δ) to be empty. Then we can define the pure Arthur
packet associated with ψ to be

(30) Πpure,ψ(G/F ) =
⊔

[δ]∈H1(F,G)

Πψ(Gδ(F ), δ)

as a subset of Πpure(G/F ). It is equipped with a canonical map

(31)
Πpure,ψ(G/F )→ Rep(Aψ)

[π, δ] 7→ 〈·, [π, δ]〉ψ
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When ψ = φ is a tempered Langlands parameter, this induces a bijection

Πpure,φ(G/F )→ Π(Aφ)

[π, δ] 7→ 〈·, [π, δ]〉φ.
This bijection also extends to all Langlands parameters φ of G, according to the discussion
in the end of Section 1.9. Combined with the local Langlands correspondence for each
pure rational form of G, we can conclude the local Langlands correspondence for pure
rational forms of G appearing in Section 1.7.

1.11. Virtual representations of pure rational forms. Let KΠpure(G/F ) be the free
abelian group generated by the set Πpure(G/F ). Define ηψ ∈ KΠpure(G/F ) by

(32) ηψ :=
∑

[π,δ]∈Πpure,ψ(G/F )

e(δ) 〈aψ, [π, δ]〉ψ [π, δ],

where e(δ) = e(Gδ) is the Kottwitz sign [22] of the group Gδ, and aψ is the image of
ψ(1,−1) in Aψ. Using (30) we have

ηψ =
∑

[δ]∈H1(F,G)

e(δ) ηδψ

where, for each pure rational form δ of G,

ηδψ :=
∑

(π,δ)∈Πψ(Gδ(F ),δ)

〈aψ, (π, δ)〉ψ [π, δ].

For semisimple s ∈ ZĜ(ψ), we define ηψ,s ∈ KΠpure(G/F ) by

ηψ,s =
∑

[π,δ]∈Πpure,ψ(G/F )

e(δ) 〈aψas, (π, δ)〉ψ [π, δ],

where as is the image of s in Aψ. As above, we can break this into summands indexed
by pure rational form by writing

ηψ,s =
∑

[δ]∈H1(F,G)

e(δ) ηδψ,s

where, for each pure rational form δ of G,

ηδψ,s :=
∑

(π,δ)∈Πψ(Gδ(F ),δ)

〈aψas, (π, δ)〉ψ [π, δ].

Then ηδψ,1 = ηδψ and ηψ,1 = ηψ. We note that, with reference to (19) and (20),

η1
ψ = ηGψ and η1

ψ,s = ηGψ,s.

Turning from virtual representations to distributions, we see that each ηδψ and ηδψ,s
determines a distribution on Gδ(F ) by

Θδ
ψ,s :=

∑
(π,δ)∈Πψ(Gδ(F ),δ)

〈aψas, (π, δ)〉ψ Θπ.

This extends (21) and (22) from G(F ) to Gδ(F ) arising from pure rational forms δ of G:

Θ1
ψ = ΘG

ψ and Θ1
ψ,s = ΘG

ψ,s.
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1.12. A quick preview of the rest of the paper. Inspired by ideas developed for real
groups in [1] and without assuming G is symplectic or special orthogonal, the remainder
of this paper is devoted to offering a geometric, categorical and calculable description of
a map

(33)
Πpure,λψ (G/F )→ Rep(Aψ)/iso,

[π, δ] 7→ Evψ P(π, δ),

for any quasi-split G and for any Arthur parameter ψ : LF × SL(2) → LG, and also to
explaining the conjecture that the map provides a generalisation of (31). Here Rep(Aψ)
denotes the category of representations of Aψ so Rep(Aψ)/iso includes the representation
of Aψ on the vector space 0, in particular. In fact, more generally, we will define a map

(34)
Πpure,λφ(G/F )→ Rep(π1(Amic

Cφ
))/iso,

[π, δ] 7→ Evφ P(π, δ),

for any Langlands parameter φ for G, such that when φ = φψ, it coincides with (33).
Then

(35) ΠABV
pure,φ(G/F ) := {[π, δ] ∈ Πpure,λ(G/F ) | Evφ P(π, δ) 6= 0}.

Note that this extends the definition given in (13) to all Langlands parameters. After
defining (34), we build virtual representations

(36) ηABV
φ :=

∑
[π,δ]∈Πpure,λφ (G/F )

(−1)dim(Cφ)−d(π,δ)e(δ) rankEvφ P(π, δ) [π, δ],

where d(π, δ) := dim supp(P(π, δ)), and more generally,

ηABV
φ,s =

∑
[π,δ]∈Πpure,λφ (G/F )

(−1)dim(Cφ)−d(π,δ)e(δ) traceEvφ P(π, δ)(as) [π, δ],

for s ∈ ZĜ(ψ) and as is the image of s in Aψ.
The conjectures in Section 6 can all be phrased in terms of these virtual representations.
(1) Conjecture 1: if ψ is an Arthur parameter for symplectic or special orthogonal

G, then ηABV
ψ = ηψ.

(2) Conjecture 2: if ψ is an Arthur parameter for symplectic or special orthogonal G
then ηABV

ψ,s = ηψ,s, for all s ∈ ZĜ(ψ). This implies the statement above, taking
the case s = 1.

(3) Without assuming G is symplectic or special orthogonal, though still connected
and quasi-split, Conjecture 3 asserts that the virtual representations ηABV

φ , as
φ ranges over Φ(G/F ), forms a basis for the space of strongly stable virtual
representations as defined in [32, 1.6].

In [10] we provide evidence for all three conjectures by providing examples. We prove
Conjecture 2 (and therefore Conjecture 1 also) for Arthur parameters for unipotent rep-
resentations of G = SO(2n+ 1) in [11].

2. Equivariant perverse sheaves on parameter varieties

In this section we drop the quasi-split hypothesis and let G be an arbitrary connected
reductive algebraic group over a p-adic field F .
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2.1. Infinitesimal parameters. An infinitesimal parameter for G is a homomorphism
λ : WF → LG such that
(R.i) λ is continuous;
(R.ii) λ is a section of LG→WF ;
(R.iii) the image of λ consists of semisimple elements in LG.
Let R(LG) be the set of infinitesimal parameters for G. We will use the notation λ◦ :

WF → Ĝ for the function defined by λ(w) = λ◦(w) o w. The component group for λ is

(37) Aλ :=π0(ZĜ(λ)) = ZĜ(λ)/ZĜ(λ)0.

The set of Ĝ-conjugacy classes of infinitesimal parameters is denoted by Λ(G/F ).
For any Langlands parameter φ : LF → LG, define the infinitesimal parameter of φ by

λφ : WF → LG
w 7→ (w, dw),

where d : WF → SL(2,C) was defined in Section 1.1. This defines

(38) P (LG) → R(LG)
φ 7→ λφ.

The function φ 7→ λφ is surjective but not, in general, injective. For any fixed λ ∈ R(LG),
set

Pλ(LG) := {φ ∈ P (LG) | λφ = λ}.
We write Φλ(G/F ) for the set of ZĜ(λ)-conjugacy classes of Langlands parameters with
infinitesimal parameter λ.

With reference to Section 1.7, for any quasi-split G over F , we set

Πpure,λ(G/F ) :=
⋃

φ∈Pλ(LG)

Πpure,φ(G/F ),

with the union taken in Πpure(G/F ). Then, after choosing a representative for each class
in Φλ(LG), we have

Πpure,λ(G/F ) =
⊔

[φ]∈Φλ(LG)

Πpure,φ(G/F ).

Now the local Langlands correspondence for pure rational forms of G (cf. Section 1.7)
provides a bijection

(39) Πpure,λ(G/F )↔ {(φ, ρ) | φ ∈ Pλ(LG), ρ ∈ Irrep(Aφ)}/∼,
where the equivalence on pairs (φ, ρ) is defined by ZĜ(λ)-conjugation.

2.2. Vogan varieties. Fix λ ∈ R(LG). Define

(40) Hλ :=ZĜ(λ) := {g ∈ Ĝ | (g o 1)λ(w)(g o 1)−1 = λ(w), ∀w ∈WF }
and

(41) Kλ :=ZĜ(λ(IF )) := {g ∈ Ĝ | (g o 1)λ(w)(g o 1)−1 = λ(w), ∀w ∈ IF }.

The centraliser Kλ of λ(IF ) in Ĝ consists of fixed points in Ĝ under a finite group of
semisimple automorphisms of Ĝ, so Kλ is a reductive algebraic group. Since Hλ can be
viewed as the group of fixed points in Kλ under the semisimple automorphism Ad(λ(Fr)),
then Kλ is also a reductive algebraic group. Neither Hλ nor Kλ is connected, in general.
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Following [32, (4.4)(e)], define

(42) Vλ :=Vλ(LG) := {x ∈ LieKλ | Ad(λ(Fr))x = qFx},

called the Vogan variety for λ. Then Hλ acts on Vλ by conjugation.

Lemma 2.2.1. Vλ is a conical subvariety in the nilpotent cone of LieKλ.

Proof. Set kλ = LieKλ. Decompose kλ according to the eigenvalues of Ad(λ(Fr)):

(43) kλ =
⊕
ν∈C∗

kλ(ν).

Then, using the Lie bracket in kλ, we have

(44) [ , ] : kλ(ν1)× kλ(ν2)→ kλ(ν1ν2).

It follows that all elements in Vλ are ad-nilpotent in ĝ. So it is enough to show that Vλ
does not intersect the centre ẑ of ĝ. Since the adjoint action of λ(WF ) on ẑ factors through
a finite quotient of ΓF , the Ad(λ(Fr))-eigenvalues on ẑ are all roots of unity. In particular,
they can not be qF , so Vλ does not intersect ẑ. This shows that all elements in Vλ are
nilpotent in ĝ. It is clear from (42) that Vλ(LG) is closed under scalar multiplication by
C× in knilp

λ . �

With reference to decomposition of kλ = LieKλ in the proof of Lemma 2.2.1, observe
that

kλ(qF ) = Vλ and kλ(1) = LieHλ.

Proposition 2.2.2. For each infinitesimal parameter λ ∈ R(LG), the Hλ-equivariant
function

Pλ(LG) −→ Vλ(LG),

φ 7→ xφ := dϕ
(

0 1
0 0

)
,

where ϕ :=φ◦|SL(2,C) : SL(2,C) → Ĝ, is surjective. The fibre of Pλ(LG) → Vλ(LG) over
any x ∈ Vλ(LG) is a principal homogeneous space for the unipotent radical of ZHλ(x).
The induced map between the sets of Hλ-orbits

Φλ(LG) −→ Vλ(LG)/Hλ,

[φ] 7→ Cφ

is a bijection.

Proof. Fix x ∈ Vλ = kλ(qF ). By Lemma 2.2.1, x is nilpotent. There exists an sl2-triple
(x, y, h) in kλ such that

(45) x ∈ Vλ = kλ(qF ) and z ∈ hλ = kλ(1) and y ∈ kλ(q−1
F );

see, for example, [17, Lemma 2.1]. Let ϕ : SL(2,C)→ Kλ be the homomorphism defined
by

dϕ
(

0 1
0 0

)
= x, dϕ

(
1 0
0 −1

)
= h, dϕ

(
0 0
1 0

)
= y,

and define φ : WF × SL(2,C)→ LG by

φ(w, g) = ϕ(g)ϕ(d−1
w )λ(w).
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Then φ ∈ Pλ(LG) and

d(φ◦|SL(2,C))

(
0 1
0 0

)
= dϕ

(
0 1
0 0

)
= x.

This shows the map Pλ(LG)→ Vλ(LG) is surjective.
Now, suppose that φ1 is also mapped to x under the map Pλ(LG) → Vλ(LG) and set

ϕ1 :=φ◦1|SL(2,C). Then ϕ1 determines an sl2-triple (x, y1, z1) in kλ such that

z1 ∈ hλ = kλ(1) and y1 ∈ kλ(q−1
F ).

The two sl2-triples (x, y, z) and (x, y1, z1) are conjugate by an element of ZHλ(x); see,
for example, the second part of [17, Lemma 2.1]. Thus, ϕ and ϕ1 are conjugate under
ZHλ(x). We can also write φ1 as

φ1(w, g) = ϕ1(g)ϕ1(d−1
w )λ(w).

It is then clear that φ and φ1 are also conjugate under ZHλ(x). This shows that the map
Pλ(LG) → Vλ(LG) induces a bijection between Hλ-orbits and also that the fibre above
any x ∈ Vλ is in bijection with ZHλ(x)/ZHλ(φ) for φ 7→ x and that ZHλ(x) = ZHλ(φ)U
where U is the unipotent radical of ZHλ(x). �

We remark that Proposition 2.2.2 is analogous to [1, Proposition 6.17] for real groups.
However, Proposition 2.2.2 might appear to contradict with [32, Corollary 4.6]. The
apparent discrepancy is explained by the two different incarnations of the Weil-Deligne
group: we use LF = WF × SL(2,C) while [32] uses W ′F = WF o Gadd(C) and we use
pullback along WF → LF given by w 7→ (w, dw) to define the infinitesimal parameter of
a Langlands parameter while [32] uses restriction of a parameter W ′F → LG to WF to
define its infinitesimal parameter. We find LF preferable to W ′F here because it stresses
the analogy to the real groups case. However, there is a cost. In the optic of [32], Vλ is
exactly a moduli space for Langlands parameters φ : W ′F → LG with φ|WF

= λ, while
in this paper the map Pλ(LG) → Vλ(LG) from Langlands parameters φ : LF → LG with
λφ = λ to Vλ is not a bijection, as we saw in Proposition 2.2.2.

