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Abstract. This paper shows – by examples – how to calculate the transfer coef-
ficients that appear in Arthur’s main local result in the endoscopic classification of
representations, using purely geometric tools. Specifically, we use vanishing cycles of
perverse sheaves to calculate examples of Adams-Barbasch-Vogan packets for p-adic
groups and of endoscopic transfer and twisted endoscopic transfer of Adams-Barbasch-
Vogan packets. By comparing these to Arthur packets we gather evidence for the
conjecture that Arthur packets are Adams-Barbasch-Vogan packets. We also verify
the Kazhdan-Lusztig conjecture for the admissible representations of p-adic groups
that appear in our examples. The techniques we use here build on results from [7],
but this paper also provides a bridge to some of the ideas used in [8] to prove that
Arthur packets are Adams-Barbasch-Vogan packets for unipotent representations of
general linear groups and for odd special orthogonal groups and their pure inner forms
over p-adic fields.
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0. Introduction

Our objective in this paper is to show how to use vanishing cycles of perverse sheaves
to calculate the local transfer coefficients 〈sψ s, π〉ψ that appear in Arthur’s endoscopic
classification [3, Theorem 1.5.1]. We do this by independently calculating both sides of
[7, Conjecture 2] in examples:

〈sψ s, π〉ψ = (−1)dimCψ−dimCπ Tr (Evψ P(π)) (s), (1)

for every s ∈ ZĜ(ψ). By making these calculations, we wish to demonstrate that the
functor Ev, introduced in [7], provides a practical tool for calculating Arthur packets, the
associated stable distributions and their transfer under endoscopy. Our examples provide
evidence for the conjecture that Arthur packets are Adams-Barbasch-Vogan packets as
well as the Kazhdan-Lusztig conjecture for p-adic groups. This paper builds on results
from [7] and as such, should be read with that paper in hand.

In this paper we consider admissible representations of the p-adic groups SL(2), PGL(4),
SO(3), SO(5) and SO(7). There are a variety of reasons why we have chosen to present this
specific set of examples. The groups SO(3), SO(5), and SO(7) are the first few groups in
the family SO(2n+1), and this is the family we study in [8] for unipotent representations.
The group SO(7) is the first in this family to exhibit some of the more general phenomena
that meaningfully illuminate the conjectures from [7]. Moreover, since SO(3)× SO(3) is
an elliptic endoscopic group for SO(5) and SO(5)× SO(3) is an elliptic endoscopic group
for SO(7), we are also able to use these examples to show how to use geometric tools
to compute Langlands-Shelstad transfer of invariant distributions for endoscopic groups.
Not only was this ultimately a useful feature for doing the geometric calculations, but
presenting these examples side by side allows one to see certain relationships that hold
more generally for endoscopic groups. We also include two examples – for SL(2) and
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PGL(4) – that show how the problem of calculating Arthur packets and Arthur’s transfer
coefficients is reduced to unipotent representations.

Each example follows essentially the same four-part plan, explained in some detail in
Section 1 and outlined here.
(§1.1) After fixing a connected reductive group G over a p-adic field F from the list

above and an infinitesimal parameter λ : WF → LG, we enumerate all admissible
representations π of all pure rational forms of G with infinitesimal parameter
λ. We partition these admissible representations into L-packets and show how
Aubert duality operates on the representations. Then, for each L-packet of Ar-
thur type, we find the Arthur packet that contains it. We calculate a twisting
character which measures the difference between Arthur’s parametrization of rep-
resentations in an Arthur packet with Mœglin’s parametrization. We find the
coefficients in the invariant distributions

ΘG
ψ,s =

∑
π∈Πψ(G(F ))

〈s sψ, π〉ψ Trπ (2)

that arise from stable distributions attached to Arthur packets for endoscopic
groups for G(F ) in [3, Theorem 1.5.1]. We also calculate the virtual represent-
ations ηψ,s defined in [7, Section 1.11] using Arthur’s work. See Section 1.1 for
more detail on this part of the examples.

(§1.2) In the second part of each example, called Vanishing cycles of perverse sheaves,
we set up all the tools needed to calculate 〈ssψ, π〉ψ, and its generalisation to pure
rational forms of G, geometrically. We find the stratified variety Vλ attached to
λ and study the category PerZĜ(λ)(Vλ) of equivariant perverse sheaves on Vλ. We
show how this category decomposes into summand categories, called the cuspidal
support decomposition of PerZĜ(λ)(Vλ). Then we calculate the functor

Ev : PerZĜ(λ)(Vλ)→ PerZĜ(λ)(T
∗
ZĜ(λ)(Vλ)reg) (3)

on simple objects, using properties of vanishing cycles; Ev is defined in [7, Sec-
tion 5] and recalled in Section 1.2.6. The results of these calculations – one for
each example – are presented in Sections 2.2.3, 3.2.5, 4.2.5, 5.2.5, 6.2.5 and 7.2.6.
Section 1.2 includes an overview of how we made these calculations. We also show
how the Fourier transform interacts with the functor Ev and Ev∗.

(§1.3) In the third part we connect the two sides of this story, as treated above. To
begin, we find Vogan’s bijection between: admissible representations of split p-
adic groups and their pure rational forms with fixed infinitesimal parameter λ :
WF → LG, as recalled in Section 1.1; and simple equivariant perverse sheaves on
Vλ, as recalled in Section 1.2. With this bijection in hand, and the calculation
of Ev from Section 1.2, we easily find the Adams-Barbash-Vogan packets ΠABV

pure,φ
and associated virtual representations ηABV

φ,s . By referring back to Section 1.1, we
easily see

ηψ,s = ηABV
φψ,s

(4)

for all Arthur parameters ψ with infinitesimal parameter λ, thus confirming [7,
Conjecture 2] in the examples. This implies (1) and also implies

Πpure,ψ = ΠABV
pure,φψ (5)
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for every Arthur parameter with infinitesimal parameter λ. We also verify the
Kazhdan-Lusztig conjecture in each example, which allows us to verify [7, Conjec-
ture 3] in our examples. We show how the twisting characters from Section 1.1.5
relate to the twisting functor introduced in Section 1.2.7. While (5) shows that
every Arthur packet is an ABV-packet, the converse is not true; in this paper we
find four examples of ABV-packets that are not Arthur packets. See Section 1.3
for more detail on this part of the examples.

(§1.4) When G admits an elliptic endoscopic group G′ and an infinitesimal parameter
λ′ : WF → LG

′ such that λ = ε ◦ λ′ with ε : LG
′ → LG, we show how the

transfer of stable distributions attached to Arthur parameter for G′ to G may be
apprehended through the restriction of equivariant perverse sheaves from Vλ to
Vλ′ . To see this, for each simple P ∈ PerH(V ), we calculate every term in the
identity

Tr(Ev′(x′,ξ′) P|V ′)(a′s) = (−1)dimC−dimC′ Tr(Ev(x,ξ) P)(as), (6)

where (x′, ξ′) ∈ T ∗C′(V ′)reg with image (x, ξ) in T ∗C(V )reg, where the semisimple
s ∈ Ĝ is part of the endoscopic data of G′, as is the image of s in Ax,ξ and a′s
is the image of s in Ax′,ξ′ . See Section 1.4 for more detail on this part of the
examples.

Although do not show every calculation in every example, in Section 1 we explain the
ideas needed and then illustrate them as they apply appear in the examples.

We now describe the highlights of the six examples (38 admissible representations, 12
p-adic groups) in this paper.

(§2) In Section 2 we take G = SL(2) and consider the L-packet of quadratic unipotent
representations of SL(2, F ) when the residual characteristic of F is odd. We use
this example to show how to reduce the problem of calculating Arthur packets
and Arthur’s transfer coefficients, geometrically, to the case of unipotent repres-
entations, using [7, Theorem 3.1.1]. There are three elliptic endoscopic groups
relevant to this L-packet of admissible representations of SL(2, F ), and we show
how to apprehend transfer in each case using the geometric perspective. In this
example we also explain how to extend [7] to the inner form of SL(2, F ).

(§3) Because the representations in the first example are tempered, the geometry was
degenerate. In Section 3 we take G = SO(3) split over F and choose a non-
tempered unipotent representation π(φ0) of SO(3, F ). Then we find the 2 ad-
missible representations of the anisotropic form G1 of G that share the same
infinitesimal parameter λ : WF → LG as π(φ0). Even in this simple case the cal-
culation of the vanishing cycles of simple objects in PerZĜ(λ)(Vλ) is interesting.
This example plays a role in Sections 4 and 7.

(§4) In Section 4 we take G = PGL(4) and choose a tamely ramified infinitesimal
parameter λ : WF → LG such that its restriction to inertia has order q + 1.
Again we use [7, Theorem 3.1.1] to reduce the problem of calculating the transfer
coefficients, geometrically, to a unipotent representation of PGL(2) and then we
use Section 3 to make the calculations. This example also illustrates a case when
the map from pure rational forms to inner rational forms is not injective.

(§5) In Section 5 we return to unipotent representations of odd orthogonal groups and
choose an infinitesimal parameter λ : WF → LG for G = SO(5) such that the
image of Frobenius is regular semisimple. This example plays a role in Section 7.
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(§6) Although endoscopy played a role in Section 2, the unipotent representations of
pure rational forms of G = SO(5) treated in Section 6 give a more interesting
illustration of how to apprehend endoscopy through equivariant restriction of
perverse sheaves. In contrast to Section 5, in Section 6 the image of Frobenius
under the unramified infinitesimal parameter λ : WF → LG is singular. This
example shows some interesting new features in the calculation of vanishing cycles
of perverse sheaves, and these play a role in Section 7. Here we find two examples
of ABV-packets that are not Arthur packets.