2.3. Parameter varieties. Recall from Section 2.1 that elements of Λ(G/F ) are Ĝ-
conjugacy class of elements of R(LG). We will use the notation [λ] ∈ Λ(G/F ) for the
class of λ ∈ R(LG); then [λ] is an infinitesimal character in the language of [32]. Consider
the variety

(46) Xλ :=Xλ(LG) := Ĝ×Hλ Vλ(LG).

Then [λ] = [λ′] implies Xλ(LG) ∼= Xλ′(
LG). Set

P[λ](
LG) := {φ ∈ P (LG) | λφ = Ad(g)λ,∃g ∈ Ĝ}.

It follows immediately from Proposition 2.2.2 that the function

(47) P[λ](
LG)→ Xλ(LG),

induced from Pλ(LG) → Vλ(LG) is Ĝ-equivariant, surjective, and the fibre over any x ∈
Xλ(LG) is a principal homogeneous space for the unipotent radical of ZĜ(x).

Let HomWF
(WF ,

LG) be the set of homomorphisms that satisfy conditions (R.i) and
(R.ii). Observe that

R(LG) = {λ ∈ HomWF
(WF ,

LG) | λ(Fr) ∈ LGss}
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where LGss ⊆ LG denotes the set of semisimple elements in LG. Now let HomWF
(IF ,

LG)
be the set of continuous homomorphisms that commute with the natural maps IF →WF

and LG → WF . As explained in [29, Section 10], the set HomWF
(WF ,

LG) naturally
carries the structure of (locally finite-type) variety over C and its components are in-
dexed by Ĝ-conjugacy classes of those φ0 ∈ HomWF

(IF ,
LG) that lie in the image of

HomWF
(WF ,

LG) → HomWF
(IF ,

LG) given by restriction. We remark that Ĝ-orbits in
HomWF

(WF ,
LG) are closed subvarieties.

Now consider the (locally finite-type) variety

X(LG) := {(λ, x) ∈ HomWF
(WF ,

LG)× Lie Ĝ | x ∈ Vλ(LG)}
This (locally finite-type) variety comes equipped with morphisms

X(LG) → HomWF
(WF ,

LG) → HomWF
(IF ,

LG)
(λ, x) 7→ λ 7→ λ|IF .

The components of X(LG) are again indexed by Ĝ-conjugacy classes of those φ0 ∈
HomWF

(IF ,
LG) that lie in the image of HomWF

(WF ,
LG)→ HomWF

(IF ,
LG). The fibre

of X(LG) → HomWF
(WF ,

LG) above λ ∈ R(LG) ⊆ X(LG) is precisely the affine variety
Xλ(LG) defined in (46).

Now, with reference to the definition of λφ from (38) and the definition of xφ in
Proposition 2.2.2, consider the map

(48) P (LG) → X(LG)
φ 7→ (λφ, xφ).

It follows from Proposition 2.2.2 that the image of this map is {(λ, x) ∈ X(LG) | λ ∈
R(LG)} and the fibre of P (LG) → X(LG) above any (λ, x) in its image is a principal
homogeneous space for the unipotent radical of ZĜ(x), and moreover that P (LG) →
X(LG) induces a bijection

Φ(LG) −→ X(LG)/Ĝ,

[φ] 7→ Sφ.

Though the map (48) is neither injective nor surjective, in general, and though X(LG) is
not of finite type over C, in general, we refer to X(LG) as the parameter variety for G.

We note that X(LG) is stratified into Ĝ-orbit varieties, locally closed in X(LG); this
stratification is not finite, in general, but it is closure-finite. For each Ĝ-orbit S ⊆ X(LG),
there is some λ ∈ HomWF

(WF ,
LG) such that S ⊆ Xλ(LG). Then S̄, the closure of S

in X(LG), is also contained in Xλ(LG). It is essentially for this reason that this paper
is concerned with the affine varieties Xλ(LG), for [λ] ∈ Λ(G/F ), rather than the full
parameter variety X(LG).

2.4. Equivariant perverse sheaves. The definitive reference for perverse sheaves is [6],
and we will use notation from that paper here, but equivariant perverse sheaves do not
appear in [6], so we now briefly describe that category and some properties that will be
important to us. Our treatment is consistent with [9, Section 5].

Let m : H × V → V be a group action in the category of algebraic varieties. So, in
particular, H is an algebraic group, but need not be connected. Consider the morphisms

H ×H × V H × V V
m1,m2,m3 m

m0

s
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where m0 : H × V → V is projection, s : V → H × V is defined by s(x) = (1, x) and
m1,m2,m3 : H ×H × V → H × V are defined by

m1(h1, h2, x) = (h1h2, x)

m2(h1, h2, x) = (h1,m(h2, x))

m3(h1, h2, x) = (h2, x).

These are all smooth morphisms. An object in PerH(V ) is a pair (A, α) where A ∈ Per(V )
and

(49) α : m∗[dimH]A → m∗0[dimH]A

is an isomorphism in Per(H × V ) such that

(50) s∗(α) = idA[dimH]

and such that the following diagram in Per(H × H × V ), which makes implicit use of
[6, 1.3.17] commutes:

(51)

m∗2[dimH]m∗[dimH]A m∗2[dimH]m∗0[dimH]A

m∗1[dimH]m∗[dimH]A m∗3[dimH]m∗[dimH]A

m∗1[dimH]m∗0[dimH]A m∗3[dimH]m∗0[dimH]A.

m◦m1=m◦m2

m∗2 [dimH](α)

m0◦m2=m◦m3

m∗1 [dimH](α) m∗3 [dimH](α)

m0◦m3=m0◦m1

We remark that pHdimH m∗ = m∗[dimH] on Per(V ) and pHdimH m∗i = m∗i [dimH] on
Per(H × V ) for i = 1, 2, 3; see [6, 4.2.4]. This does not require connected H.

Morphisms of H-equivariant perverse sheaves (A, α) → (B, β) are morphisms of per-
verse sheaves φ : A→ B for which the diagram

(52)
m∗[dimH]A m∗[dimH]B

m∗0[dimH]A m∗0[dimH]B

α

m∗[dimH](φ)

β

m∗0 [dimH](φ)

commutes. This defines PerH(V ), the category of H-equivariant perverse sheaves on V .
The category PerH(V ) comes equipped with the forgetful functor

PerH(V )→ Per(V )

trivial on morphisms and given on objects by (A, α) → A. This is a special case of
a more general construction called equivariant pullback. Let m : H × V → V and
m′ : H ′ × V ′ → V ′ be actions. Let u : H ′ → H be a morphism in the category of
algebraic groups and suppose H ′ acts on V and H acts on V . A morphism f : V ′ → V
is equivariant (with respect to u) if

H ′ × V ′ V ′

H × V V

m′

u×f f

m
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commutes. Then for every i ∈ Z there is a functor pHi
u f
∗ : PerH(V )→ PerH′(V

′) making

PerH′(V
′) PerH(V )

Per(V ′) Per(V )

forget

pHiu f
∗

forget
pHi f∗

commute; we call this equivariant pullback. The forgetful functor above is just pH0
1 id∗V ,

where u : 1→ H.
The category PerH(V ) also comes equipped with the forgetful functor

PerH(V )→ PerH0(V )

where H0 is the identity component of H. The category PerH0(V ) is easier to study than
PerH(V ), since the functor PerH0(V ) → Per(V ) is faithful, which is generally not the
case for PerH(V ) → Per(V ) when H is not connected. The following lemma shows how
PerH(V ) is related to PerH0(V ).

Lemma 2.4.1. Let m : H × V → V be a group action in the category of algebraic
varieties. Suppose V is smooth and connected. We have a sequence of functors

Rep(π0(H)) PerH(V ) PerH0(V )
E 7→EV [dimV ] forget: P7→P0

π∗

such that:
(a) for every E ∈ Rep(π0(H)), (EV [dimV ])0

∼= 1
dimE
V [dimV ];

(b) the functor Rep(π0(H)) → PerH(V ) is fully faithful and its essential im-
age is the category of perverse local systems L[dimV ] ∈ PerH(V ) such that
(L[dimV ])0

∼= 1
dimL
V [dimV ];

(c) the forgetful functor PerH(V ) → PerH0(V ) is exact and admits isomorphic left
and right adjoints π∗ : PerH0(V )→ PerH(V );

(d) every P ∈ PerH(V ) is a summand of π∗P0.

Proof. The identity idV : V → V is equivariant with respect to the inclusion u : H0 → H
of the identity component of H. Consider the functor

pH0
u id∗V : PerH(V )→ PerH0(V ).

The trivial map 0 : V → 0 is equivariant with respect to the quotient π0 : H → π0(H).

H × V V

π0(H)× 0 0

Consider the functor
pHdimH

π0
0∗ : Perπ0(H)(0)→ PerH(V ).

Then
( pHdimH

π0
0∗) ( pH0

u id∗V ) ∼= pHdimH
0 0∗

and we have a sequence of functors

Perπ0(H)(0) PerH(V ) PerH0(V )
forget
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The tensor category Perπ0(H)(0) is equivalent to Rep(π0(H)), the category of representa-
tions of the finite group π0(H). Property (a) now follows from the canonical isomorphism
of functors above.

Since V is smooth, the functor Rep(π0(H)) → PerH(V ) is given explicitly by E 7→
EV [dimV ]; this functor is full and faithful by, for example, [6, Corollaire 4.2.6.2], from
which we also find the adjoint functors PerH(V ) → Rep(π0(H)) and Property (b). Con-
nectedness of V plays a role here.

To see Property (c), set Ṽ = H ×H0 V and consider the closed embedding i : V → Ṽ
given by i(x) = [1, x]H0 . By descent, equivariant pullback

pH0
u i
∗ : PerH(Ṽ )→ PerH0(V )

is an equivalence. Now consider the morphism

c : Ṽ → V

[h, x]H0 7→ h · x.

Then c : Ṽ → V is an H-equivariant finite etale cover with group π0(H) = H/H0. In
fact, Ṽ ∼= V ×H/H0 and c is simply the composition of this isomorphism with projection
V ×H/H0 → V . Since c is proper and semismall, the adjoint to pullback

pH0 c∗ : Per(V )→ Per(Ṽ )

takes perverse sheaves to perverse sheaves,
pH0 c∗ : Per(Ṽ )→ Per(V )

and coincides with pH0 c!; see also [6, Corollaire 2.2.6]. To see that the adjoint extends
to a functor of equivariant perverse sheaves, define

pH0
H c∗ : PerH(Ṽ )→ PerH(V )

as follows. On objects, pH0
H c∗(Ã, α̃) = (A, α) with A = pH0 c∗Ã while the isomorphism

α : pHdimH m∗A → pHdimH m∗0A in Per(H × V ) is defined by the following diagram of
isomorphisms.

pHdimH m∗A pHdimH m∗0A

pHdimH m∗( pH0 c∗Ã) pHdimH m∗0( pH0 c∗Ã)

pH0(idH ×c)∗ pHdimH(m̃)∗A pH0(idH ×c)∗ pHdimH(m̃0)∗A

α

smooth base change smooth base change
pH0(idH ×c)∗(α̃)

It is straightforward to verify that α satisfies (50) and (51) as they apply here and also
that if Ã → B̃ is a map in PerH(Ṽ ) then pHi c!(Ã → B̃) satisfies condition (52), so
is a map in PerH(V ). By this definition of pHi

H c∗ : PerH(Ṽ ) → PerH(V ), it follows
immediately that the diagram

PerH(Ṽ ) PerH(V )

Per(Ṽ ) Per(V )

forget

pH0
H c∗

forget

c∗=
pH0 c∗
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commutes. Now, we define the adjoint π∗ : PerH0(V )→ PerH(V ) by the following diagram

PerH0(V ) PerH(V )

PerH(Ṽ ).

π∗

pH0
u i
∗

equiv.
pH0

H c∗

This shows Property (c).
Property (d) follows from the Decomposition Theorem applied to c : Ṽ → V . �

2.5. Equivariant perverse sheaves on parameter varieties. Our fundamental ob-
ject of study is the category PerĜ(Xλ) of Ĝ-equivariant perverse sheaves on X(LG), for
fixed [λ] ∈ Λ(G/F ). Consider the closed embedding

Vλ → Xλ

x 7→ [1, x]Hλ .

By a simple application of equivariant descent, the functor obtained by equivariant pull-
back along Vλ → Xλ,

PerHλ(Vλ)← PerĜ(Xλ),

is an equivalence. Consequently, it may equally be said that our fundamental object of
study is the category PerHλ(Vλ) of Hλ-equivariant perverse sheaves on Vλ.

Now define

(53) X̃λ := Ĝ×H0
λ
Vλ.

Then

Vλ → X̃λ

x 7→ [1, x]H0
λ

induces an equivalence

PerĜ(X̃λ)→ PerH0
λ
(Vλ).

Define

cλ : X̃λ → Xλ

[h, x]H0
λ
7→ [h, x]Hλ .

Arguing as in Section 2.4, it follows that there is a sequence of exact functors

Rep(Aλ) PerĜ(Xλ) PerĜ(X̃λ)

PerHλ(Vλ) PerH0
λ
(Vλ)

E 7→EXλ [dimXλ]

equiv

(cλ)∗

equiv
(cλ)∗

enjoying the properties of Lemma 2.4.1.
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2.6. Langlands component groups are equivariant fundamental groups. Now
that we have a precise definition of PerHλ(Vλ), we consider its simple objects.

Every simple object in PerHλ(Vλ) takes the form IC(C,L), where C is an Hλ-orbit in
Vλ and L is a simple equivariant local system on C. Thus, simple objects in PerHλ(Vλ)
are parametrised by pairs (C, ρ) where C is an Hλ-orbit in Vλ and ρ is an isomorphism
class of irreducible representations of the equivariant fundamental group AC of C. To
calculate that group, we may pick a base point x ∈ C so

(54) AC ∼= π1(C, x)H0
λ
.

We are left with a canonical bijection:

PerHλ(Vλ)simple
/iso ↔ {(C, γ) | Hλ-orbit C ⊆ Vλ, ρ ∈ Irrep(AC)}.

Lemma 2.6.1. For any Langands parameter φ : LF → LG,

ACφ = Aφ,

where Cφ ⊆ Vλφ is the Hλφ-orbit of xφ; see Proposition 2.2.2.

Proof. Recall from Section 1.3 that the component group for a Langlands parameter φ is
given byAφ = π0(ZĜ(φ)) = ZĜ(φ)/ZĜ(φ)0. Since λφ(WF ) ⊆ φ(LF ), Aφ = π0(ZHλφ (φ)).
On the other hand, the equivariant fundamental group of Cφ is π1(Cφ, xφ)Hλφ =

π0(ZHλφ (xφ)). From the proof of Proposition 2.2.2 we see that ZHλφ (xφ) = ZHλφ (φ)U ,
where U is a connected unipotent group. It follows that

π0(ZHλφ (xφ)) = π0(ZHλφ (φ)U) = π0(ZHλφ (φ)),

which concludes the proof. �

The following proposition is one of the fundamental ideas in [32]. Because our set up
is slightly different, however, we include a proof here.

Proposition 2.6.2. Suppose G is quasi-split. The local Langlands correspondence for
pure rational forms determines a bijection between the set of isomorphism classes of simple
objects in PerHλ(Vλ) and those of Πpure,λ(G/F ) as defined in Section 2.1:

PerHλ(Vλ)simple
/iso ↔ Πpure,λ(G/F ).

Proof. We have already seen (39) that the local Langlands correspondence for pure ra-
tional forms gives a bijection between Πpure,λ(G/F ) and

{([φ], ε) | [φ] ∈ Φλ(LG), ε ∈ Irrep(Aφ)}

Proposition 2.2.2 gives a canonical bijection between Φλ(LG) and the set of Hλ-orbits in
Vλ. When C ↔ [φ] under this bijection, Lemma 2.6.1, gives a bijection between Irrep(AC)
and Irrep(Aφ). �

We introduce some convenient notation for use below. For [π, δ] ∈ Πλ(G/F ), let
P(π, δ) be a simple perverse sheaf in the isomorphism class determined by [π, δ] using
Proposition 2.6.2:

Πpure,λ(G/F ) → PerHλ(Vλ)simple
/iso

[π, δ] 7→ P(π, δ).
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Conversely, for a simple perverse sheaf P = IC(C,L) in PerHλ(Vλ), let χP be the character
of π0(Z(Ĝ)ΓF ) obtained by pullback along

(55) π0(Z(Ĝ)ΓF )→ π0(ZĜ(x))

from the representation of π0(ZĜ(x)) determined by the choice of a base point x ∈ C and
the equiviariant local system L on C. Let δP ∈ Z1(F,G) be a pure rational form of G
representing the class determined by χP under the Kottwitz isomorphism. Let πP be an
admissible representation ofGδP (F ) such that [πP , δP ] matches P under Proposition 2.6.2:

PerHλ(Vλ)simple
/iso → Πpure,λ(G/F )

P 7→ [πP , δP ].

3. Reduction to unramified parameters

Let G be an arbitrary connected reductive algebraic group over a p-adic field F .

3.1. Unramification. In this section we show that the study of PerĜ(Xλ) may be re-
duced to the study of PerĜλ(Xλnr) for a split connected reductive group Gλ and an
unramified infinitesimal parameter λnr : WF → LGλ. Moreover, we show how the tools
developed in [25] may be brought to bear on PerĜλ(Xλnr). The group Gλ that appears in
Theorem 3.1.1 is sometimes an endoscopic group for G , but not in general; nonetheless,
the principle of functoriality applies here through the inclusion of L-groups rλ : LGλ → LG.

Theorem 3.1.1. Let λ : WF → LG be an infinitesimal parameter.
(a) There is a connected reductive group Gλ, split over F , and an infinitesimal para-

meter λnr : WF → LGλ for Gλ, trivial on IF , and an inclusion of L-groups
rλ : LGλ → LG such that the following diagram commutes

WF
LG

WF
LGλ,

λ

λnr

rλ

where WF →WF is trivial on IF and Fr 7→ Fr (chosen in Section 1.1).
(b) By equivariant pullback, the inclusion of L-groups rλ : LGλ → LG defines an

equivalence
PerĜ(X̃λ)→ PerĜλ(Xλnr)

where X̃λ is defined in Section 2.5, (53).
(c) There is a sequence of exact functors

Rep(Aλ) PerĜ(Xλ) PerĜλ(Xλnr)
E 7→EXλ [dimXλ] (cλ)∗

(cλ)∗

enjoying the properties of Lemma 2.4.1, where Aλ is defined by (37).
(d) There is a connected complex reductive algebraic group Mλ, a co-character ι :

Gm →Mλ and an integer n such that

PerĜλ(Xλnr) ≡ PerMι
λ
(mλ,n),

where mλ,n is the weight-n space of Ad(ι) acting on mλ = LieMλ.

The proof of Theorem 3.1.1 will be given in Section 3.5.



BACKGROUND AND CONJECTURES 29

3.2. Elliptic and hyperbolic semisimple elements in L-groups. Recall that a
semisimple element x of a complex reductive group is H is called hyperbolic (resp. elliptic)
if for every torus D containing x and every rational character χ : D → Gm(C) of D, χ(x)
is a positive real number (resp. χ(x) has complex norm 1). An arbitrary semisimple
element can be uniquely decomposed as a commuting product of hyperbolic and elliptic
semisimple elements. An element commutes with x if and only if it commutes with its
hyperbolic and elliptic parts separately.

Recall that an element g ∈ LG is semisimple if Int(g) is a semisimple automorphism
of Ĝ. Then g = f o w ∈ LG is semisimple if and only if f ′ ∈ Ĝ is semisimple where
(f o w)N = f ′ o wN and wN acts trivially on Ĝ.

The hyperbolic and elliptic parts of a semisimple g = foFr ∈ LG are defined as follows.
Let N be as above, so (f o Fr)N = f ′ o FrN and FrN acts trivially on Ĝ. Then f ′ ∈ Ĝ
is semisimple. Let s′ ∈ Ĝ be the hyperbolic part of f ′ and let t′ ∈ Ĝ be the elliptic part
of f ′. Let s be the unique hyperbolic element of Ĝ such that sN = s′. It is clear that s
is independent of N . Set t = s−1f . We call so 1 the hyperbolic part of f o Fr and to Fr
the elliptic part of f o w. Then Ad(s) ∈ Aut(ĝ) is the hyperbolic part of the semisimple
automorphism Ad(f o Fr) ∈ Aut(ĝ) and Ad(t o Fr) ∈ Aut(ĝ) is the elliptic part of the
semisimple automorphism Ad(f o Fr) ∈ Aut(ĝ). Moreover, Frs = t−1st, so

(so 1)(to Fr) = (to Fr)(so 1).

Lemma 3.2.1. Write λ(Fr) = fλ o Fr; let sλ o 1 be the hyperbolic part of λ(Fr) and let
tλ o Fr be the elliptic part of λ(Fr). Then sλ ∈ H0

λ and Kλ is normalised by fλ o Fr and
by tλ o Fr.

Proof. let I ′F be the kernel of ρ : ΓF → Aut(Ĝ) restricted to IF . Then I ′F is an
open subgroup of IF and I ′F is normalised by FrN in WF , with N as above. Set
I0
F = λ−1(1 o I ′F ) ⊆ I ′F . By continuity of λ, I0

F is an open subgroup of IF . Then
λ(FrN ) normalises λ(I0

F ). Since λ(FrN ) also normalises λ(IF ), we see λ(FrN ) acts on the
finite group λ(IF )/λ(I0

F ). In particular, replacing N by a larger integer if necessary, it
follows that λ(FrN ) acts on λ(IF )/λ(I0

F ) trivially.
Recall the notation λ(Fr) = fλ o Fr and λ(FrN ) = f ′ o FrN . We now show f ′ ∈

ZĜ(λ(IF )) = Kλ. For any ho w ∈ λ(IF ),

λ(FrN )(ho w)(λ(FrN ))−1 = ho ww′

for some w′ ∈ I0
F . Since λ(FrN ) = f ′ o FrN = (1 o FrN )(f ′ × 1), we get

FrNf ′(ho w)f ′−1Fr−N = ho ww′.

This implies

f ′hw(f ′−1) o w = Fr−N (ho ww′)FrN = ho Fr−Nww′FrN .

Therefore, f ′hw(f ′−1) = h and w = Fr−Nww′FrN . From the first equality, we can
conclude f ′(ho w)f ′−1 = ho w. Hence f ′ ∈ ZĜ(λ(IF )) = Kλ.

Since some power of f ′ will lie in ZĜ(λ(IF ))0 = K0
λ, replacing N by a larger integer if

necessary, we may conclude that f ′ actually belongs to ZĜ(λ(IF ))0 = K0
λ. In particular,

we can take both s′ and t′ in K0
λ.

Since λ(FrN ) = λ(Fr)−1λ(FrN )λ(Fr), we have

f ′ o FrN = (fλ o Fr)−1(f ′ o FrN )(fλ o Fr) =
(
(fλ o Fr)−1f ′(fλ o Fr)

)
o FrN .
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Thus, f ′ = λ(Fr)−1f ′λ(Fr). Since λ(Fr) normalises ZĜ(λ(IF ))0 = K0
λ, we have

f ′ = λ(Fr)−1f ′λ(Fr) = (λ(Fr)−1s′λ(Fr))(λ(Fr)−1t′λ(Fr)),

where, as above, s′ is the hyperbolic part of f ′ and t′ is the elliptic part of f ′. Since the
decomposition of a semisimple element of Ĝ into hyperbolic and elliptic parts is unique,
we have

s′ = λ(Fr)−1s′λ(Fr) and t′ = λ(Fr)−1t′λ(Fr).

In particular, it now follows that s′ ∈ ZĜ(λ)0 = H0
λ. Since sNλ = s′, it follows that

sλ ∈ ZĜ(λ)0 = H0
λ, also.

The Frobenius element Fr normalises IF , so λ(Fr) = fλ o Fr normalises λ(IF ) and
hence normalises Kλ as well. Since sλ ∈ H0

λ = ZĜ(λ)0 ⊆ ZĜ(λ(IF )) = K0
λ, it follows now

that sλ normalises Kλ; likewise, tλ × Fr normalises Kλ. �

3.3. Construction of the unramified parameter. Define

(56) Jλ :=ZĜ(λ(IF )) ∩ ZĜ(tλ o Fr) = ZKλ(tλ o Fr).

Lemma 3.2.1 shows that Jλ is a complex reductive algebraic group. It follows from
Section 3.2 that sλ ∈ J0

λ and t normalises J0
λ.

We now have the following complex reductive groups attached to λ ∈ R(LG):

Hλ ⊆ Jλ ⊆ Kλ ⊆ Ĝ.

Let Gλ be the split connected reductive algebraic group over F so that

(57) LGλ = J0
λ ×WF .

Define

(58) rλ : LGλ → LG by h× 1 7→ ho 1 and 1× Fr 7→ tλ o Fr.

Then rλ : LGλ → LG is a homomorphism of L-groups. Using Lemma 3.2.1, we define an
unramified (i.e., trivial on IF ) homomorphism

(59)
λnr : WF −→ LGλ

Fr 7→ sλ × Fr.

Lemma 3.3.1. Let λ : WF → LG be an infinitesimal parameter. Define λnr : WF → LGλ
as above. Then

Vλnr = Vλ and Hλnr = H0
λ.

Consequently,
PerHλnr

(Vλnr) = PerH0
λ
(Vλ).

Proof. Applying (40) to λnr : WF → LGλ gives

Hλnr = ZJ0
λ
(λnr) = ZJ0

λ
(sλ) = H0

λ.

Applying (41) to λnr : WF → LGλ gives

Kλnr = ZJ0
λ
(λnr|IF ) = J0

λ.