(§7) Section 7 is the heart of this paper. Here we take G = SO(7) and consider
unipotent representations with an infinitesimal parameter λ : WF → LG such
that the image of Frobenius is singular. This rich example allows us to explore
a wide range of interesting phenomena. We find 10 admissible representations of
G(F ) with this infinitesimal parameter and a further 5 admissible representations
of its pure rational form. One of these representations, denoted by π(φ7,+−) in
Section 7, is supercuspidal, a further 3 are tempered, and the remaining 11 are
not tempered. We group these representations into L-packets and Arthur packets
and find the stable and invariant distributions attached to Arthur parameters.
Then, using vanishing cycles of perverse sheaves, we calculate all ABV-packets
in this example using the functor Ev and verify that all Arthur packets are ABV-
packets. We further verify (4). We also find two more ABV-packets that are not
Arthur packets. The calculations of vanishing cycles of perverse sheaves in this
section use some of the previously considered examples, but also involve some new
work. We use this example to show that how the vanishing cycles of the Fourier
transform of a perverse sheaf relates to the transpose of the vanishing cycles of the
perverse sheaf. We verify the Kazhdan-Lusztig conjecture as it applies here and
use this to confirm [7, Conjecture 3] in this example. Since the elliptic endoscopic
group G′ = SO(5)×SO(3) admits an infinitesimal parameter λ′ : WF → LG

′ that
factors λ, we show how Langlands-Shelstad transfer of stable distributions from
G′ to G may be calculated using equivariant restriction of perverse sheaves from
Vλ to Vλ′ .

Using techniques different from those employed in this paper (namely, microlocalisation
of regular holonomic D-modules, rather than vanishing cycles of perverse sheaves) one
of the authors of this paper has calculated many other examples of Adams-Barbasch-
Vogan packets in his PhD thesis [18]. Specifically, if π is a unipotent representation of
PGL(n), SL(n), Sp(2n) or SO(2n+ 1), of any of its pure rational forms, and if the image
of Frobenius of the infinitesimal parameter of π is regular semisimple in the dual group,
then all Adams-Barbasch-Vogan packets containing π have been calculated by finding
the support of the microlocalisation of the relevant D-modules. This work overlaps with
Sections 3 and 5, here. However, we found it difficult to calculate the finer properties of the
microlocalisation of these D-modules required to determine the local transfer coefficients
appearing in Arthur’s work. This is one of the reasons we use vanishing cycles of perverse
sheaves in [7] and in this paper.

Acknowledgements: Many of the calculations for this paper were made during the
“Voganish Seminar” based at the University of Calgary over a two year period, 2015-16 and
2016-17. We thank everyone who participated. Our thanks especially to Pramod Achar,
who helped us calculate perverse extensions and taught us how to use the decomposition
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theorem for fun and profit and to Kam-Fai Tam for identifying the type of the depth-zero
supercuspidal representation appearing in the SO(7) example in this paper and for many
other helpful comments.

1. Template for the examples

Here, in Section 1, we explain the plan for all the examples. We have tried to make
the examples (Sections 2 through 7) as brief as possible, by making repeated reference
back to this section.

In each example we begin by choosing G from the following list of split algebraic groups
over a p-adic field F : in order, we take G to be SL(2), SO(3), PGL(4), SO(5), SO(5) again,
and finally, SO(7). In each case we find Z1(F,G), and thus all pure rational forms of G,
and relate these to the inner forms of G using the maps

H1(F,G)→ H1(F,Gad)→ H1(F,Aut(G)).

Every pure rational form δ ∈ Z1(F,G) determines a rational form Gδ of G, often also
called a pure rational form of G. The examples that we consider illustrate the fact that
the maps above are neither injective nor surjective, in general. In each case we also fix
an infinitesimal parameter

λ : WF → LG.

We consider two infinitesimal parameters λ for SO(5), but otherwise choose one λ for
each group in the list, above.

Having fixed G and λ : WF → LG, we consider the conjectures from [7]. Although
we do prove these conjectures by brute force calculation in these examples, that was not
our objective. Rather, our goal here is to show how to use results from [7] and [8] to
calculate the stable distributions in Arthur’s local result [3, Theorem 1.5.1] and also how
to calculate the coefficients that appear when these stable distributions are transferred to
certain endoscopic groups. As a consequence, we give complete examples of [3, Theorem
1.5.1], and explain how to use geometry to make the calculations.

1.1. Arthur packets. We enumerate all admissible representations π of all pure rational
forms δ of G with a shared infinitesimal parameter λ. We show how these representations
fall into L-packets, indexed by Langlands parameters φ with infinitesimal parameter λ.
Then if φ is of Arthur type, we find corresponding the Arthur packet. We find the stable
distributions attached to these L-packets, and also all the invariant distributions obtained
from these representations by endoscopy.

1.1.1. Parameters. We find all Langlands parameters φ : LF → LG such that φ(w, dw) =

λ(w), where dw ∈ SL(2) is defined by dw = diag(|w|1/2, |w|−1/2
). As in [7], we write

Pλ(LG) for these Langlands parameters and Φλ(G/F ) for the isomorphism classes of
these Langlands parameters under ZĜ(λ)-conjugation.

Then we find all Arthur parameters ψ : LF × SL(2,C)→ LG such that ψ(w, dw, dw) =
λ(w). As in [7], the set of Arthur parameters that arise in this way is denoted by Qλ(LG).
Although the map Qλ(LG)→ Pλ(LG) is injective, it is not surjective in general.
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1.1.2. Admissible representations and their pure L-packets. Now we can list all repres-
entations (π, δ) of all pure rational forms of G, in the sense of [20], with infinitesimal
parameter λ. This means that for every pure rational form δ ∈ Z1(F,G), we find all irre-
ducible admissible representations π of the rational form Gδ attached to G, such that the
Langlands parameter φ for π lies in Pλ(LG). These representations are not tempered, in
most cases considered in this paper. When the pure rational form δ is clear from context,
we may write π for (π, δ).

We arrange these admissible representations into L-packets and into pure L-packets.
For this, we must find the component group

Aφ :=ZĜ(φ)/ZĜ(φ)0,

for each φ ∈ Pλ(LG). According to the pure Langlands correspondence [20], equival-
ence classes of irreducible representations of pure rational forms of G with infinitesimal
parameter λ are indexed by the set

Ξλ(LG) :=
{

(φ, ρ) | φ ∈ Pλ(LG)/ZĜ(λ), ρ ∈ Irrep(Aφ)
}
.

By abuse of notation, we write π(φ, ρ) for an irreducible admissible representation of
G(F ) corresponding to a pair (φ, ρ) above. Each ρ ∈ Irrep(Aφ) determines the class of a
pure rational form, denoted by δρ ∈ Z1(F,G), so the L-packet for φ and a rational form
Gδ is

Πφ(Gδ(F )) = {[π(φ, ρ)] | φ ∈ Pλ(LG), ρ ∈ Irrep(Aφ), [δρ] = [δ] ∈ H1(F,G)}
We find these L-packets, for all φ ∈ Pλ(LG) and all δ ∈ Z1(F,G), in our examples. We
also find the pure L-packets:

Πpure,φ(G/F ) = {[π(φ, ρ), δρ] | φ ∈ Pλ(LG), ρ ∈ Irrep(Aφ)},
for all φ ∈ Pλ(LG) To simplify notation slightly, we often write π(φ, ρ) for the pair
(π(φ, ρ), δρ).

1.1.3. Multiplicity matrix. To describe the representations with infinitesimal parameter
λ we present the multiplicity mrep((φ, ρ), (φ′, ρ′)) of π(φ, ρ) in the standard module
M(φ, ρ) so that in the Grothendieck group of admissible representations generated by
Πpure,λ(G/F ) we have

M(φ′, ρ′) ≡
∑
(φ,ρ)

mrep((φ, ρ), (φ′, ρ′)) π(φ, ρ),

where the sum is taken over all φ ∈ Pλ(LG) and all ρ ∈ Irrep(Aφ). We give a sample of
how these multiplicities are calculated in Section 7.1.3.

1.1.4. Arthur packets. Recall Qλ(LG) from Section 1.1.1. For each ψ ∈ Qλ(LG) we show
how the admissible representations above are grouped into Arthur packets

Πψ(Gδ(F ))

for rational forms δ of G. Of course, Πψ(Gδ(F )) contains the L-packet Πφψ (Gδ(F )); our
interest is in the representations in Πψ(Gδ(F )) that are not contained in Πφψ (Gδ(F )); we
refer to these as coronal representations in [7]. In fact, we further recall the adaptation
of Arthur packets to pure rational forms and find the pure Arthur packets

Πpure,ψ(G/F )

themselves.
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Arthur’s main local result for quasisplit classical groups is expressed in terms of a map

Πψ(G(F )) → Ŝψ,
π 7→ 〈· , π〉ψ

(7)

where Sψ = ZĜ(ψ)/ZĜ(ψ)0 Z(Ĝ)ΓF . As we saw in [7], this is easily rephrased in terms of
a map

Πψ(G(F ))→ Irrep(Aψ), (8)
where

Aψ = ZĜ(ψ)/ZĜ(ψ)0.

We find this map in our examples. In fact, using [3, Inner twists], we find the conjectured
extension

Πpure,ψ(G/F )→ Irrep(Aψ) (9)
which includes the non-quasi-split pure rational forms of G, as discussed in [7].