Applying (42) to λnr : WF → LGλ gives

Vλnr = Vλnr(
LGλ) = {x ∈ LieZĜλ(λnr|IF ) | Ad(λnr(Fr))x = qF x}.
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Since Ĝλ = J0
λ and λnr|IF = 1, and since Fr acts trivially on J0

λ in LGλ, we have

(60) Vλnr = {x ∈ jλ | Ad(sλ)x = qF x}.
Then Vλ = Vλnr because Ad(fλoFr)x = qx if and only if Ad(tλoFr)x = x and Ad(sλ)x =
qx. �

Lemma 3.3.1 tells us that the category PerH0
λ
(Vλ) determined by λ : WF → LG can

always be apprehended as the category for an unramified infinitesimal parameter λnr :
WF → LGλ. Note, however, that it is PerHλ(Vλ), not PerH0

λ
(Vλ) which is needed to study

Arthur packets of admissible representations of pure rational forms of G(F ); fortunately,
Lemma 2.4.1 describes the relation between these two categories.

Remark 3.3.2. Without defining G+
λ itself, let us set LG+

λ := Jλ ×WF and define λ+
nr :

WF → LG
+
λ by the composition of λnr and LGλ ↪→ LG

+
λ . Then (57) may also be used to

define r+
λ : LG

+
λ ↪→ LG and extends rλ. Arguing as in the proof of Lemma 3.3.1, it follows

that
Vλ+

nr
= Vλ and Hλ+

nr
= Hλ,

so
PerH

λ
+
nr

(Vλ+
nr

) = PerHλ(Vλ).

We pursue this perspective elsewhere.

3.4. Construction of the cocharacter. From Section 3.3, recall the definition of sλ ∈
Ĝ and the fact that sλ lies in the identity component of the subgroup Jλ ⊆ Ĝ. Decompose
the Lie algebra jλ of Jλ according to Ad(sλ)-eigenvalues:

jλ =
⊕
ν∈C∗

jλ(ν), jλ(ν) := {x ∈ jλ | Ad(sλ)(x) = νx}.

Following [25], define
j†λ :=

⊕
r∈Z

jλ(qrF ).

Lemma 3.4.1. There is a connected reductive algebraic subgroup Mλ of J0
λ and a cochar-

acter ι : Gm −→Mλ such that

M ι
λ = Hλnr and mλ = j†λ,

where mλ := LieMλ and an integer n so that, for every r ∈ Z,
mλ,rn = jλ(qrF ),

where mλ,rn := {x ∈ m | Ad(ι(t))x = trnx, ∀t ∈ Gm}. In particular,

Vλ = jλ(qF ) = mλ,n.

Proof. Decompose the Lie algebra jλ of Jλ according to Ad(sλ)-eigenvalues:

jλ =
⊕
ν∈C∗

jλ(ν).

Fix a maximal torus S of J0
λ such that sλ ∈ S and denote the set of roots determined by

this choice by R(S, J0
λ). For α ∈ R(S, J0

λ), denote the root space in jλ by uα. Then

(61) jλ(ν) =
⊕

α∈R(S,J0
λ)

α(sλ)=ν

uα.
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Let 〈·, ·〉 be the natural pairing between X∗(S) and X∗(S). First, let us consider all
α ∈ R(S, J0

λ) such that α(sλ) are integral powers of q. For these roots we can choose
χ ∈ X∗(S)⊗Z Q so that 〈α, χ〉 = r if α(sλ) = qr for some integer r. Let n be an integer
such that nχ ∈ X∗(S), and we set t = (nχ)(ζq1/n) ∈ S, where ζ is a primitive n-th root
of unity. Now for α ∈ R(S, J0

λ) such that α(sλ) = qr, we have

α(t) = α((nχ)(ζq1/n)) = α(χ(ζq1/n))n = (ζq1/n)rn = qr = α(sλ).

Next, consider those α ∈ R(S, J0
λ) such that α(sλ) are not integral powers of q. We

have two cases: if 〈α, χ〉 ∈ Z, then α(t) is an integral power of q; if 〈α, χ〉 /∈ Z, then
α(t) ∈ ζlR>0 for some 0 < l < n. Since sλ is hyperbolic, α(sλ) ∈ R>0 for all α ∈ R(S, J0

λ),
so α(sλ) 6= α(t) in either case. Therefore, we can define Mλ = ZJλ(sλt

−1)0and take
ι = nχ. �

3.5. Proof of Theorem 3.1.1. The essential facts about the groups Kλ, Hλ, Jλ and
Mλ are summarised in the following diagram.

Ĝ

Kλ :=ZĜ(λ(IF ))

M0
λ = Mλ J0

λ Jλ :=ZKλ(tλ o Fr) π0(Jλ)

M ι
λ H0

λ Hλ = ZJλ(sλ) π0(Hλ)

From the definitions of Gλ (57), λnr (59) and rλ : LGλ → LG (58), we have

(62) rλ(λnr(Fr)) = rλ(sλ × Fr) = (sλ o 1)(tλ o Fr) = fλ o Fr = λ(Fr).

Now, Theorem 3.1.1 follows from a direct application of Lemmas 2.4.1 and 3.4.1, as in
the diagram below.

Rep(Aλ) PerĜ(Xλ) PerĜλ(Xλnr)

Rep(π0(Hλ)) PerHλ(Vλ) PerH0
λ
(Vλ)

PerMι
λ
(mλ,n)

equiv

(cλ)∗

(cλ)∗

equiv

forget

3.6. Further properties of Vogan varieties. From the proof of Theorem 3.1.1 we get
a very concrete description of Vλ as a variety, for any λ ∈ R(LG), following (61):

Vλ ∼= Ad, for d = |{α ∈ R(S, J0
λ) | α(sλ) = qF }|.

Proposition 3.6.1. The space Vλ is stratified into Hλ-orbits, of which there are finitely
many, with a unique open orbit.

Proof. With Proposition 3.4.1 in hand, this follows immediately from [25, Proposition 3.5]
and [25, Section 3.6]. �
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A different proof is given in [32, Proposition 4.5].

Proposition 3.6.2. Every Hλ-orbit in Vλ is a conical variety.

Proof. By Proposition 3.4.1, it suffices to prove that every M ι
λ-orbit C in mλ,n is a

conical variety. Arguing as in the proof of [17, Lemma 2.1], for x ∈ C, we can find a
homomorphism ϕ : SL(2,C)→Mλ such that for t ∈ C∗

ϕ

(
t

t−1

)
∈M ι

λ and dϕ
(

0 1
0 0

)
= x.

Then

Ad

(
ϕ

(
t 0
0 t−1

))
(x) = dϕ

(
0 t2

0 0

)
= t2x,

so t2x ∈ C. �

4. Arthur parameters and the conormal bundle

In this section we see how Arthur parameters may be apprehended as certain regular
conormal vectors ξ ∈ T ∗C,x(Vλ)reg.

Let G is an arbitrary connected reductive linear algebraic group over the p-adic field
F .

4.1. Regular conormal vectors. For λ ∈ R(LG) and every Hλ-orbit C ⊆ Vλ, let
T ∗C(Vλ)reg ⊂ T ∗C(Vλ) be the subvariety defined by

(63) T ∗C(Vλ)reg :=T ∗C(Vλ) \
⋃

C(C1

T ∗C1
(Vλ).

Also define
T ∗Hλ(Vλ)reg :=

⋃
C

T ∗C(Vλ)reg,

the union taken over allHλ-orbits C in Vλ. Then T ∗Hλ(Vλ)reg is open subvariety of T ∗Hλ(Vλ)
and each T ∗C(Vλ)reg is a component in T ∗Hλ(Vλ)reg.

We may compose (15) and (38):

(64) Q(LG) → P (LG) → R(LG)
ψ 7→ φψ 7→ λφψ .

To simplify notation, we set λψ :=λφψ . We will refer to λψ as the infinitesimal parameter
of ψ. Using Proposition 2.2.2, define

xψ :=xφψ ∈ Vλψ
and let Cψ ⊆ Vλψ be the Hλ-orbit of xψ ∈ Vλψ .

Theorem 4.1.1. Let ψ : LF×SL(2,C)→ LG be an Arthur parameter. Let λψ : WF → LG
be its infinitesimal parameter. Then ψ determines a regular conormal vector

ξψ ∈ T ∗Cψ,xψ (Vλ)reg,

with the property that the Hλ-orbit of (xψ, ξψ) in T ∗Cψ (Vλ) is open and dense in T ∗Cψ (Vλ)reg.
The equivariant fundamental group of this orbit is Aψ.

The proof of Theorem 4.1.1 will be given in Section 4.8.
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4.2. Cotangent space to the Vogan variety. Consider

(65) tVλ := {x ∈ kλ | Ad(λ(Fr))(x) = q−1
F x},

which clearly comes equipped with an action of Hλ just as Vλ comes equipped with an
action of Hλ. Compare tVλ with Vλ defined in (42). In fact, the variety tVλ has already
appeared: see the proof of Proposition 2.2.2. We note

tVλ = kλ(q−1
F ) = jλ(q−1

F ) = mλ,−n,

where k and mn are defined in Sections 2.2 and 3.4, respectively.
For φ : LF → LG, we can define

(66)
Pλ(LG) −→ tVλ,

φ 7→ xφ :=dϕ
(

0 0
1 0

)
,

where ϕ :=φ◦|SL(2,C) : SL(2,C) → Ĝ. This map satisfies all the properties of the map
Pλ(LG) → Vλ(LG) in Proposition 2.2.2, from which it follows that there is a canonical
bijection between Hλ-orbits in Vλ and Hλ-orbits in tVλ, so that the following diagram
commutes.

Pλ(LG)/Hλ Pλ(LG)/Hλ

Vλ/Hλ
tVλ/Hλ

∼=

Proposition 4.2.1. There is an Hλ-equivariant isomorphism

T ∗(Vλ) ' Vλ × tVλ,

and consequently,
T ∗(Vλ) ∼= jλ(qF )⊕ jλ(q−1

F ) = mλ,n ⊕mλ,−n.

Proof. As Vλ is an affine Hλ-space there is a standard Hλ-equivariant isomorphism
T ∗(Vλ) ' Vλ × V ∗λ , so it suffices to exhibit an Hλ-equivariant isomorphism

V ∗λ
∼= tVλ.

To do this, let Jλ be the reductive group defined in (56) and write jλ for Lie Jλ, as in
Section 3.3. From Proposition 3.4.1, we have

Vλ = jλ(qF ) and hλ = jλ(1) and tVλ = jλ(q−1
F ).

As Jλ is reductive, its Lie algebra decomposes into a direct sum of its centre and a
semisimple Lie algebra, jλ ' Z(jλ) ⊕ [jλ, jλ]. We choose any non-degenerate symmetric
bilinear form on Z(jλ) and extend to a bilinear form on jλ using the Cartan-Killing
form, while insisting that the direct sum decomposition above is orthogonal, that is, the
components in the direct sum are pairwise perpendicular. The result is a non-degenerate,
symmetric, Jλ-invariant bilinear pairing

( | ) : jλ × jλ → A1.

Now, if jλ(ν) and jλ(ν′) are two Ad(sλ)-weight spaces, then the invariance of the pairing
implies that ( jλ(ν) | jλ(ν′) ) 6= 0 if and only if ν′ = ν−1. Since the pairing is non-degenerate
this gives an ZJλ(sλ) = Hλ-equivariant isomorphism

V ∗λ = jλ(qF )∗ ∼= jλ(q−1
F ) = tVλ.
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A similar argument using the cocharacter ι : Gm →Mλ and the graded Lie algebra

mλ = · · · ⊕mλ,2n ⊕ (mλ,n ⊕mλ,0 ⊕mλ,−n)⊕mλ,−2n ⊕ · · ·
= · · · ⊕mλ,2n ⊕ (Vλ ⊕ hλ ⊕ tVλ)⊕mλ,−2n ⊕ · · ·

produces an M ι
λ = H0

λ-equivariant isomorphism

(67) V ∗λ = m∗λ,n
∼= mλ,−n = tVλ.

This allows us to view T ∗(Vλ) as a subspace of mλ, even with Hλ-action, and gives
Hλ-equivariant isomorphisms

T ∗(Vλ) ∼= jλ(qF )⊕ jλ(q−1
F ) = mλ,n ⊕mλ,−n,

as desired. �

4.3. Conormal bundle to the Vogan variety.

Proposition 4.3.1. Let C ⊆ Vλ be an Hλ-orbit in Vλ; then

T ∗C(Vλ) = {(x, ξ) ∈ T ∗(Vλ) | x ∈ C, [x, ξ] = 0} ,
where [ , ] denotes the Lie bracket on jλ and where we use Proposition 4.2.1 to identify
T ∗(Vλ) ∼= jλ(qF )⊕ jλ(q−1

F ). Consequently,

T ∗Hλ(Vλ) = {(x, ξ) ∈ T ∗(Vλ) | [x, ξ] = 0} .

Proof. The map hλ → Tx(C) given by X 7→ [x,X] is a surjection. So for any ξ ∈ jλ(q−1
F ),

we have ξ ∈ T ∗C,x(Vλ) if and only if 0 = ( ξ | [x,X] ) = ( [ξ, x] |X ) for all X ∈ hλ. As we
saw in the proof of Proposition 4.2.1, the pairing restricts non-degenerately to hλ, so this
is also equivalent to require [x, ξ] = 0. �

Corollary 4.3.2. T ∗Hλ(Vλ) ↪→ ( · | · )−1(0).

Proof. If (x, ξ) ∈ Vλ × V ∗λ lies in T ∗Hλ(Vλ) then [x, ξ] = 0. Choose an sl2-triple (x, y, z)

such that y ∈ tVλ, and z ∈ hλ. Then,

(x | ξ ) =
1

2
( [z, x] | ξ ) =

1

2
( z | [x, ξ] ) = 0. �

4.4. Orbit duality. Using the Hλ-equivariant isomorphism V ∗λ → tVλ of Proposi-
tion 4.2.1, we define an Hλ-equivariant isomorphism

(68)
T ∗(Vλ)→ T ∗( tVλ)

(x, ξ) 7→ (ξ, x),

which we refer to as transposition. Just as everyHλ-orbit C ⊂ Vλ determines the conormal
bundle

T ∗C(Vλ) =
{

(x, ξ) ∈ Vλ × tVλ | x ∈ C, [x, ξ] = 0
}
,

every Hλ-orbit B ⊂ tVλ determines a conormal bundle in T ∗( tVλ):

T ∗B( tVλ) =
{

(ξ, x) ∈ tVλ × Vλ | ξ ∈ B, [ξ, x] = 0
}
.

Lemma 4.4.1. For every Hλ-orbit C in Vλ there is a unique Hλ-orbit C∗ in tVλ so that
transposition (68) restricts to an isomorphism

T ∗C(Vλ) ∼= T ∗C∗(
tVλ).

The rule C 7→ C∗ is a bijection from Hλ-orbits in Vλ to Hλ-orbits in tVλ.
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Proof. This is a well-known result. See [30, Corollary 2] for the case whenHλ is connected.
The result extends easily to the case when Hλ is not connected. �

The orbit C∗ is called the dual orbit of C ⊆ Vλ; likewise, the dual orbit of B ⊆ tVλ is
denoted by B∗.

Lemma 4.4.2. If (x, ξ) ∈ T ∗C(Vλ)reg then ξ ∈ C∗, so

T ∗C(Vλ)reg ⊆ {(x, ξ) ∈ C × C∗ | [x, ξ] = 0}.

Proof. Since (x, ξ) ∈ T ∗C(Vλ)reg, then (x, ξ) is not contained in any other closures of
conormal bundles except for that of C. On the other hand, (ξ, x) ∈ T ∗Bξ(V

t
λ) where Bξ is

the Hλ -orbit of ξ in tVλ„ so T ∗C(Vλ) ∼= T ∗Bξ(V
t
λ). Hence Bξ = C∗, i.e., ξ ∈ C∗. �

Proposition 4.4.3. If (x, ξ) ∈ T ∗C(Vλ) then (x, ξ) ∈ C×C∗ and [x, ξ] = 0 and (x | ξ ) = 0.

Proof. Combine Lemma 4.3.2 with 4.4.2. �

We remark that (x, ξ) ∈ C × C∗ implies neither [x, ξ] = 0 nor (x | ξ ) = 0 in general;
several examples to illustrate this fact appear in [10].

We denote the canonical bijection between Hλ-orbits in Vλ and Hλ-orbits in tVλ, and
vice versa, by

C 7→ tC and B 7→ Bt.

Note the equivariant fundamental groups (54) are preserved:

AC ∼= A tC and AB ∼= ABt .

For C ⊆ Vλ (resp, B ⊆ tVλ) we refer to tC (resp. Bt) as the transposed orbit of C (resp.
B). Composing orbit transposition with orbit duality defines an involution

(69) C 7→ Ĉ := tC∗

on the set of Hλ-orbits in Vλ.

4.5. Strongly regular conormal vectors. We say that (x, ξ) ∈ T ∗C(Vλ) is strongly
regular if its Hλ-orbit is open and dense in T ∗C(Vλ). We write T ∗C(Vλ)sreg for the strongly
regular part of T ∗C(Vλ)reg. We set

T ∗Hλ(Vλ)sreg :=
⋃
C

T ∗C(Vλ)sreg.

Proposition 4.5.1.
T ∗Hλ(Vλ)sreg ⊆ T ∗Hλ(Vλ)reg

and if (x, ξ) ∈ T ∗C(Vλ) is strongly regular then its Hλ-orbit is T ∗C(Vλ)sreg.

Proof. First we show T ∗C(Vλ)sreg ⊆ T ∗C(Vλ)reg. From the definition of T ∗C(Vλ)reg (63) it is
clear that it is open and dense in T ∗C(Vλ). Fix (x, ξ) ∈ T ∗C(Vλ) and let OHλ(x, ξ) denote
the Hλ-orbit of (x, ξ). If (x, ξ) is not regular, then (x, ξ) ∈ T ∗C1

(Vλ) for some C1 6= C with
C ⊂ C̄1, so all of OHλ(x, ξ) and its closure also does not intersect T ∗C(Vλ)reg. Suppose,
for a contradiction, that (x, ξ) is strongly regular also. Then the closure of OHλ(x, ξ) is
T ∗C(Vλ), which certainly does intersect T ∗C(Vλ)reg. So, if (x, ξ) is not regular, then it is
not strongly regular.
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Now suppose T ∗C,x(Vλ)sreg is not empty, then it is enough to show T ∗C,x(Vλ)sreg forms
a single ZHλ(x)-orbit. Note

T ∗C,x(Vλ)sreg = {ξ ∈ T ∗C,x(Vλ) | [Lie(ZHλ(x)), ξ] = T ∗C,x(Vλ)}
which is open, dense and connected in T ∗C,x(Vλ). Moreover, ZHλ(x)-orbits in T ∗C,x(Vλ)sreg
are open, and hence they are also closed in T ∗C,x(Vλ)sreg. By the connectedness of
T ∗C,x(Vλ)sreg, we can conclude it is a single ZHλ(x)-orbit. �

The equivariant fundamental group of T ∗C(Vλ)sreg will be denoted by AT∗C(Vλ)sreg . Since
Hλ acts transitively on T ∗C(Vλ)sreg,

(70) AT∗C(Vλ)sreg
∼= π0(ZHλ(x, ξ)) = ZHλ(x, ξ)/ZHλ(x, ξ)0,

for every (x, ξ) ∈ T ∗C(Vλ)sreg. Consequently, each (x, ξ) ∈ T ∗C(Vλ)sreg determines an
equivalence

LocHλ(T ∗C(Vλ)sreg)→ Rep(AT∗C(Vλ)sreg).

4.6. From Arthur parameters to strongly regular conormal vectors. For ψ ∈
Q(LG), define

ψ0 :=ψ0|SL(2,C)×SL(2,C) : SL(2,C)× SL(2,C)→ Ĝ

and

ψ1 :=ψ0|SL(2,C)×1 : SL(2,C)→ Ĝ and ψ2 :=ψ0|1×SL(2,C) : SL(2,C)→ Ĝ.

Set

(71) xψ := dψ1

(
0 1
0 0

)
∈ ĝ yψ := dψ2

(
0 1
0 0

)
∈ ĝ and ξψ := dψ2

(
0 0
1 0

)
∈ ĝ.

It follows easily from these definitions that

xψ, yψ ∈ Vλψ and ξψ ∈ tVλψ

and
(xψ, ξψ) ∈ T ∗Cψ (Vλ).

Proposition 4.6.1. For any ψ ∈ Q(LG),

(xψ, ξψ) ∈ T ∗Hλψ (Vλψ )sreg.

Proof. Set λ = λψ. Define fλ, sλ, tλ ∈ Ĝ as in Section 3.3. Then

sλ o 1 = ψ(1, dFr, dFr) and tλ × Fr = ψ(Fr, 1, 1).

Recall λnr : WF → J0
λ from Section 3.3. By Proposition 3.4.1,

Vλ = Vλnr = jλ,2.

Since the image of ψ0 : SL(2,C)× SL(2,C)→ Ĝ lies in J0
λ, we may define

ψnr : WF × SL(2,C)× SL(2,C)→ J0
λ

such that its restriction to WF is trivial and its restriction to SL(2,C) × SL(2,C) is ψ0.
Let

ιψ : Gm −→ J0
λ

be the cocharacter obtained by composing

Gm →WF × SL(2,C)× SL(2,C), z 7→ 1×
(
z

z−1

)
×
(
z

z−1

)
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with of ψnr : LF × SL(2,C)→ J0
λ. Then

ιψ(q
1/2
F ) = λnr(Fr).

Recall Hλ ⊆ Jλ ⊆ Kλ ⊆ Ĝ from Sections 2.2 and 3.3. For the rest of the proof we
set J = Jλ. We must show that the orbit OZHλ (xψ)(ξψ) is open and dense in T ∗Cψ,xψ (Vλ),
where Cψ = OHλ(xψ). With Lemma 3.6.1 in hand, it is enough to show the tangent
space to the orbit OZHλ (xψ)(ξψ) at ξψ is isomorphic to T ∗Cψ,xψ (Vλ); in other words, it is
enough to show

[LieZHλ(xψ), ξψ] = {ξ ∈ j−2 | [xψ, ξ] = 0}.
The adjoint action of SL(2,C)× SL(2,C) on j through ψnr gives two commuting repres-
entations of SL(2,C), which induce the weight decomposition

jn =
⊕
r+s=n

jr,s(72)

where r, s ∈ Z. Note Lie(Hλ)) = j0. So it is enough to show

[j0 ∩ Lie(ZĜ(xψ)), ξψ] = j−2 ∩ Lie(ZĜ(xψ)).(73)

For this we can consider the following diagram in case r + s = 0.

jr,s jr+2,s

jr,s−2 jr+2,s−2

ad(xψ)

ad(ξψ) ad(ξψ)

ad(xψ)

It is easy to see

LHS(73) =
⊕
r+s=0

ad(ξψ)
(

ker(ad(xψ)|jr,s)
)

RHS(73) =
⊕
r+s=0

ker(ad(xψ)|jr,s−2
)

By sl2-representation theory, ad(xψ) in the diagram are injective for r < 0 and surjective
for r > 0. So we only need to consider r > 0 and hence s 6 0. In this case, the two
instances of ad(ξψ) in the diagram above are surjective by sl2-representation theory again.

It is obvious that LHS(73) ⊆ RHS(73). For the other direction, let us choose x ∈ jr,s−2

such that [xψ, x] = 0. So x is primitive for the action of the first sl2, and it generates an
irreducible representation V . Let x̃ be a preimage of x in gr,s andW be the representation
of the first sl2 generated by x̃. Then ad(ξψ) induces a morphism of sl2-representations
from W to V . By the semisimplicity of W , this morphism admits a splitting and we can
denote the image of x by ξ. It is clear that ξ ∈ jr,s and [xψ, ξ] = 0. This finishes the
proof. �

Corollary 4.6.2. Let ψ : WF × SL(2,C)× SL(2,C)→ LG be an Arthur parameter with
infinitesimal parameter λ. If Cψ ⊆ Vλ is the Hλ-orbit of xψ, then

Ĉψ = Cψ̂,

where Ĉψ = tC∗ψ (69) and where the map ψ̂ : WF × SL(2,C)× SL(2,C)→ LG is defined
by ψ̂(w, x, y) :=ψ(w, y, x).



BACKGROUND AND CONJECTURES 39

4.7. Arthur component groups are equivariant fundamental groups. Recall the
definition of T ∗Cψ (Vλ)sreg from Section 4.5 as well as the notation AT∗Cψ (Vλ)sreg for its
equivariant fundamental group. Also recall Aψ :=π0(ZĜ(ψ)) from Section 1.4.

Proposition 4.7.1.
AT∗Cψ (Vλ)sreg = Aψ.

Proof. We use the notation from the proof of Proposition 4.6.1. It is clear that ZĜ(ψ) =
ZJ(ψnr) = ZJ(ψ1) ∩ ZJ(ψ2). By Lemma 3.3.1, we also have

ZĜ(λ)(xψ,ξψ) = ZJ(λnr) ∩ ZJ(xψ) ∩ ZJ(ξψ).

First we would like to compute the right hand side of the above identity. Note

ZJ(λnr) ∩ ZJ(xψ) = (ZJ(ψ1) ∩ ZJ(λnr)) · U

where U is the unipotent radical of the left hand side. Moreover,

ZJ(ψ1) ∩ ZJ(λnr) = ZJ(ψ1) ∩ ZJ(tψ)

and
Lie(U) ⊆

⊕
r+s=0
r>0

jr,s

in the notation of (72). For u ∈ U , we have

Ad(u)(ξψ) ∈ ξψ +
⊕

r+s=−2
s<−2

jr,s.

Suppose Ad(lu) stabilises ξψ for l ∈ ZJ(ψ1) ∩ ZJ(tψ) and u ∈ U . Since Ad(l) preserves
jr,s, we have

ξψ = Ad(lu)(ξψ) ∈ Ad(l)(ξψ) +
⊕

r+s=−2
s<−2

jr,s

Note ξψ ∈ j0,−2. It follows ξψ = Ad(l)(ξψ). Hence ξψ = Ad(u)(ξψ). As a result,

ZJ(λnr) ∩ ZJ(xψ) ∩ ZJ(ξψ) = (ZJ(ψ1) ∩ ZJ(tψ) ∩ ZJ(ξψ)) · (U ∩ ZJ(ξψ)).