1.1.5. Aubert duality. Aubert involution preserves the infinitesimal parameter λ and so
defines an involution on KΠλ(Gδ(F )), for every pure ration form δ for G. For π ∈
Πλ(Gδ(F )) we use the notation use the notation π̂ for the admissible representation such
that (−1)a(π)π̂ is the Aubert dual of π in KΠλ(Gδ(F )). When restricted to Arthur packets,
Aubert duality defines a bijection

Πψ(Gδ(F )) → Πψ̂(Gδ(F ))

π 7→ π̂,

where ψ̂(w, x, y) :=ψ(w, y, x). We display this bijection in our examples.
Although the component groups Aψ and Aψ̂ are isomorphic, a comparison of the

characters 〈 · , π〉ψ and 〈 · , π̂〉ψ̂ shows that they do not coincide, in general. Accordingly,
their ratio defines a character χψ of Aψ such that

〈s, π〉ψ = 〈s, π̂〉ψ̂ χψ(as), (10)

for s ∈ ZĜ(ψ) with image as ∈ Aψ. Our examples show that this character χψ of Aψ is
given by

χψ = ε
M/W
ψ ε

M/W

ψ̂
, (11)

where εM/W
ψ is the character of Aψ appearing in [21, Theorem 8.9]. As explained in

[22, Introduction], the character εM/W
ψ measures the difference between Mœglin’s para-

metrization of representations in Πψ by Aψ and Arthur’s parametrization of represent-
ations in Πψ by Aψ. We compute the character χψ in our examples; it is non-trivial in
Sections 6.1.5 and 7.1.5.

1.1.6. Stable distributions and endoscopy. Armed with (8), we easily find the coefficients
in the stable invariant distribution

ΘG
ψ =

∑
π∈Πψ(G(F ))

〈sψ, π〉ψ Trπ, (12)

where sψ denotes the image of the non-trivial central element in SL(2) in Aψ. Likewise,
for s ∈ ZĜ(ψ) we compute

ΘG
ψ,s =

∑
π∈Πψ(G(F ))

〈ssψ, π〉ψ Trπ. (13)
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Arthur’s work shows that Θψ,s is the Langlands-Shelstad transfer of the invariant distri-
bution

ΘG′

ψ′ =
∑

π′∈Πψ′ (G
′(F ))

〈sψ′ , π′〉ψ′ Trπ′, (14)

attached to an endoscopic group G′ attached to s and where ψ′ : LF × SL(2) → LG′

factors through LG′ → LG, defining ψ′ : LF × SL(2)→ LG′. For use below, we illustrate
this fact in our examples by choosing a particular s ∈ Ĝ and computing Θψ′ .

In order to illuminate [7, Conjecture 2] we use (9) to exhibit the virtual representations

ηψ =
∑

[π,δ]∈Πpure,ψ(G/F )

e(δ)〈sψ, [π, δ]〉ψ [π, δ] (15)

and
ηψ,s =

∑
[π,δ]∈Πpure,ψ(G/F )

e(δ)〈ssψ, [π, δ]〉ψ [π, δ] (16)

for s ∈ ZĜ(ψ), as defined in [7]. Likewise we find

ηψ′ =
∑

[π′,δ′]∈Πpure,ψ′ (G
′/F )

e(δ′)〈sψ′ , [π′, δ′]〉ψ′ [π′, δ′] (17)

with s and ψ′ as above.

1.2. Vanishing cycles of perverse sheaves. Having reviewed Arthur packets and
transfer coefficients for the chosen G and λ : WF → LG, we now turn to geometry.
In this section we introduce the geometric tools needed to demonstrate [7, Conjecture 2]
and calculate the coefficients 〈ssψ, [π, δ]〉ψ appearing above. This is done by a brute force
calculation of the exact functor

Ev : PerH(V )→ PerH(T ∗H(V )reg),

defined in [7], on simple objects, following a strategy that we now explain.

1.2.1. Vogan variety. We find the variety V :=Vλ attached to the infinitesimal parameter
λ : WF → LG, the action of H :=Hλ :=ZĜ(λ) on V , and the stratification of V into H-
orbits. If λ is not unramified, we use [7, Theorem 3.1.1] to replace the actionHλ×Vλ → Vλ
with Hλnr ×Vλnr → Vλnr where λnr : WF → LGλ is the "unramification" of λ : WF → LG.
We may now assume λ is unramified and λ(Fr) is elliptic semisimple in Ĝ.

For classical groups, the variety V admits a description which is quite convenient for
calculations, as we now explain. If the type of G is An, the variety V can be decomposed
as a finite direct product of varieties according to

V ∼= Hom(E0, E1)×Hom(E1, E2)× · · ·Hom(Er−1, Er),

where each Ei is an eigenspace for λ(Fr) with eigenvalue λi. We may then denote elements
of V , i.e., quiver representations, by v = (vi,i+1)i, for vi,i+1 ∈ Hom(Ei, Ei+1). Then

H ∼= GL(E0)×GL(E1)× · · · ×GL(Er)

acting on Hom(E0, E1) × Hom(E1, E2) × · · ·Hom(Er−1, Er) by hi · vi,i+1 = vi,i+1 ◦ h−1
i

and hi · vi−1,i = hi ◦ vi−1,i and hi · vj,j+1 = vj,j+1 for j 6= i, i− 1. The H-orbit of v ∈ V
is fully characterized by the collection of integers

rij := rank(vj−1,j ◦ · · · ◦ vi,i+1).



10 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI, AND B. XU

One derives a natural set of inequalities which describes admissible collections of ranks.
The partial order of adjacency is identical to the partial ordering on the symbols (rij)ij .

Passing from the case when the derived group of G is of type An to any of Bn, Cn
or Dn simply results in an identification of the λi eigenspace of λ(Fr) with the dual of
the λ−1

i eigenspace. There are essentially two cases to consider: either Ei = E∗r−i. or
no two of E0, . . . , Er are dual. In the later case, V is isomorphic to one arising from an
inclusion of a subgroup of type An and one can freely study the variety by passing to this
subgroup. In the former case, there are essentially four sub-cases depending on if we are
inside an orthogonal or symplectic group and if r is even or odd. In either case the variety
we are studying is the one where vi,i+1 = vtr−i−1,r−i and the group acting factors through
hi = htr−i. These equations impose further, obvious, restrictions on the set of admissible
collections of ranks/nullities, but otherwise the collection of strata is still indexed by the
set of admissible vectors (rij)ij and the adjacency relations do not change.

For simplicity of exposition one can describe these varieties which occur when G is of
type Bn as one of

Hom(E0, E1)×Hom(E1, E2)× · · ·Hom(E`−1, E`)× Sym2(E∗` )

with the group acting being GL(Ei) at every factor or

Hom(E0, E1)×Hom(E1, E2)× · · ·Hom(E`−1, E`)

Where the group acts by GL(Ei) on every factor except E` where the group is Sp(E`).
When G is of type Cn or Dn they are

Hom(E0, E1)×Hom(E1, E2)× · · ·Hom(E`−1, E`)×Alt2(E∗` )

with the group acting being GL(Ei) at every factor.

Hom(E0, E1)×Hom(E1, E2)× · · ·Hom(E`−1, E`),

where the group acts by GL(Ei) on every factor except E` where the group is O(E`). In
all of these cases, ` is either r/2 or (r+ 1)/2, and the combinatorial data which describes
the strata is still the collection of ranks ri,j for 0 ≤ i < j ≤ r.

1.2.2. Orbit duality. The cotangent bundle T ∗(V ) is equipped with two important func-
tions, used extensively in [7]: the natural pairing ( · | · ) : T ∗(V ) → A1 which coincides
with the restriction of the Killing form on jλ; and [ · , · ] : T ∗(V )→ h which coincides with
the restriction of the Lie bracket on jλ. In particular, for every H-orbit C in V ,

T ∗C(V ) = {(x, ξ) ∈ T ∗(V ) | x ∈ C, [x, ξ] = 0}.
In the examples, we present the duality between H-orbits C in V and H-orbits C∗ in

V ∗, defined by the property that they have isomorphic conormal bundles

T ∗C(V ) ∼= T ∗C∗(V
∗)

under transposition T ∗(V )→ T ∗(V ∗) given by (x, ξ) 7→ (ξ, x′), where x′ := − (x | · ), so
x 7→ x′ is an fixed isomorphism V → V ∗∗. (We will revisit transposition in Section 1.2.7.)
In fact, this duality between H-orbits in V and H-orbits in V ∗ is also characterised by
the following statement:

T ∗C(V )reg ⊆ C × C∗, (18)
where

T ∗C(V )reg :=T ∗C(V ) \ ∪
C(C′

T ∗C′(V ).
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In the examples we present all this information by describing the conormal bundle

T ∗H(V ) := ∪
C
T ∗C(V ),

where the union is taken over all H-orbits C in V and the union is taken in T ∗(V ). We
also describe the regular conormal bundle

T ∗H(V )reg := ∪
C
T ∗C(V )reg.

From this, one simply restricts the bundle maps T ∗(V )→ V and T ∗(V )→ V ∗ to T ∗C(V )reg
to recover C and its dual orbit C∗.

1.2.3. Equivariant perverse sheaves. The next step is to find all simple objects in category
PerH(V ) of H-equivariant perverse sheaves on V . Again, we use [7, Theorem 3.1.1] to
reduce to the case when λ is unramified and λ(Fr) is hyperbolic.

It is convenient to begin by enumerating all equivariant local systems L on all H-
orbits C in V . This is done by picking a base point x ∈ C and computing the equivariant
fundamental group

Ax :=π0(ZH(x)) ∼= π1(C, x)ZH(x)0 .

Since the isomorphism type of this group is independent of the choice of base point,
this group is commonly denoted by AC . For the groups G that we consider here, the
fundamental group AC is always abelian, but this is not true in general. In any case, the
choice of x ∈ C determines an equivalence

Rep(AC)→ LocH(C).