Since U ∩ ZJ(ξψ) is connected, we only need to show

ZJ(ψ1) ∩ ZJ(tψ) ∩ ZJ(ξψ) = ZJ(ψ1) ∩ ZJ(ψ2).

Take any g ∈ ZJ(ψ1) ∩ ZJ(tψ) ∩ ZJ(ξψ), it suffices to show Ad(g) stabilises yψ. Note

[yψ, ξψ] = dψ2(ln(|Fr|)),

and

[Ad(g)(yψ), ξψ] = [Ad(g)(yψ),Ad(g)ξψ] = Ad(g)(dψ2(ln(|Fr|))) = dψ2(ln(|Fr|))

Since [·, ξψ] is injective on j0,2 and Ad(g)(yψ) ∈ j0,2, it is necessary that Ad(g)(yψ) = yψ.
This finishes the proof. �

4.8. Proof of Theorem 4.1.1. Theorem 4.1.1 is now a direct consequence of Proposi-
tions 4.5.1, 4.6.1 and 4.7.1.
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4.9. Equivariant Local systems. We close Section 4 with a practical tool for under-
standing local systems on strata C ⊆ Vλ and on T ∗C(Vλ)sreg and on C∗ ⊆ tVλ. Pick a base
point (x, ξ) ∈ T ∗C(Vλ)sreg. Recall T ∗C(Vλ)reg by Lemma 4.4.2 and T ∗C(Vλ)sreg ⊆ T ∗C(Vλ)reg
by Proposition 4.5.1. The projections

C T ∗C(Vλ)sreg C∗

induce homomorphisms of fundamental groups:

AC AT∗C(Vλ)sreg AC∗

ZHλ(x)/ZHλ(x)0 ZHλ(x, ξ)/ZHλ(x, ξ)0 ZHλ(ξ)/ZHλ(ξ)0.

The horizontal homomorphisms are surjective by an application of [1, Lemma 24.6]. This
can be used to enumerate all the simple local systems on Hλ-orbits in Vλ and T ∗Hλ(Vλ)sreg
and tVλ.

5. Vanishing cycles of perverse sheaves on Vogan’s moduli space

We now turn to a study of the vanishing cycles of the equivariant perverse sheaves on
Vλ with respect to integral models determined by regular covectors (x, ξ) ∈ T ∗Hλ(Vλ)reg.
In this section, is G is an arbitrary connected reductive algebraic group over a p-adic field
F .

Although we will use [14, Exposés XIII, XIV] freely, we begin by recalling a few essential
facts and setting some notation. Let R :=C[[t]] and K :=C((t)), the fraction field of R.
Set S = Spec(R) and η = Spec(K) and s = Spec(C). Observe that S is a trait with generic
fibre η and special fibre s. Because S is an equal characteristic trait the morphism s→ S
admits canonical section, corresponding to C→ C[[t]].

η S s
jη

is

For any s-scheme Z, we will use the notation ZS :=Z ×s S. Since S → s is flat, the
functor Z 7→ ZS is exact from s-schemes to S-schemes.

Let η̄ be a geometric point of S localised at η; thus, η̄ is a morphism Spec(K̄)→ η → S,
where K̄ is a separable closure of K. Then Gal(η̄/η) ∼= Ẑ. Let R̄ be the integral closure
of R in K̄; then R̄ has residue field s. Set S̄ = Spec(R̄). Then for any morphism X → S
we have the cartesian diagram

Xη̄ X̄ Xs̄

Xη X Xs

η̄ S̄ s̄

η S s

bXη

jXη̄

bX

iXs̄

jXη iXs

jη̄

bη bS

is̄

bs

jη is



BACKGROUND AND CONJECTURES 41

From [14, Exposé XIII] we recall the nearby cycles functor RΨXη : D(Xη)→ D(Xs ×s η);
in particular, we recall that, for any F ∈ D(Xη), the object RΨXηF in D(Xs ×s η) is the
sheaf

RΨXη̄F := (iXη̄ )∗(jXη̄ )∗(bXη )∗F
on Xs̄ equipped with an action of Gal(η̄/η), called the action of inertia, obtained by
transport of structure from the canonical action of Gal(η̄/η) on (bXη )∗F . From [14,
Exposé XIII] we also recall the functor RΨX : D(X) → D(Xs ×s S); in particular, recall
that when followed by D(Xs ×s S) → D(Xη̄), this is given by RΨXη̄ (jXη )∗. Finally,
the vanishing cycles functor RΦX : D(X) → D(Xs ×s S) is defined by the following
distinguished triangle in D(Xs ×s S).

(74)
RΦX

i∗Xs RΨX

(1)

5.1. Functor of vanishing cycles. Let ( | ) : T ∗(Vλ) → A1
C be the s-morphism ob-

tained by restriction from the non-degenerate, symmetric Jλ-invariant bilinear form of
Section 4.2. Let f : T ∗(Vλ) → S be the unique s-morphism so that ( | ) : T ∗(Vλ) → A1

C
is the composition of f : T ∗(Vλ) → S and S → A1

C. Using f , we view T ∗(Vλ) as an
S-scheme; as such, its ring of global sections is R[T ∗(Vλ)] = k[T ∗(Vλ)] ⊗k R/(f − t) =
C[[t]][x, ξ]/(f(x, ξ)− t).

For any Hλ-orbit B ⊆ tVλ, consider the locally closed subvariety Vλ × B ⊆ T ∗(Vλ)
and let fB : Vλ × B → S be the restriction of f : T ∗(Vλ) → S to Vλ × B. Using fB , we
may view Vλ ×B as an S-scheme: let

fB : XB → S

be the S-scheme with structure sheaf

OXB = R⊗C OVλ ⊗C OB/(f − t).

Then the special fibre of XB is the s-scheme

XB,s = f−1
B (s) = f−1

B (0) = {(x, ξ) ∈ Vλ ×B | (x | ξ ) = 0}

and the generic fibre of XB is the K-scheme obtained by base change from the generic
fibre of ( | ) : T ∗(Vλ)→ A1

C:

XB,η = f−1
B (η) = {(x, ξ) ∈ Vλ ×B | (x | ξ ) 6= 0} ×s η.

In this way, fB : XB → S defines

(75) RΦfB :=RΦXB,η : D(f−1
B (η))→ D(f−1

B (0)×s S).

and

(76) RΦXB : D(XB)→ D(f−1
B (0)×s S).

Now, as an s-scheme, Vλ×B comes equipped with an Hλ-action. Applying base change
along S → s gives an action of Hλ ×s S on (Vλ × B)S . Because fB is Hλ-invariant, this
defines an action of Hλ ×s S on {(x, ξ, t) ∈ (Vλ ×B)S | f(x, ξ) = t}. But this is precisely
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Vλ × B as an S-scheme, via fB : XB → S. So, Hλ ×s S acts on XB in the category of
S-schemes and we have the exact functor

(77) DHλ(Vλ ×B)→ DHλ×sS(XB).

See [9, Section 2] for the equivariant derived category DH(X). Combining this with the
vanishing cycles functors above defines an exact functor

(78) RΦXB : DHλ×sS(Vλ ×B)→ DHλ(f−1
B (0)×s S).

Finally we come to the main definition for Section 5: For any Hλ-orbit C ⊆ Vλ, let

(79) EvC : DHλ(Vλ)→ DHλ(T ∗C(Vλ)reg ×s η)

be the functor defined by the diagram

DHλ(Vλ) DHλ(T ∗C(Vλ)reg ×s S)

DHλ(Vλ × C∗) DHλ×sS(XC∗) DHλ(f−1
C∗ (0)×s S),

· �(Q̄`)C∗

EvC

base change

RΦXC∗

restriction

where:

(1) · �(Q̄`)C∗ : DHλ(Vλ)→ DHλ(Vλ×C∗) is pullback along the projection Vλ×C∗ →
Vλ;

(2) DHλ(Vλ × C∗))→ DHλ×sS(XC∗) is (77) in the case B = C∗;
(3) RΦXC∗ [−1] : DHλ×sS(XC∗)→ DHλ(f−1

C∗ (0)×s S) is (76) in the case B = C∗;
(4) DHλ(f−1

C∗ (0) ×s S) → DHλ(T ∗C(Vλ)reg ×s S), is obtained by pullback along the
inclusion T ∗C(Vλ)reg ↪→ f−1

C∗ (0), using Proposition 4.4.3.

When we wish to ignore the action of inertia, we write

(80) EvC,η̄ : DHλ(Vλ)→ DHλ(T ∗C(Vλ)reg)

for EvC followed by the forgetful functor DHλ(T ∗C(Vλ)reg ×s S)→ DHλ(T ∗C(Vλ)reg).
The main properties of EvC are given in Theorem 5.3.1.
We has used notation EvC to make oblique reference to [8, Notation 1.14], where one

finds a sheaf on T ∗Hλ(Vλ)reg with the same stalks, after shift, as our EvC . That sheaf is
described in [8, Proposition 1.15] and [8, Remarque 1.13]. From [8, Théorème 1.9] we also
see that the sheaf in [8, Notation 1.14] is produced by a functor. Both of these results rely
on [8, Théorème 1.9], which is attributed to [20, Théorème 3.2.5]. Sadly, [20, Théorème
3.2.5] does not exist in the published version of the original notes, and we have not been
able to procure the original notes, so we have been obliged to rebuild this result – as far
as we need it – in Theorem 5.3.1.

5.2. Proper base change.

Lemma 5.2.1. Suppose π : W → Vλ is proper with fibres of dimension n. Suppose Hλ

acts on W and π : W → Vλ is equivariant. Then

EvC π!E = (π′′s )!

(
(RΦgC∗ (E � (Q̄`)C∗))|(W×C∗)π-reg

)
,
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where π′ :=π × idC∗ , π′s is its restriction to special fibres, gC∗ := fC∗ ◦ π′, and π′′s and
(W × C∗)π-reg are defined by the cartesian diagrams below.

W W × C∗ (gC∗)
−1(0) (W × C∗)π-reg

Vλ Vλ × C∗ f−1
C∗ (0) T ∗C(Vλ)reg

S s

π

p′C∗

π′
gC∗ π′s π′′s

pC∗

fC∗

Proof. Suppose E ∈ DHλ(W ). Then π!E ∈ DHλ(Vλ). Let pC∗ : Vλ × C∗ → Vλ be
projection. Then, by repeated application of proper base change,

EvC π!E = (RΦfC∗p
∗
C∗π!E)|T∗C(Vλ)reg

= (RΦfC∗ (π′)!(p
′
C∗)
∗E)|T∗C(Vλ)reg

= ((π′s)!RΦgC∗ (p′C∗)
∗E)|T∗C(Vλ)reg

= (π′′s )!

(
(RΦgC∗ (E � (Q̄`)C∗))|(W×C∗)π-reg

)
. �

5.3. Main properties of vanishing cycles. Using the s-morphism S → A1
C corres-

ponding to C[t] ↪→ C[[t]], every S-scheme is a scheme over A1
C. Using this, we will

consider schemes over S as schemes over A1
C, also.

η S s

A1,×
C A1

C 0

For any ξ0 ∈ tVλ, define fξ0 : Vλ → S by fξ0(x) := f(x, ξ0). This allows us to view Vλ
as an S-scheme; when we wish to emphasise this perspective, we denote this scheme by
Xξ0 , with structure sheaf

OXξ0 = R⊗C OVλ/(fξ0 − t).
Thus, the special fibre of Xξ0 → S is

Xξ0,s = f−1
ξ0

(0) = (− | ξ0 )−1(0) = {x ∈ Vλ | (x | ξ0 ) = 0}

and the generic fibre of Xξ0 is the base change of the generic fibre of (− | ξ0 ):

Xξ0,η = f−1
ξ0

(η) = {x ∈ Vλ | (x | ξ0 ) 6= 0} ×s η.

Using this, we define

RΦfξ0 : DHλ(Vλ)→ DZHλ (ξ0)(f
−1
ξ (0)×s η)

by

DHλ(Vλ) DZHλ (ξ0)(f
−1
ξ (0)×s η)

DZHλ (ξ0)(Vλ) DZHλ (ξ0)×sS(Xξ0).

forget

RΦfξ0

base change

RΦXξ0
[−1]

We are now ready to state the main properties of EvC .
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Theorem 5.3.1. Let C ⊆ Vλ be an Hλ-orbit.

(a) The functor

EvC,η̄ : DHλ(Vλ)→ DHλ(T ∗C(Vλ)reg)

is exact.
(b) If P ∈ PerHλ(Vλ) then RΦfC∗ [−1]

(
P � (Q̄`)C∗ [dC∗ ]

)
is an equivariant perverse

sheaf on f−1
C∗ (0) and EvC,η̄ P[−1 + dimC∗] is its restriction to T ∗C(Vλ)reg.

(c) If P ∈ PerHλ(Vλ) then EvC,η̄ P is cohomologically concentrated in one degree.
(d) If P ∈ PerHλ(Vλ) then

EvC P = 0 unless C ⊆ suppP.

(e) For every F ∈ DHλ(Vλ) and every (x0, ξ0) ∈ T ∗C(Vλ)reg, there is a canonical
isomorphism

(EvC,η̄ F)(x0,ξ0)
∼= (RΦfξ0F)x0 .

(f) If P ∈ PerHλ(Vλ) then EvC,η̄ P is an Hλ-equivariant local system concentrated in
one degree.

(g) For every local system L on C,

EvC,η̄ IC(C,L) =
(
L[dimC]� (Q̄`)C∗

)
|T∗C(Vλ)reg .

Theorem 5.3.1 will be proved in Section 5.5.
Using Theorem 5.3.1, let

(81) Ev0
C : PerHλ(Vλ)→ LocHλ(T ∗C(Vλ)reg ×s η)

be the exact functor so that

EvC = Ev0
C [dimVλ].

Recall that dimT ∗C(Vλ) = dimVλ. Thus, the exact functor

(82) EvC = Ev0
C [dimT ∗C(Vλ)] : PerHλ(Vλ)→ PerHλ(T ∗C(Vλ)reg ×s η)

produces only Hλ-equivariant local systems shifted to degree dimT ∗C(Vλ), and is given by

EvC P =
(
RΦfC∗

(
P � (Q̄`)C∗

))
|T∗C(Vλ)reg .

Since T ∗C(Vλ)reg is a component of T ∗Hλ(Vλ)reg (Section 4), the exact functors EvC
uniquely determine an exact functor

(83) Evλ : PerHλ(Vλ)→ PerHλ(T ∗Hλ(Vλ)reg ×s η)

so that

EvC P = (Evλ P)|T∗C(Vλ)reg

for every P ∈ PerHλ(Vλ). The functor Evλ,η̄

(84) Evλ,η̄ : PerHλ(Vλ)→ PerHλ(T ∗Hλ(Vλ)reg).

appeared in the Introduction (10).
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5.4. Descent.

Lemma 5.4.1. For every ξ0 ∈ B

XB
∼= (Hλ ×s S)×(ZHλ (ξ0)×sS) Xξ0

in S-schemes.

Proof. First we must show that (Hλ ×s S)×(ZHλ (ξ0)×sS) Xξ0 exists in S-schemes. To do
that, it will be helpful to prove: for every δ ∈ A1

C and ξ0 ∈ B there is an Hλ-isomorphism

f−1
B (δ) ∼= Hλ ×ZHλ (ξ0) f

−1
ξ0

(δ)

in s-schemes, whereHλ×f−1
ξ0

(δ)→ Hλ×ZHλ (ξ0)f
−1
ξ0

(δ) is an ZHλ(ξ0)-torsor in C-varieties.
Since ZHλ(ξ0) is a closed subgroup of Hλ, the quotient Hλ → Hλ/ZHλ(ξ0) exists in C-
varieties. Consider the monomorphism

Hλ × f−1
ξ0

(δ)→ (Hλ/ZHλ(ξ0))× T ∗(Vλ)

given by (h, x) 7→ (hZHλ(ξ0), h · (x, ξ0)). Note that f−1
ξ0

(δ) is a closed subvariety of Vλ.
The promised ZHλ(ξ0)-quotient Hλ ×ZHλ (x0) f

−1
ξ0

(δ) is this morphism restricted to the
image:

H × f−1
ξ0

(δ)→ {(hZHλ(ξ0), h · (x, ξ0)) ∈ (Hλ/ZHλ(ξ0))× Vλ ×B | h−1 · x ∈ f−1
ξ0

(δ)}.

Following standard practice, we use the notation (h, x) 7→ [h, x]ZHλ (ξ0) for this map. Now,
projection to the second coordinate

Hλ ×ZHλ (ξ0) f
−1
ξ0

(δ)→ f−1
B (δ)

is given by [h, x]ZHλ (ξ0) 7→ h ·(x, ξ0), which is the promised isomorphism. This shows that
ZHλ(ξ0)-torsor Hλ× f−1

ξ0
(δ)→ Hλ×ZHλ (ξ0) f

−1
ξ0

(δ) exists in C-varieties and also that the
map

Hλ ×ZHλ (ξ0) f
−1
ξ0

(δ)→ T ∗(Vλ), [h, x]ZHλ (ξ0) 7→ h · (x, ξ0),

is an Hλ-isomorphism onto f−1
B (δ) ⊆ T ∗(Vλ).

Applying pull-back along the flat morphism S → s to ZHλ(ξ0) → Hλ → Hλ/ZHλ(ξ0)
determines the cokernel of ZHλ(ξ0)×s S → Hλ ×s S and also shows that the local trivi-
alisation of Hλ → Hλ/ZHλ(ξ0) determines a local trivialisation of Hλ ×s S → (Hλ ×s
S)/(ZHλ(ξ0)×sS). Now we may argue as above to see that (Hλ×sS)×(ZHλ (ξ0)×sS)Xξ0 →
T ∗(Vλ) ×s S, defined by [h, x]ZHλ (ξ0)×sS 7→ h · (x, ξ0), is an isomorphism onto XB over
S. �

For each ξ0 ∈ B, the map x 7→ (x, ξ0) is a section of projection Vλ × B → Vλ over
s. We have now seen how to view both Vλ × B and Vλ as S-schemes using fB and fξ0 ,
respectively. While Vλ × B → Vλ does not extend to a map of these S-schemes, the
section Vλ ×B → Vλ above, does. The following lemma shows why this is important.

Lemma 5.4.2. For every Hλ-orbit B ⊆ tVλ and every ξ0 ∈ B, the S-morphism

iξ0 : Xξ0 → XB

x 7→ (x, ξ0)
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is equivariant for the ZHλ(ξ0)×s S-action on Xξ0 and the Hλ×s S-action on XB. Using
equivariant pullback, the induced functor

i∗ξ0 [−dimB] : DHλ×sS(XB)→ DZHλ (ξ0)×sS(Xξ0)

is an equivalence of categories, taking equivariant perverse sheaves to equivariant perverse
sheaves.

Proof. This follows directly from Lemma 5.4.1 by using equivariant descent [9, Sec-
tion 2.6.2]. The shift by −dimB is needed to preserve perversity. �

5.5. Proof of Theorem 5.3.1. With reference to the diagram below (79), we see that
EvC is exact since it is defined as the composition of four exact functors. This gives
Theorem 5.3.1, Part (a).

We now prove Theorem 5.3.1, Part (b). From the definition of EvC we have

EvC,η̄ P =
(
RΦfC∗ (P � (Q̄`)C∗)

)
|T∗C(V )reg .

Since C∗ is smooth, (Q̄`)C∗ [dC∗ ] is perverse, and it follows that P � (Q̄`)C∗ [dC∗ ] is a
perverse sheaf on Vλ ×C∗; or argue using [6, 4.2.4]. It follows from [6, Proposition 4.4.2]
(see also [8, Théorème 1.2]) that RΦfC∗ [−1](P � (Q̄`)C∗ [dimC∗]) is perverse. It is also
Hλ-equivariant by transport of structure. Thus, the exact functor

RΦfC∗ (−� (Q̄`)C∗)[−1 + dimC∗] : DHλ(Vλ)→ DH(f−1
C∗ (0))

takes equivariant perverse sheaves to equivariant perverse sheaves. This proves The-
orem 5.3.1, Part (b).

Theorem 5.3.1, Part (c) is a consequence of [8, Théorème 1.9] which is attributed
there to [20]. Alternatively, using [14, Exposé XIV, Théorème 2.8] we may pass from
the algebraic description of RΦ given above, which is based on [14, Exposé XII], to the
analytic version of RΦ, given in [14, Exposé XIV]. Then the fact that the restriction of the
perverse sheaf RΦfC∗ [−1](P�(Q̄`)C∗ [dimC∗]) to T ∗C(Vλ)reg) is concentrated in one degree
follows from [16, Section II.6.4] and [16, Section II.6.A.3]. In fact, that degree is dimVλ+
dimC∗ − 1. Equivalently, EvC P is concentrated in degree dimVλ = dimT ∗C(Vλ)reg. This
proves Theorem 5.3.1, Part (c).

We now prove Theorem 5.3.1, Part (d). Without loss of generality, we may assume
P = IC(C1,L1). Let iC̄1

: C̄1 ↪→ Vλ be inclusion. Then

IC(C1,L1) = (iC̄1
)!(iC̄1

)∗IC(C1,L1).

Since iC̄1
is proper, we may apply Lemma 5.2.1 to this case with W = C̄1 and π = iC̄1

and gC∗ = f |C̄1×C∗ . Then π
′ = iC̄1

× idC∗ and

g−1
C∗ (0) = {(x, ξ) ∈ C̄1 × C∗ | (x | ξ ) = 0}

and
(W × C∗)π-reg = (C̄1 × C∗) ∩ T ∗C(V )reg = T ∗C(V )reg.

Thus,

EvC IC(C1,L1) = EvC(iC̄1
)!(iC̄1

)∗IC(C1,L1)
= (RΦgC∗ ((iC̄1

)∗IC(C1,L1)� (Q̄`)C∗))|T∗C(Vλ)reg ,

by Lemma 5.2.1. The support of (iC̄1
)∗IC(C1,L1) � (Q̄`)C∗ is contained in C̄1 × C∗, so

the support of
RΦgC∗ ((iC̄1

)∗IC(C1,L1)� (Q̄`)C∗)
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is contained in g−1
C∗ (0) ∩ (C̄1 × C∗) so the support of EvC IC(C1,L1) is contained in

T ∗C(Vλ)reg ∩ (C̄1 × C∗).
Since T ∗C(Vλ)reg ⊆ C × C∗, this is empty unless C ⊆ C̄1. This concludes the proof of
Theorem 5.3.1, Part (d).

By the definition of EvC , Theorem 5.3.1, Part (e) is equivalent to the following state-
ment: for all F ∈ DHλ(Vλ),

(85)
(
RΦfC∗

(
F � (Q̄`)C∗

))
(x0,ξ0)

∼= (RΦfξ0F)x0
,

compatible with the natural ZHλ(x0, ξ0)-action. First, note that (x0, ξ0) ∈ XC∗,s by
Proposition 4.4.3, since (x0, ξ0) ∈ T ∗C(Vλ)reg. Thus,(

i∗XC∗s

(
F � (Q̄`)C∗

))
(x0,ξ0)

= Fx0 = (i∗ξ0F)x0 ,

as ZHλ(x0, ξ0)-spaces. So, using (74) with B = C∗, it suffices to show

(86)
(
RΨfC∗

(
F � (Q̄`)C∗

))
(x0,ξ0)

∼= (RΨfξ0
F)x0

.

Lemma 5.4.2 determines the equivalences in the commuting diagram below.

DHλ×sη(f−1
C∗ (η)) DHλ×sS(XC∗) DHλ(f−1

C∗ (0))

DZHλ (ξ0)×sη(f−1
ξ0

(η)) DZHλ (ξ0)×sS(Xξ0) DZHλ (ξ0)s(f
−1
ξ0

(0))

i∗ξ0,η
[− dimC∗]equiv.

(jC∗,S)∗

i∗ξ0,S
[− dimC∗]equiv.

(iC∗,S)∗

i∗ξ0,s
[− dimC∗]equiv.

(jξ0,S)∗ (iξ0,S)∗

Thus,
RΨfC∗ i

∗
ξ0,η = i∗ξ0,s RΨfξ0

.

We find this equation at the heart of the following commuting diagram.

DHλ(Vλ) DHλ(Vλ × C∗)

DZHλ (ξ0)×sη(f−1
ξ0

(η)) DHλ×sη(f−1
C∗ (η))

DZHλ (ξ0)(f
−1
ξ0

(0)) DHλ(f−1
C∗ (0))

DZHλ (x0,ξ0)({(x0, ξ0)}) DH(T ∗C(Vλ)sreg)

p∗C∗ [dimC∗]

RΨfξ0

i∗ξ0,η̄
[− dimC∗]

equiv.

RΨfC∗

i∗ξ0,s
[− dimC∗]

equiv.

[− dimC∗]

This proves (86). Since the isomorphism in (86) comes from this commuting diagram
of functors, it is compatible with the ZHλ(x0, ξ0)-actions. This concludes the proof of
Theorem 5.3.1, Part (e).

To prove Theorem 5.3.1, Part (f) we again use [14, Exposé XIV, Théorème 2.8] to
pass from the algebraic description of the vanishing cycles functor to the analytic version
of the vanishing cycles functor. It now follows from [16, Section II.6.A.2] that for fixed
x ∈ C, the stalks of EvC,η P at (x, ξ) ∈ T ∗C(Vλ)reg are canonically identified with the
Morse groups Aiξ(P), after shifting to where these are non-trivial. It now follows from [16,
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Section II.6.A.1] that these are the stalks of a local system, giving Theorem 5.3.1, Part (f).
We note too that by [1, Definition 24.11] these stalks are given by (Qmic)i(P)(x,ξ) =

Hi−dimC(J,K;P), where J and K are as defined in [1, (24.10)(a)]. So Theorem 5.3.1,
Part (f) may also be deduced from [1, Theorem 24.8].

Arguing as above, Theorem 5.3.1, Part (g) may be deduced from [1, Theorem 24.8
(b)].

5.6. Vanishing cycles and Arthur parameters. Suppose the stratum C ⊆ Vλ is of
Arthur type, so C = Cψ for an Arthur parameter ψ, unique up to Hλ-conjugacy. Then
T ∗C(Vλ)sreg ⊆ T ∗C(Vλ)reg is a non-empty open Hλ-stable subvariety. With reference to
(81), define

(87) EvsC : PerHλ(Vλ)→ LocHλ(T ∗C(Vλ)sreg)

by
EvsC = Ev0

C |T∗C(Vλ)sreg .