It is now easy to enumerate all simple objects in category PerH(V ):

PerH(V )simple
/iso =

{
IC(C,L) | H-orbit C ⊆ V, L ∈ LocH(V )simple

/iso

}
.

We will need to compute the equivariant perverse sheaves IC(C,L) themselves, or
rather, their image in the Grothendieck group

PerH(V )→ KPerH(V ) = KDbc,H(V ).

For every H-orbit C in V and every H-equivariant local system L on V , consider the
shifted standard sheaf

S(C,L) := jC ! L[dimC],

where jC : C ↪→ Vλ is inclusion. Then, in KPerHλ(Vλ) we have

IC(C,L) ≡
∑

(C′,L′)

mgeo((C ′,L′), (C,L)) S(C ′,L′)

and mgeo((C,L), (C,L)) = 1 and mgeo((C ′,L′), (C,L)) = 0 unless C ′ ≤ C. We refer to
the matrix mgeo as the geometric multiplicity matrix. Set

L] := IC(C,L)[−dimC] and L\ :=S(C,L)[−dimC].

Then, in KPerHλ(Vλ),

L] ≡
∑

(C′,L′)

(−1)dimC−dimC′mgeo((C ′,L′), (C,L)) L′\.

The purity result of Lusztig shows that L] is cohomologically concentrated in even degrees,
so

m′geo((C ′,L′), (C,L)) := (−1)dimC−dimC′mgeo((C ′,L′), (C,L))
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is a non-negative integer. We refer to the matrix m′geo as the normalised geometric
multiplicity matrix.

We compute the normalised geometric multiplicity matrix m′geo in each example in this
paper. In Sections 2.2.2 and 4.2.2 we use [7, Theorem 3.1.1] to make this calculation. In
Sections 3.2.2, 5.2.2, 6.2.3 and 7.2.3 we give examples of the following strategy. For each
stratum C ⊆ V and each local system L on C, we construct a proper cover π : C̃ → C

such that C̃ is smooth and IC(C,L) appears in π!1C̃ [dim C̃]. We can explicitly describe
the fibres of π over each stratum in C and typically arrange things so that the cover is
semi-small, though this is not essential. We then find all the other simple perverse sheaves
IC(C ′,L′), for C ′ ≤ C, appearing in π!1C̃ [dim C̃], using the Decomposition Theorem. By
doing this for C and all strata on the boundary of C, we can describe IC(C,L). Note
that this process is performed inductively on dimC, as well as on rank(π!1C̃)|C .

1.2.4. Cuspidal support decomposition and Fourier transform. Category PerH(V ) decom-
poses into a direct sum of full subcategories indexed by cuspidal pairs for Ĝ, or more
correctly, cuspidal local systems on cuspidal pairs [14, Proposition 8.16]. We refer to this
as the cuspidal support decomposition of PerH(V ):

PerH(V ) =
⊕

(L,O,E)

PerH(V )L,C,E ,

where the sum is taken over all cuspidal Levi subgroups L of Ĝ, and all cuspidal local
systems E on nilpotent orbits O ⊂ LieL, up to Ĝ-conjugation. In the cases we consider
there is only one (O, E) for every cuspidal Levi L, so we abbreviate PerH(V )L,C,E to
PerH(V )L. In each example we partition the simple objects in PerH(V ) according to this
decomposition. Simple objects in PerH(V )L are characterised by the property that they
appear in the semisimple complex formed by parabolic induction along Vogan varieties
from the cuspidal local system on LieL ∩ V ; see [15].

The cuspidal support decomposition of PerH(V ) offers insight into the blocks that
appearing within the geometric multiplicity matrix. It is also quite helpful for finding the
proper covers appearing in Section 1.2.3.

We also compute the Fourier transform

Ft : PerH(V )→ PerH(V ∗)

on all simple objects. This functor is compatible with the cuspidal support decomposition
in the sense that Ft restricts to PerH(V )L → PerH(V ∗)L.

1.2.5. Local systems on the regular conormal bundle. In preparation for the calculation of
Ev : PerH(V ) → PerH(T ∗H(V )reg), we must describe local systems on H-orbits T ∗C(V )sreg
and also show how local systems relate to the pullback of local systems along the bundle
maps T ∗C(V )sreg → C and T ∗C(V )sreg → C∗. For this we pick a base point (x, ξ) ∈
T ∗C(Vλ)sreg and compute the equivariant fundamental groups

A(x,ξ) = π0(ZH(x, ξ))) = π1(T ∗C(V )sreg, (x, ξ))ZH(x,ξ)0 .

The isomorphism type of A(x,ξ) is independent of the choice of base point; it is precisely
the microlocal fundamental group of C, denoted by Amic

C . So the choice of base point
determines an equivalence

Rep(Amic
C )→ LocH(T ∗C(V )sreg).
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We use this to enumerate the simple objects in LocH(T ∗C(V )sreg) and then to describe the
functors

LocH(C) LocH(T ∗C(V )sreg) LocH(C∗)

obtained by pullback the along the projections

C T ∗C(V )sreg C∗,

by way of the induced homomorphisms of equivariant fundamental groups.

Ax A(x,ξ) Aξ.

1.2.6. Vanishing cycles of perverse sheaves. Here we present the results of applying the
functor

Ev : PerH(V )→ PerH(T ∗H(V )reg)

to simple objects in PerH(V ). Recall from [7, Section 5] that this functor is defined by

EvC(F) = RΦ(·|·)(F � 1C∗)|T∗C(V )reg ,

where (·|·) : T ∗(V )→ A1 appeared in Section 1.2.2; recall also that

(EvF)(x,ξ) = (RΦξF)x,

for all (x, ξ) ∈ T ∗H(V )reg. We present the results of our calculations in a table which offers
two perspectives on Ev. To describe those perspectives, recall that EvP = ⊕C′ EvC′ P,
where

EvC′ : PerH(V )→ PerH(T ∗C′(V )reg).

Then recall that if IC(C,L) is simple, then EvC′ IC(C,L)[− dimV ] is a local system on
T ∗C′(V )reg and this local system is determined by its restriction to the H-orbit T ∗C′(V )sreg.
Our tables record Ev IC(C,L) in form ⊕C′IC(O′, E ′), where O′ :=T ∗C′(V )sreg. To describe
each E ′, we use the base points (x′, ξ′) ∈ T ∗C′(V )sreg to view EvC′ IC(C,L)[−dimV ] as a
representation of the equivariant fundamental group A(x′,ξ′) of T ∗C′(V )sreg. The second
part of the table records the characters of the representations Ev(x′,ξ′) IC(C,L) of A(x′,ξ′),
as C ′ ranges over all strata in V and as IC(C,L) ranges over all simple objects in PerH(V ).

By [7, Theorem 5.3.1], we know that EvC′ P = 0 unless C ′ ⊆ supp IC(C,L), which is
to say, unless C ′ ≤ C. Moreover, [7, Theorem 5.3.1] also shows that in the case C ′ = C,
we get

EvC IC(C,L) = (p∗L)|T∗C(V )reg [dimC],

where p : T ∗C(V ) → C is the restriction of the bundle map T ∗(V ) → V . The local
systems (p∗L)|T∗C(V )reg were described in Section 1.2.5 and they are worked out in the
corresponding sections in each example. The work that remains to calculate Ev IC(C,L),
therefore, is the cases EvC′ IC(C,L) for C ′ < C.

To calculate EvC′ IC(C,L) for C ′ < C we use [7, Lemma 5.2.1]. We describe our
method in some detail here. From Section 1.2.3 we recall a proper map π : C̃ → C

from a smooth variety C̃ chosen so that IC(C,L) appears in π!1C̃ [dim C̃]. Using proper
base change and the exactness of the vanishing cycles functor [7, Theorem 5.3.1] we find
EvC′ IC(C,L) by computing(

π′′s ! RΦ(· | ·)◦(π×idC′∗ )(1C̃×C′∗)
)
|T∗
C′ (V )reg , (19)
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where π′′s is defined in [7, Section 5.2]. Since C̃ × C ′∗ is smooth and 1C̃×C′∗ is a local
system, the vanishing cycles

RΦ(· | ·)◦(π×idC′∗)
(1C̃×C′∗) (20)

is a skyscraper sheaf on the singular locus of (· | ·) ◦ (π× idC′∗) on C̃ ×C ′∗. This singular
locus is easy to find using the Jacobian condition for smoothness,because of the explicit
nature of π and because we have already found equations for C ′∗ in V ∗. The map π′′s
restricts to a proper map from this singular locus onto T ∗C(V ). In fact, this map is finite
over T ∗C′(V )reg; this is a post-hoc consequence of the fact that the fibres of π′′s are closed
and the stalks of the vanishing cycles functor are concentrated in a single degree. After
restricting (20) to the preimage of T ∗C′(V )reg under π × idC′∗ , we use the Decomposition
Theorem to explicitly describe (19). While it is typically very easy to compute the rank
of the resulting local system, determining the representation of the fundamental group
that describes the local system is considerably more subtle as it depends on the local
structure of the singularities. We give examples of these calculations in Sections 3.2.5,
5.2.5, 6.2.5 and 7.2.6. In Section 7.2.6 we give a sample calculation showing how the
Lefschetz fixed-point formula may be used to make these calculations.

We observe that many of these calculations may be simplified considerably by a judi-
cious use of the formula (24) from Section 1.2.7 and formula (35) from Section 1.4.