It follows from [6, Lemme 4.3.2] that

(88) EvC P = IC(T ∗C(Vλ)sreg,EvsC P).

Now, the choice of an Arthur parameter ψ with C = Cψ determines an equivalence

LocHλ(T ∗C(Vλ)sreg)→ Rep(Aψ).

Define

(89) Evψ : PerHλ(Vλ)→ Rep(Aψ)

by composing these two functors. This is the functor appearing in the Introduction (12).
If the stratum C ⊆ Vλ is not of Arthur type, we do not know if T ∗C(Vλ)sreg is non-

empty. So in this case we use [1, Lemma 24.3 (f)] and choose a non-empty open Hλ-stable
subvariety U ⊆ T ∗C(Vλ)reg and define

EvsC : PerHλ(Vλ)→ LocHλ(U)

by
EvsC = Ev0

C |U .
We do not know if such U is unique, but regardless of the choice of U , we again have

EvC P = IC(U,EvsC P)

by [6, Lemme 4.3.2]. By [1, Lemma 24.3 (f)], each (x, ξ) ∈ U determines an equivalence

LocHλ(U)→ Rep(π0(ZHλ(x, ξ))).

By [1, Lemma 24.3 (g)], the isomorphism type of π0(ZHλ(x, ξ)) is independent of the
choice of (x, ξ) ∈ U . Indeed, by [1, Definition 24.7] π0(ZHλ(x, ξ)) is the microlocal
fundamental group Amic

C of T ∗C(Vλ)reg, given up to isomorphism by

(90) A(x,ξ) :=π1(U, (x, ξ))Hλ = π0(ZHλ(x, ξ)).

Define

(91) Ev(x,ξ) : PerHλ(Vλ)→ Rep(A(x,ξ))

by composing these two functors.
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5.7. Relation to microlocalisation. As we saw in the proof of Theorem 5.3.1, for
(x, ξ) ∈ T ∗Hλ(Vλ)reg,

(92) Qmic
C P = Ev0

C,η̄ P = (RΦfξP)x[− dimVλ].

The functor Qmic
C is ultimately defined by [16, Proposition II.6.A.1] but, as the discussion

following [1, Theorem 24.8] makes plain, it coincides with the microlocalisation functor
as defined in [8, Théorème 1.9]. Consequently, functors Ev0

λ and Qmic may both be
understood as perspectives on the microlocalistion functor.

We found it quite difficult to calculate Qmic in examples using the tools outlined in [1],
even drawing on [16]. By contrast, and as the examples presented in [10] show, we found
that the vanishing cycles perspective is amenable to making calculations.

6. Arthur packets and Adams-Barbasch-Vogan packets

In this section we review the main ideas of this paper and articulate the conjectures
which, taken together, lie at the heart of the concept of p-adic ABV packets. In this
section, G is a quasi-split connected reductive linear algebraic group over F . When
referring to work of Arthur, we will further assume G is a symplectic or special orthogonal
group.

6.1. Adams-Barbasch-Vogan packets. We fix an admissible homomorphism λ :
WF → LG and recall the Vogan variety Vλ from Section 2. As above, set Hλ :=ZĜ(λ).
From Proposition 2.6.2 recall that the local Langlands correspondence for pure rational
forms determines a canonical bijection between isomorphism classes of simple objects in
PerHλ(Vλ) and Πpure,λ(G/F ):

PerHλ(Vλ)simple
/iso ↔ Πpure,λ(G/F ).

We use the notation P(π, δ) for a simple Hλ-equivariant perverse sheaf on Vλ matching
a representation (π, δ) of a pure rational form of G under this correspondence.

For any λ ∈ R(LG), and any Hλ-orbit C in Vλ, the ABV packet for C is

(93) ΠABV
pure,C(G/F ) := {[π, δ] ∈ Πpure,λ(G/F ) | EvC P(π, δ) 6= 0}.

If C = Cφ for a Langlands parameter φ, we may use the notation

ΠABV
pure,φ(G/F ) := ΠABV

pure,Cφ(G/F ),

as in (35).

6.2. Arthur perverse sheaves. For any Hλ-orbit C in Vλ, consider the Arthur perverse
sheaf AC ∈ PerHλ(Vλ) defined (up to isomorphism) by

(94) AC :=
⊕

P∈PerHλ (Vλ)simple
/iso

rank
(
Ev0
C P

)
P.

By Theorem 5.3.1, Part (d), the summation can be taken the over simple P ∈ PerHλ(Vλ)
supported by C̄:

AC =
⊕

P∈PerHλ (Vλ)simple
/iso , supp(P)⊆C̄

rank
(
Ev0
C P

)
P.
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Taking the cases when P = IC(C,L), consider the summand pure packet perverse sheaf

(95) BC :=
⊕

L∈LocHλ (C)simple
/iso

rank
(
Ev0
C IC(C,L)

)
IC(C,L)

where the sum runs over all simple Hλ-equivariant local systems L on C. By The-
orem 5.3.1, Part (g), rank(Ev0

C IC(C,L)) = rank(L), so

BC =
⊕

L∈LocHλ (C)simple
/iso

rank(L) IC(C,L).

The simple perverse sheaves appearing in B correspond exactly to the irreducible ad-
missible representations in the pure Langlands packet Πpure,φC (G/F ), where φC is the
Langlands parameter matching C under Proposition 2.2.2. The perverse sheaf

(96) CC :=
⊕

IC(C1,L1)∈PerHλ (Vλ)simple
/iso , C1�C

rank
(
Ev0
C IC(C1,L1)

)
IC(C1,L1)

is called the coronal perverse sheaf for C, where the sum is taken over all C1 ⊂ C̄ with
C1 6= C and over all simple Hλ-equivariant local systems L1 on C1. So

(97) AC = BC ⊕ CC .

6.3. Pairing of Grothendieck groups. Consider the pairing

〈 · , · 〉 : KΠpure,λ(G/F )× KPerHλ(Vλ)→ Z

deduced from [1] and defined on Πpure,λ(G/F ) and isomorphism classes of simple objects
in PerHλ(Vλ) by

〈[π, δ],P〉 =

{
e(P)(−1)dim supp(P), if P = P(π, δ)

0, otherwise,

where e(P) is the Kottwitz sign [22] of the group GδP for the pure rational form δP of G
determined by P.

6.4. Virtual representations from stable perverse sheaves. The Arthur perverse
sheaf AC now determines a virtual representation ηABVC ∈ KΠpure,λ(G/F ) by

(98) ηABV
C := (−1)dimC

∑
[π,δ]∈Πpure,λ(G/F )

〈[π, δ],AC〉 [π, δ].
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Then

ηABV
C = (−1)dimC

∑
[π,δ]∈Πpure,λ(G/F )

〈[π, δ],AC〉 [π, δ]

= (−1)dimC
∑

[π,δ]∈Πpure,λ(G/F )

∑
P∈PerHλ (Vλ)simple

/iso

rank
(
Ev0
C P

)
〈[π, δ],P〉 [π, δ]

= (−1)dimC
∑

[π,δ]∈ΠABV
pure,C(G/F )

rank
(
Ev0
C P(π, δ)

)
〈[π, δ],P(π, δ)〉 [π, δ]

= (−1)dimC
∑

[π,δ]∈ΠABV
pure,C(G/F )

rank
(
Ev0
C P(π, δ)

)
e(δ)(−1)dim supp(P(π,δ)) [π, δ]

= (−1)dimC
∑

[π,δ]∈ΠABV
pure,C(G/F )

rank
(
Ev0
C P(π, δ)

)
e(δ) (−1)dimC[π,δ] [π, δ],

where C[π,δ] is the unique Hλ-orbit in Vλ determined by the Langlands parameter of [π, δ].
When C = Cψ for an Arthur parameter ψ, we will use the notation ηABV

ψ := ηABV
Cψ

.

6.5. Pure Arthur packets are ABV packets. From Section 1.11 recall the definition

ηψ =
∑

[π,δ]∈Πpure,ψ(G/F )

〈aψ, [π, δ]〉ψ e(δ) [π, δ]

based on Arthur’s work. From Section 6.4 recall the definition

ηABV
ψ = (−1)dimCψ

∑
[π,δ]∈ΠABV

pure,C(G/F )

rank (Evψ P(π, δ)) e(δ) (−1)dimC[π,δ] [π, δ],

where C[π,δ] is the unique Hλ-orbit in Vλ determined by the Langlands parameter of [π, δ].

Conjecture 1. Let G be a quasi-split symplectic or special orthogonal algebraic group
over a p-adic field F . Let ψ : LF × SL(2,C)→ LG be an Arthur parameter for G. Then

Πpure,ψ(G/F ) = ΠABV
pure,φψ (G/F )

and
ηψ = ηABV

ψ .

In particular, for every [π, δ] ∈ Πpure,ψ(G/F ),

〈aψ, [π, δ]〉ψ = (−1)dimCψ−dimC[π,δ] rank(Evψ P(π, δ)),

where aψ ∈ Aψ is defined in Section 1.11.

We will also find another perspective useful regarding Conjecture 1. Using the pairing
of Section 6.3, it is easy to check

〈ηABV
ψ ,P(π, δ)〉 = (−1)dimCψ rank (Evψ P(π, δ)) .

for [π, δ] ∈ Πpure,λψ (G/F ). Extend to P ∈ KPerHλψ (Vλψ ) by linearity, we have

〈ηABV
ψ ,P〉 = (−1)dimCψ rank (Evψ P) .

Thus, Conjecture 1 is equivalent to:

(99) 〈ηψ,P〉 = (−1)dimCψ rank(Evψ P),

for all P ∈ KPerHλψ (Vλψ ).
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6.6. Representations of the component group of an Arthur parameter. Conjec-
ture 1 is itself a consequence of Conjecture 2, below, which claims that Evψ gives a way
to calculate the functions (26).

From Section 1.11, recall the definition

ηψ,s =
∑

[π,δ]∈Πpure,ψ(G/F )

e(δ) 〈aψas, [π, δ]〉ψ [π, δ].

for s ∈ ZĜ(ψ), where as is the image of s in Aψ. We define

(100) ηABV
ψ,s :=

∑
[π,δ]∈ΠABV

pure,ψ(G/F )

(−1)dimCψ−dimC[π,δ] trace (Evψ P(π, δ)) (as) e(δ) [π, δ].

Conjecture 2. Let G be a quasi-split symplectic or special orthogonal p-adic group. Let
ψ : LF × SL(2,C)→ LG be an Arthur parameter. Then

Πpure,ψ(G/F ) = ΠABV
pure,φψ (G/F )

and

(101) ηψ,s = ηABV
ψ,s ,

for every s ∈ ZĜ(ψ). Equivalently, for every [π, δ] ∈ Πpure,ψ(G/F ) and for every s ∈
ZĜ(ψ),

(102) 〈asaψ, [π, δ]〉ψ = (−1)dimCψ−dimC[π,δ] trace (Evψ P(π, δ)) (as),

where aψ ∈ Aψ is defined in Section 1.11 and as is the image of s in Aψ.

In [11] we use the following version of Conjecture 2. Using the pairing of Grothendieck
groups from Section 6.3, Conjecture 2 is equivalent to:

(103) 〈ηψ,s,P〉 = (−1)dim(Cψ) trace(Evψ P)(as),

for every s ∈ ZĜ(ψ) and for every P ∈ PerHλ(Vλ).
Conjecture 2 gives a new way to calculate the character 〈as, [π, δ]〉ψ when π is an

admissible representation of Gδ(F ) for a pure rational form δ of G, and when the complete
Langlands parameter for (π, δ) is known; this fact is illustrated with examples in [10].
Conjecture 2 also suggests how to define the character for Langlands parameters that are
not of Arthur type. We also show several examples of this strategy in [10].

6.7. A basis for strongly stable virtual representations. Conjecture 3, below, is an
adaptation of [32, Conjecture 8.15′]. It suggests how to extend the definition of Arthur
packets from Langlands parameters of Arthur type to all Langlands parameters and also
how to find the associated stable distributions.

Conjecture 3. Let G be a quasi-split connected reductive linear algebraic group over
F . For any λ ∈ Λ(LG) (Section 2.1), the virtual representations ηABV

C are strongly stable
in the sense of [32, 1.6] and

{ηABV
C | Hλ-orbits C ⊆ Vλ}

is a basis for the Grothendieck group of strongly stable virtual representations with in-
finitesimal character λ.
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It should be noted that strongly stable virtual representations of G produce stable
virtual representations, and thus stable distributions, of all the groups Gδ(F ) as δ ranges
over pure rational forms of G. It should also be noted that here we dropped the hypothesis
that G is a quasi-split symplectic or special orthogonal p-adic group, which appeared
in Conjectures 1 and 2, and replaced it with the hypothesis that G is any quasi-split
connected reductive algebraic group over F . The scope of Conjecture 3 is therefore very
broad, as it refers to all pure inner forms of all quasi-split connected reductive p-adic
groups.

In [10] we gather evidence for Conjectures 1, 2 and 3 by verifying them for 38 admissible
representations of 12 p-adic groups.
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