1.2.7. Fourier transform, vanishing cycles and the twisting functor. Our examples show
that there is a rank-1 equivariant local system D∗ on T ∗H(V ∗)reg so that

Ev∗ Ft = a∗ Ev⊗D∗; (21)

equivalently, our examples show that, for every H-orbit C in V there is a local system
D∗C on T ∗C∗(V

∗)reg so that
EvC∗ Ft = a∗ EvC ⊗D∗C . (22)

We find it convenient to introduce the twisting functor

T : PerH(T ∗H(V )reg) → PerH(T ∗H(V ∗)reg)
P 7→ a∗P ⊗D∗,

(23)

so that (21) becomes
Ev∗ Ft = TEv . (24)

In this paper we verify (24) by evaluating both sides on simple objects in PerH(V ) in our
examples. The twisting functor T is non-trivial in Sections 6.2.6 and 7.2.7.

1.2.8. Arthur sheaves. We close Section 1.2 by displaying the Arthur sheaves AC that
appeared in [7], for each stratum C ⊆ V . These equivariant perverse sheaves are defined,
up to isomorphism, by

AC :=
∑

P∈PerH(V )simple
/iso

(rankEvC P) IC(C ′,L′).

Observe that rankEvC P = Tr (EvC P) (1). We also remark that

FtAC = AC∗ . (25)
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1.3. Adams-Barbash-Vogan packets. Having calculated the vanishing cycles of per-
verse sheaves on Vogan varieties in Section 1.2, it is a simple matter now to find the
Adams-Barbash-Vogan packets for all Langlands parameters with given infinitesimal para-
meter. In this section we also see that the Arthur packets described in the examples are
indeed ABV-packets. But the real object of the conjectures from [7] are the characters
〈 · , π〉ψ of Aψ that appear in Arthur’s main local result, and their generalisations to pure
rational forms of G. In this section we show

〈 · , π〉ψ = Tr
(
EvCψ P(π)

)
and verify [7, Conjecture 1], [7, Conjecture 2] and [7, Conjecture 3].

1.3.1. Admissible representations versus equivariant perverse sheaves. As explained in [7],
every Langlands parameter φ ∈ Pλ(LG) determines a point xφ ∈ V and every x ∈ V arises
in this way. The function φ 7→ xφ is also H-equivariant, so it induces a bijection between
Φλ(LG) and the set of H-orbits in V . We write Cφ for the H-orbit of xφ. There is a
canonical isomorphism of groups

Aφ ∼= ACφ , (26)
where Aφ = π0(ZĜ(φ)) is the component group appearing in the pure Langlands cor-
respondence. Consequently, there is a natural bijection between pairs (φ, ρ), where ρ
is a representation of Aφ, and pairs (Cφ,Lρ), where Lρ is the equivariant local system
matching ρ under the isomorphism above. This, in turn, determines a bijection

Πpure,λ(G/F ) → PerHλ(Vλ)simple
/iso

(π, δ) 7→ P(π, δ)
(27)

1.3.2. ABV-packets. Using this bijection, we determine the ABV-packets for all Lang-
lands parameters with infinitesimal parameter λ, in each example, using the definition

ΠABV
pure,φ(G/F ) := {[π, δ] ∈ Πpure,λ(G/F ) | EvCφ P(π, δ) 6= 0}. (28)

By restricting our attention to Langlands parameters of Arthur type, we readily verify
that all Arthur packets for all admissible representations with infinitesimal parameter λ
are ABV-packets:

ΠABV
pure,φψ (G/F ) = Πpure,ψ(G/F ). (29)

Having verified (29) in the examples, we turn to [7, Conjecture 2], which begins with
the canonical isomorphism

Aψ ∼= Amic
Cψ
,

where ψ is an Arthur parameter and where Cψ :=Cφψ . Right away, this isomorphism
tells us that the character 〈 · , π〉ψ of Aψ appearing in Arthur’s main local result may
be interpreted as an equivariant local system on T ∗Cψ (V )sreg. How does the admissible
representation π of G(F ) determine that local system? That question is answered by
[7, Conjecture 2]:

〈ssψ, π〉ψ = (−1)dimCψ−dimCπ Tr
(
EvCψ P(π)

)
(s), (30)

for every s ∈ ZĜ(ψ) and for every admissible representation π of G(F ), where Cπ is the
stratum in V attached to the Langlands parameter of π. In other words, the equivariant
local system on T ∗Cψ (V )sreg determined by the admissible representation π of G(F ) is
EvCψ P(π).



16 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI, AND B. XU

Having calculated the left-hand side of (30) in Section 1.1 and right-hand side in
Section 1.2, we can prove [7, Conjecture 2] in our examples by simply comparing the
results of those calculations. In fact we confirm more in the examples, by showing that

ηψ,s = ηABV
ψ,s , (31)

for every Arthur parameter ψ with infinitesimal parameter λ and for every s ∈ ZĜ(ψ).
Here, ηABV

ψ,s is defined in [7]:

ηABV
ψ,s =

∑
[π,δ]∈Πpure,λ(G/F )

e(δ)(−1)dimCψ−Cπ Tr
(
EvCψ P(π, δ)

)
(as) [π, δ] (32)

where as is the image of s ∈ ZĜ(ψ) in Aψ.

1.3.3. Kazhdan-Lusztig conjecture. Recall in [7, Section 6.3] we have defined a pairing

〈 · , · 〉 : KΠpure,λ(G/F )× KPerHλ(Vλ)→ Z

such that for any (φ, ρ), (φ′, ρ′) ∈ Ξλ(LG)

〈π(φ, ρ),P(φ′, ρ′)〉 = (−1)dim(Cφ)e(φ, ρ)δ(φ,ρ),(φ′,ρ′)

where e(φ, ρ) is the Kottwitz sign of Gδ determined by (φ, ρ). Kazhdan-Lusztig conjecture
predicts that

〈M(φ, ρ),P(φ′, ρ′)〉 = e(φ, ρ)δ(φ,ρ),(φ′,ρ′)

for any (φ, ρ), (φ′, ρ′) ∈ Ξλ(LG). We verify the Kazhdan-Lusztig conjecture in our ex-
amples. This is done by comparing the multiplicity matrix mrep from Section 1.1.3 with
the normalised geometric multiplicity matrix m′geo from Section 1.2.3:

tmrep = m′geo.

As a consequence, we can verify [7, Conjecture 3] in our examples following the argu-
ment below. Let KCΠpure,λ(G/F )st be the subspace of strongly stable virtual represent-
ations in KCΠpure,λ(G/F ) := KΠpure,λ(G/F )⊗Z C. It has a natural basis

ηφ :=
∑

ρ:(φ,ρ)∈Ξλ(LG)

dim(ρ)e(φ, ρ)M(φ, ρ)

parametrized by φ ∈ Pλ(LG)/Hλ. After identifying KCΠpure,λ(G/F ) with

KCPerHλ(Vλ)∗ = HomZ(KPerHλ(Vλ),C),

through the pairing above, we would like to characterize KCΠpure,λ(G/F )st in KCPerHλ(Vλ)∗.
By the Kazhdan-Lusztig conjecture,

〈ηφ,P〉 = χloc
Cφ

(P) :=
∑

ρ:(φ,ρ)∈Ξλ(LG)

(−1)dim(Cφ)mgeo(S(Cφ,Lρ),P),

for any P ∈ KPerHλ(Vλ). Therefore, KCΠpure,λ(G/F )st is spanned by χloc
Cφ

(·) for φ ∈
Pλ(LG)/Hλ in KCPerHλ(Vλ)∗. On the other hand, by Ginzburg, Kashiwara and Dubson
[6] [13], we know that for any φ ∈ Pλ(LG) and P ∈ KPerHλ(Vλ),

χmicCφ
(P) := rankEvCφ(P) =

∑
φ′∈Pλ(LG)/Hλ

c(Cφ, Cφ′)χ
loc
Cφ′

(P),

where c(Cφ, Cφ′) satisfies the following properties: c(Cφ, Cφ) = (−1)dimCφ ; and c(Cφ, Cφ′) 6=
0 only if C̄φ′ ⊇ Cφ. The coefficients c(Cφ, Cφ′) are related to the local Euler obstructions
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defined by MacPherson. In particular, it measures the singularity of the closure of Cφ′ at
its boundary stratum Cφ. As a consequence, we see the set of χmicCφ

(·) for φ ∈ Pλ(LG)/Hλ

forms another basis for KΠpure,λ(G/F )stC . Finally, it is easy to see that for any φ ∈ Pλ(LG)
and P ∈ KPerHλ(Vλ)

〈ηABV
Cφ

,P〉 = (−1)dim(Cφ)χmicCφ
(P).

So the set of ηABV
Cφ

for φ ∈ Pλ(LG)/Hλ also forms a basis for KΠpure,λ(G/F )stC . This
proves [7, Conjecture 3].

1.3.4. Aubert duality and Fourier transform. In order to compare Aubert duality with the
Fourier transform, we equip V with the symmetric bilinear form (x, y) 7→ −(x | ty ), where
t refers to transposition in Jλ, and we use this to define an isomorphism V → V ∗. We
use the notation Ĉ := tC∗. Let ϑ : H → H be the isomorphism of algebraic groups given
by ϑ(h) = th−1, in which t refers to transposition in Jλ. Then V → V ∗ is equivariant
for the usual action of H on V and the twist by ϑ of the usual action of H on V ∗. Now,
equivariant pullback defines an equivalence of categories PerH(V ∗) → PerH(V ). When
pre-composed with the Fourier transform Ft : PerH(V )→ PerH(V ∗), this defines a functor
denoted by ∧ : PerH(V )→ PerH(V ). Our examples show

P(π̂, δ) = P̂(π, δ). (33)

The local system D on T ∗H(V ∗)reg appearing in the twisting functor of Section 1.2.7
admits an interesting description on a subbundle of T ∗H(V ∗)reg. Suppose C is of Arthur
type, so C = Cψ for an Arthur parameter ψ with infinitesimal parameter λ. Since DCψ
is a rank-1 equivariant local system on T ∗Cψ (V )reg, it defines a character of Aψ, denoted
here by TrDCψ . In this paper we see in our examples that

TrDCψ = χψ, (34)

where χψ is the character of Aψ that appeared in Section 1.1.5.
Using the equivalence PerH(V ∗) → PerH(V ) described above, (22) may be re-written

in form
EvĈ P̂ = EvC P ⊗DC .

Taking traces, this implies

Tr
(
EvĈ P̂

)
(a) = Tr (EvC P) (a) TrDC(a).

for every a ∈ Amic
C . Taking P = P(π) and C = Cψ and using (33) and (34), we recover

(10).

1.3.5. ABV-packets that are not pure Arthur packets. While all pure Arthur packets are
ABV-packets in these examples, it is not true that all ABV-packets are pure Arthur
packets. In Sections 5.3.6 and 7.3.5 we discuss examples of ABV-packets that are not
pure Arthur packets and yet enjoy many of the properties we expect from Arthur packets.

1.4. Endoscopy and equivariant restriction of perverse sheaves. One of the in-
gredients in the proof of [7, Conjecture 2] in [8] for unipotent representations of odd
orthogonal groups, is the following theorem. Let G′ be an endoscopic group for G though
which λ : WF → LG factors, thus defining λ′ : WF → LG

′. Set V ′ = Vλ′ . Let C ′ be
an H ′-orbit in V ′; pick (x′, ξ′) ∈ T ∗C′(V ′)reg and let C be the H-orbit in V of the image
of x′ under V ′ ↪→ V . Suppose that the conormal map T ∗C′(V

′) → T ∗C(V ) restricts to
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T ∗C′(V
′)reg → T ∗C(V )reg. Let (x, ξ) ∈ T ∗C(V )reg be its image of (x′, ξ′) ∈ T ∗C′(V ′)reg under

that map. Then, for every P ∈ PerH(V ),

(−1)dimC−dimC′ Tr(Ev′(x′,ξ′) P|V ′)(a′s) = Tr(Ev(x,ξ) P)(as), (35)

where as is the image of s under ZĜ(x, ξ) → A(x,ξ) and a′s is the image of s under
ZĜ′(x

′, ξ′)→ A(x′,ξ′).
In the examples in this paper, we calculate both sides of (35), independently, in order to

illustrate how the functor of vanishing cycles Ev interacts with the equivariant restriction
functor DH(V )→ DH′(V

′). As explained in [8], it is (35) that allows us to conclude that
ηABV
φ,s is the endoscopic transfer of a strongly stable virtual representation on G′.

1.4.1. Endoscopic Vogan varieties. After recalling the endoscopic groups G′ and the in-
finitesimal parameters λ′ : WF → LG′ such that λ = ε ◦λ′ from Section 1.1.6, we describe
V ′ :=Vλ′ and its stratification into orbits under the action by H ′ :=ZĜ′(λ

′). In all cases,
G′ = G(2)×G(1) so λ′ = (λ(2), λ(1)). Except for Section 2, we have arranged the sequence
of examples so that by the time we get to λ′ : WF → LG′, both λ(1) : WF → LG

(1)

and λ(2) : WF → LG
(2) have already been studied. Since H ′ = H(2) × H(1) and

V ′ = V (2) × V (1), we use the equivalence

PerH(2)(V (2))× PerH(1)(V (1)) PerH′(V
′)�

to answer all questions about PerH′(V ′) using earlier work.
The H ′-invariant function ( · | · ) : T ∗(V ′) → A1 is simply the sum of the functions

T ∗(V (1)) → A1 and T ∗(V (2)) → A1 while [ · , · ] : T ∗(V ′) → h′ is likewise built from the
functions T ∗(V (1))→ h(1) and T ∗(V (2))→ h2. Consequently, the conormal bundle is

T ∗H′(V
′) = T ∗H(2)(V

(2))× T ∗H(1)(V
(2)),

so PerH′(T
∗
H′(V

′)reg) can be completely described using earlier work.

1.4.2. Vanishing cycles. It follows from the Thom-Sebastiani Theorem [11] that

Ev′
(
IC(C(2),L(2)) � IC(C(1),L(1))

)
=
(
Ev IC(C(2),L(2))

)
�
(
Ev IC(C(1),L(1))

)
.

Thus, the functor

Ev′ : PerH′(V
′)→ PerH′(T

∗
H′(V

′)reg)

may also be deduced from earlier work.

1.4.3. Restriction. The equivariant restriction functor

DH(V ) −→ DH′(V
′)

F 7→ F|V ′
(36)

does not take perverse sheaves to perverse sheaves. Since we wish to illustrate (35), we
compute (36) after passing to Grothendieck groups.
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1.4.4. Restriction and vanishing cycles. We have now assembled all the pieces needed to
illustrate (35). We begin by identifying all (x′, ξ′) ∈ T ∗H′(V ′)reg such that the image of
(x′, ξ′) in T ∗H(V ) is regular. This gives us an opportunity to revisit the question of finding
all Arthur parameters ψ : LF × SL(2) → LG with infinitesimal parameter λ that factor
through ε : LG

′ → LG to define Arthur parameters ψ : LF×SL(2)→ LG with infinitesimal
parameter λ′. Finally, for such (x′, ξ′) we pick a simple perverse sheaf P ∈ PerH(V ) and
compute both sides of (35), where s is determined by the elliptic endoscopic group G′.

2. SL(2) 4-packet of quadratic unipotent representations

Set G = SL(2) over F ; so Ĝ = PGL(2,C) and LG = PGL(2,C) ×WF . Suppose q is
odd.

The function H1(F,G)→ H1(F,Gad) is injective but not surjective; indeed, H1(F,G)
is trivial but H1(F,G∗ad) ∼= µ2. In other words, SL(2) has no pure rational forms but it
does have an inner rational form.

Let $ ∈ F be a uniformizer and let u ∈ F be a non-square unit integer. Let E/F
be the biquadratic extension E = F (

√
$,
√
u). Then Gal(E/F ) = {1, σ, τ, στ} where

σ(
√
u) = −

√
u and τ(

√
$) = −

√
$. Define % : Gal(E/F )→ PGL(2) by

σ 7→
(

0 1
−1 0

)
and τ 7→

(
1 0
0 −1

)
.

Let λ : WF → LG be the infinitesimal parameter defined by the composition LF →WF →
ΓF → Gal(E/F ) followed by % : Gal(E/F )→ Ĝ; thus,

λ(w) =

(
0 1
−1 0

)
w ∈ LG, if w|E = σ,

and
λ(w) =

(
1 0
0 −1

)
w ∈ LG, if w|E = τ.

2.1. Arthur packets.

2.1.1. Parameters. There is only one Langlands parameter with infinitesimal parameter λ
chosen above: φ(w, x) = λ(w). This Langlands parameter is of Arthur type: ψ(w, x, y) =
λ(w).

2.1.2. L-packets. With φ as above, we have

ZĜ(φ) =

{(
1 0
0 1

)
,

(
0 1
−1 0

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)}
.

Let Aφ ∼= µ2 × µ2 be the isomorphism determined by(
0 1
−1 0

)
7→ (−1,+1) and

(
1 0
0 −1

)
7→ (+1,−1).

Using this isomorphism, the characters of Aφ will be denoted by (++), (+−), (−+) and
(−−). The L-packet Πφ(G(F )) is the unique cardinality-4 L-packet for SL(2, F ):

Πφ(G(F )) = {π(φ,++), π(φ,+−), π(φ,−+), π(φ,−−)}.
This L-packet, which is described in [19, Section 11], may be obtained by restricting a
supercuspidal representation of GL(2, F ) given in [12, Theorem 4.6] to SL(2, F ). Altern-
ately, these depth-zero supercuspidal representations are produced by compact induction
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from a maximal parahoric (there are two, up to G(F )-conjugation), from (the inflation of)
the two cuspidal irreducible representations appearing in the only non-singleton Deligne-
Lusztig representation of SL(2,Fq). The characters of these representations are described
in [2, §15].

Since G has no pure inner forms, the pure packet for the Langlands parameter φ is an
L-packet:

Πpure,φ(G/F ) = Πφ(G(F )).

2.1.3. Arthur packets. The L-packet Πφ(G(F )) is an Arthur packet:

Πpure,ψ(G/F ) = Πpure,φ(G/F ).

2.1.4. Aubert duality. Aubert involution fixes all the representations in this example.

2.1.5. Stable distributions and endoscopy. Since ψ is trivial on SL(2) in its domain, it
follows that sψ = 1, so the stable invariant distribution (12) attached to ψ is

Θψ = Trπ(φ,++) + Trπ(φ,+−) + Trπ(φ,−+) + Trπ(φ,−−).

For any s ∈ ZĜ(ψ) (the 4-group ZĜ(φ) appearing in Section 2.1.2) the coefficients of Θψ,s

appearing in (13) are simply

〈s, π(φ,±±)〉ψ = (±±)(s). (37)

Besides G itself, three endoscopic groups are relevant to ψ: the unramified torus U(1)
split over F (

√
u), and the two ramified tori split over F (

√
$), and F (

√
u$). More

precisely, in the case of the unramified torus, take s ∈ Ĝ to be

s =

(
1 0
0 −1

)
and set

n =

(
0 1
−1 0

)
.

Note that
s = ψ◦(w), if w|E = τ

and
n = ψ◦(w), if w|E = σ.

Let G′ be the endoscopic group U(1) split over F (
√
u) with: Ĝ′ = ZĜ(s)0; action of

WF on Ĝ′ determined by π0(ZĜ(s)) ∼= Gal(F (
√
u)/F ); and ε : LG′ → LG given by

Ĝ′ = ZĜ(s)0 ⊂ Ĝ and
ε(1 o w) :=nw, if w|E = σ.

Then the Arthur parameter ψ : LF × SL(2)→ LG factors through ε : LG′ → LG to define
ψ′ : LF × SL(2)→ LG′, so

ψ′(w) = so w ∈ LG′, if w|E = τ.

The representation of G′(F ) with Arthur parameter ψ′ is the quadratic character attached
to the extension F (

√
u)/F by class field theory. Then the endoscopic transfer of the

quadratic character from G′(F ) to G(F ) is

Θψ,s = Trπ(φ,++)− Trπ(φ,+−) + Trπ(φ,−+)− Trπ(φ,−−).
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The set-up is similar for the ramified tori, as we now explain. Take

s =

(
0 1
−1 0

)
, respectively,

(
0 1
1 0

)
,

and, in the same order, set

n =

(
0 1
1 0

)
, respectively,

(
1 0
0 −1

)
.

Then
s = ψ◦(w), if w|E = σ, respectively, w|E = στ,

and
n = ψ◦(w), if w|E = στ, respectively, w|E = τ.

Let G′ be the endoscopic group U(1) split over F (
√
$), respectively, F (

√
u$) with:

Ĝ′ = ZĜ(s)0; action of WF on Ĝ′ determined by

π0(ZĜ(s)) ∼= Gal(F (
√
$)/F ), respectively, π0(ZĜ(s)) ∼= Gal(F (

√
u$)/F );

and ε : LG′ → LG given by Ĝ′ = ZĜ(s)0 ⊂ Ĝ and

ε(1 o w) :=nw, if w|E = στ, respectively, w|E = τ.

Then the Arthur parameter ψ : LF × SL(2)→ LG factors through ε : LG′ → LG to define
ψ′ : LF × SL(2)→ LG′, so

ψ′(w) = so w ∈ LG′, if w|E = σ, respectively, w|E = στ.

The representation of G′(F ) with Arthur parameter ψ′ is the quadratic character attached
to the extension F (

√
$)/F , respectively, F (

√
u$)/F , by class field theory. Then the

endoscopic transfer of the quadratic character from G′(F ) to G(F ) is Θψ,s which, in
order, is

Θψ,s = Trπ(φ,++) + Trπ(φ,+−)− Trπ(φ,−+)− Trπ(φ,−−), respectively,
Θψ,s = Trπ(φ,++)− Trπ(φ,+−)− Trπ(φ,−+) + Trπ(φ,−−).

(38)
Together with the stable distribution Θψ, these three Θψ,s form a basis for the vector

space spanned by the characters of representations with infinitesimal parameter λ. These
four distributions are expressed in terms of the Fourier transform of regular semisimple
orbital integrals, and their endoscopic transfer, in [9, §6.2].

2.1.6. Jacquet-Langlands. The L-packet that this example treats also appears in [5, §4,
page 215], alongside the L-packet for the inner form corresponding to a non-trivial cocycle
in Z1(F,Gad), which determines the compact form of G, mentioned at the beginning of
this section and now denoted by Gσ. The same Langlands parameter φ as above, when
viewed as a Langlands parameter for Gσ, produces a singleton L-packet. In this case
Sψ,sc = ZĜsc

(ψ), which is the subgroup of Ĝsc = SL(2) isomorphic to Q8 given by

Sψ,sc =


(

1 0
0 1

)
,

(
0 i
i 0

)
,

(
i 0
0 −i

)
,

(
0 1
−1 0

)
(
−1 0
0 −1

)
,

(
0 −i
−i 0

)
,

(
−i 0
0 i

)
,

(
0 −1
1 0

)
 .

The compact form Gσ of G = SL(2) carries exactly one admissible representation with
infinitesimal parameter λ, and it corresponds to the unique irreducible 2-dimensional
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representation of this group. We denote this representation by π(φ, 2). Although the
theory presented in [7] does include inner rational forms that are not pure, in Section 2.2.6
we will show how to adapt the geometric picture so that it does include π(φ, 2).

2.2. Vanishing cycles of perverse sheaves.

2.2.1. Vogan variety and orbit duality. Recall the groups Hλ, Jλ and Kλ from [7, Section
3]. In the example at hand, these are given by

Hλ = Jλ =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 1
−1 0

)}
∼= µ2 × µ2

and Kλ = NĜ∗(T̂ ). In particular, Gλ = 1 and λnr : WF → LG is trivial so Vλnr = 0 and
Hλnr = 1.

2.2.2. Equivariant perverse sheaves. With reference to [7, Theorem 3.1.1] we have

Rep(Aλ) PerHλ(Vλ) PerHλnr
(0)

Rep(µ2 × µ2) Perµ2×µ2(0) Per1(0).

equiv. π∗

π∗

In particular, there are four simple objects in PerHλ(Vλ) corresponding to the four simple
Hλ-equiviariant local systems on Vλ = {0}, or equivalently, to the four characters of Aλ:

PerH(V )simple
/iso = {(++)V , (+−)V , (−+)V , (−−)V }.

2.2.3. Vanishing cycles of perverse sheaves. We wish to describe the functor

Ev : PerHλ(Vλ)→ PerHλ(T ∗Hλ(Vλ)reg).

We have already seen that PerHλ(Vλ) = Rep(Aλ). In this case we have T ∗Hλ(Vλ)reg =
{(0, 0)}, so PerHλ(T ∗Hλ(Vλ)reg) = Rep(Aλ). With these equivalences,

Ev : Rep(Aλ)→ Rep(Aλ)

is the identity functor:
Evψ(±±)V (s) = (±±)(s) (39)

for every s ∈ ZĜ(ψ).

2.2.4. Fourier transform, vanishing cycles and the twisting functor. Since both Ev and Ft
are trivial in this example, the material of Section 1.2.7 is trivial.

2.2.5. Arthur sheaves. Since Vλ = {0} is a single stratum, there is only one stable perverse
sheaf to consider:

AC0
= (++)V ⊕ (+−)V ⊕ (−+)V ⊕ (−−)V .

Of course, this is just the regular representation of Aλ.
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2.2.6. Jacquet-Langlands. We now show how to extend the geometric picture to include
the admissible representation π(φ, 2) of the inner rational form Gσ of G.

Replace the group action Hλ×Vλ → Vλ with the group action Hλ,sc×Vλ → Vλ, where

Hλ,sc :=ZĜsc
(λ),

and where Hλ,sc acts on Vλ through Hλ,sc → Hλ induced by the universal cover Ĝsc → Ĝ.
The analysis of [7, Section Fix] shows that

PerHλ,sc(Vλ) ≡ Rep(Aλ,sc),

where Aλ,sc :=π0(Hλ,sc). Of course, Aλ,sc is just the group Sψ,sc appearing above. Now
Aλ,sc has five irreducible representations up to equivalence: four one-dimensional repres-
entations obtained by pullback from the four characters of Aλ we have already seen, and
one two dimensional representation, denoted by E. Thus, the category Rep(Aλ,sc) has
exactly five simple objects up to isomorphism, and thence PerHλ,sc(Vλ) has exactly five
simple objects up to isomorphism:

Persimple
Hλ,sc

(Vλ)/iso = {EV , (++)V , (+−)V , (−+)V , (−−)V }.

The rest of the story now carries through. For instance, the diagram of functors from
Section 2.2.2 becomes the following diagram:

Rep(Aλ,sc) PerHλ,sc(Vλ) PerH0
λ,sc

(Vλ)

Rep(Q8) PerQ8(0) Per1(0).

equiv. π∗

π∗

Also, the functor vanishing cycles, Ev, is again the identity functor Rep(Aλ,sc)→ Rep(Aλ,sc),
and the Arthur sheaf is again just the regular representation of Aψ,sc. Thus, simply re-
placing category PerHλ(Vλ) with PerHλ,sc(Vλ) extends the theory from pure inner twists
of G to inner twists of G, allowing us to see the Jacquet-Langlands correspondence in the
geometric perspective of [7].

2.3. Adams-Barbasch-Vogan packets.

2.3.1. Admissible representations versus equivariant perverse sheaves. The following table
displays Vogan’s bijection between PerHλ(Vλ)simple

/iso and Πpure,λ(G/F ), as discussed in
Section 1.3.1.

PerHλ(Vλ)simple
/iso Πpure,λ(G/F )

(++)V π(φ,++)
(+−)V π(φ,+−)
(−+)V π(φ,−+)
(−−)V π(φ,−−)

2.3.2. ABV-packets. Using the bijection from Section 2.3.1 and the trivial functor of Ev
from Section 2.2.3, it follows directly from definition (28) that

Πψ(G(F )) = ΠABV
pure,φψ (G/F ).
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With reference to (32) and (39), in this example we find

ηABV
ψ,s = Trπ(φ,++)− Trπ(φ,+−) + Trπ(φ,−+)− Trπ(φ,−−),

ηABV
ψ,s = Trπ(φ,++) + Trπ(φ,+−)− Trπ(φ,−+)− Trπ(φ,−−), and then
ηABV
ψ,s = Trπ(φ,++)− Trπ(φ,+−)− Trπ(φ,−+) + Trπ(φ,−−).

Comparing ηABV
ψ,s above with ηψ,s as calculated in Section 2.1.5 in (37) and (38), we see

that
ηABV
ψ,s = ηψ,s,

in all four cases, thus confirming [7, Conjecture 2] in this example.

2.3.3. Kazhdan-Lusztig conjecture. The material of Section 1.3.3 is trivial in this example.

2.4. Endoscopy and equivariant restriction of perverse sheaves. In Section 2.1.5
we saw that the Arthur parameter ψ factors though three elliptic endoscopic groups,
G′. For each of these G′, the infinitesimal parameter λ : WF → LG factors through
ε : LG′ → LG to define λ′ : WF → LG′.

2.4.1. Endoscopic Vogan variety. For each G′ above, H ′ :=Z
Ĝ′

(λ′) is the subgroup of H
generated by s in H ′; see Section 2.1.5 for s. Thus, PerH′(V ′) ≡ Rep(H ′) has two simple
objects, now denoted by (+)V ′ and (−)V ′ . Now, Vogan’s bijection for λ′ : WF → LG

′ is
given by the following table.

PerH′(V
′)simple
/iso Πpure,λ′(G

′/F )

(+)V ′ π(φ′,+)
(−)V ′ π(φ′,+)

Then π(φ′,+) = π(φ′,−) is the quadratic character of G′(F ) = N−1
E′/F (1) determined by

φ′.

2.4.2. Vanishing cycles. Arguing as in Section 2.2.3, we see that

Ev′ : Rep(Aλ′)→ Rep(Aλ′)

is trivial.

2.4.3. Restriction. The restriction functor PerH(V )→ PerH′(V
′) is just restriction Rep(H)→

Rep(H ′) to the subgroup generated by s.

2.4.4. Restriction and vanishing cycles. We see (35) almost trivially: the left-hand side
of (35) is

(TrEvψ(±±)V )(as) = (±±)(s)

while the right-hand side of (35) is

(−1)dimC−dimC′(TrEv′ψ′(±±)V |V ′(a′s) = (−1)0−0(±±)(s).

Arguing as in [8], it follows from (35) that ηABV
ψ,s is the Langlands-Shelstad lift of ηABV

ψ′ .
These lifts are found by considering each case in turn: in order, take s ∈ Ĝ to be

s =

(
1 0
0 −1

)
,

(
0 1
−1 0

)
, and then

(
0 1
1 0

)
;

in the same order, the quadratic extension E′/F is

E′/F = F (
√
u)/F, F (

√
$)/F, and then F (

√
u$)/F.
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3. SO(3) unipotent representations, regular infinitesimal parameter

Set G = SO(3) split over F , so Ĝ = SL(2,C) and LG = SL(2,C)×WF . In this case,

H1(F,G) = H1(F,Gad) = H1(F,Aut(G)) ∼= Z/2Z,
so there are two isomorphism classes of rational forms of G, each pure. We will use the
notation G0 = G for the split form and G1 for the non-quasisplit form of SO(3) given by
the quadratic form −ε$ 0 0

0 ε 0
0 0 $

 .

Let λ : WF → Ĝ be the parameter defined by

λ(w) =

(
|w|1/2 0

0 |w|−1/2

)
.

Even this simple example exhibits some interesting geometric phenomena, but the
Arthur packets in this example are singletons, so there is no interesting endoscopy here.
Nevertheless, this example will be important later when we consider other groups for
which SO(3) is an endoscopic group.

3.1. Arthur packets.

3.1.1. Parameters. Up to ZĜ(λ)-conjugacy, there are two Langlands parameters φ : LF →
Ĝ with infinitesimal parameter λ; they are given by

φ0(w, x) = λ(w) = ν2(dw) and φ1(w, x) = ν2(x),

where ν2 : SL(2,C)→ SL(2,C) is the identity function, thus an irreducible 2-dimensional
representation of SL(2,C). So,

Pλ(LG)/ZĜ(λ) = {φ0, φ1}.
Both φ0 and φ1 are of Arthur type: define

ψ0(w, x, y) := ν2(y) and ψ1(w, x, y) := ν2(x).

Then
Qλ(LG)/ZĜ(λ) = {ψ0, ψ1}.

Observer that ψ1 is tempered but ψ0 is not. Also observe that the Arthur parameters ψ0

and ψ1 are Aubert dual to each other.

3.1.2. L-packets. The component groups for the parameters φ ∈ Pλ(LG) are

Aφ0
= π0(ZĜ(φ0)) = π0(T̂ ) ∼= 1 and Aφ1

∼= π0(ZĜ(φ1)) = π0(Z(Ĝ)) ∼= µ2.

Denoting the two characters of µ2 by + and −, the L-packets for these Langlands para-
meters are:

Πφ0
(G0(F )) = {π(φ0)}, Πφ1

(G0(F )) = {π(φ1,+)},
Πφ0

(G1(F )) = ∅, Πφ1
(G1(F )) = {π(φ1,−)}.

Here we can view these representations as that of GL(2, F ) (resp. multiplicative group of
the quaternion algebra D) with trivial central character for G(F ) ∼= GL(2, F )/F× (resp.
G1(F ) ∼= D×/F×). Then π(φ0) (resp. π(φ1,+)) is given by the trivial (resp. Steinberg)
representation of GL(2, F ) and π(φ1,−) is given by the trivial representation of D×.
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To see how characters ρ of Aφ determine pure inner forms of G, pullback ρ along
π0(Z(Ĝ)) → π0(ZĜ(φ)) and then use the Kottwitz isomorphism: the trivial character of
Aφ0 (resp. Aφ1) determines the trivial character of π0(Z(Ĝ)) and therefore the split pure
inner form of G; the non-trivial character − of Aφ1 determines the non-trivial character of
π0(ZĜ) and therefore the non-trivial pure inner form of G. Therefore, the pure L-packets
are:

Πpure,φ0(G/F ) = {[π(φ0), 0]}, Πpure,φ1(G/F ) =

{
[π(φ1,+), 0]
[π(φ1,−), 1]

}
.

3.1.3. Multiplicities in standard modules.

π(φ0) π(φ1,+) π(φ1,−)

M(φ0) 1 1 0
M(φ1,+) 0 1 0
M(φ1,−) 0 0 1

3.1.4. Arthur packets. The component groups Aψ0
and Aψ1

are both Z(Ĝ). The Arthur
packets for ψ ∈ Qλ(LG) are

Πψ0
(G0(F )) = {π(φ0)}, Πψ1

(G0(F )) = {π(φ1,+)},
Πψ0(G1(F )) = {π(φ1,−)}, Πψ1(G1(F )) = {π(φ1,−)}.

so the pure Arthur packets are

Πpure,ψ0
(G/F ) =

{
[π(φ0), 0]

[π(φ1,−), 1]

}
, Πpure,ψ1

(G/F ) =

{
[π(φ1,+), 0]
[π(φ1,−), 1]

}
.

3.1.5. Aubert duality. Aubert duality for G0(F ) and G1(F ) is given by the following table.

π π̂

π(φ0) π(φ1,+)
π(φ1,−) π(φ1,−)

The twisting character χψ0
of Aψ0

is trivial; likewise, the twisting character χψ1
of

Aψ1
.

3.1.6. Stable distributions and endoscopy. The characters 〈 · , π〉ψ appearing in the in-
variant distributions ΘG

ψ,s (13) are given by the first two rows of the following table. The
last row gives the analogous characters for ΘG1

ψ,s.

π 〈 · , π〉ψ0
〈 · , π, 〉ψ1

π(φ0) + 0
π(φ1,+) 0 +
π(φ1,−) − −

Using the notation s = diag(s1, s1) ∈ Aψ = Z(Ĝ), we now have

ΘG
ψ0,s

= Trπ(φ0), ΘG1

ψ0,s
= −s1 Trπ(φ1,−),

ΘG
ψ1,s

= Trπ(φ1,+), ΘG1

ψ1,s
= s1 Trπ(φ1,−).

Therefore, in this example, the virtual representations ηψ,s (16) are:

ηψ0,s = π(φ0) + s1π(φ1,−),
ηψ1,s = π(φ1,+)− s1π(φ1,−).
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Since Aψ = Z(Ĝ), the only endoscopic groups relevant to these parameters is G = G0.

3.2. Vanishing cycles of perverse sheaves.

3.2.1. Vogan variety and orbit duality. Since λ : WF → LG is unramified and λ(Fr) is
elliptic and G is split, we have λnr = λ.

The Vogan variety for λ is

Vλ =

{(
0 y
0 0

)
∈ ĝ

∣∣ y} ∼= A1,

with Hλ :=ZĜ(λ)-action (
t 0
0 t−1

)
:

(
0 y
0 0

)
7→
(

0 t2y
0 0

)
so Vλ is stratified into Hλ-orbits

C0 :=

{(
0 0
0 0

)}
and Cy :=

{(
0 y
0 0

)
∈ ĝ | y 6= 0

}
.

The dual Vogan variety V ∗λ is given by

V ∗λ =

{(
0 0
y′ 0

)
∈ ĝ

∣∣ y′} ∼= A1,

with Hλ-action (
t 0
0 t−1

)
:

(
0 0
y′ 0

)
7→
(

0 0
t−2y′ 0

)
,

so V ∗λ is stratified into Hλ-orbits

Ct0 :=

{(
0 0
0 0

)}
and Cty :=

{(
0 0
y′ 0

)
∈ ĝ | y′ 6= 0

}
The Hλ-invariant function [ · , · ] : T ∗(Vλ)→ hλ is given by(

0 y
y′ 0

)
7→ yy′

(
1 0
0 −1

)
.

From this, dual orbits are easily found.

Cy = Ĉ0 dim = 1 C∗0 = Cty

C0 = Ĉy dim = 0 C∗y = Ct0

3.2.2. Equivariant perverse sheaves. On the closed stratum C0 there is one simple local
system 1C0 and its perverse extension IC(1C0) is the rank-one skyscraper sheaf at C0.
The open stratum Cy carries two simple local systems: 1Cy and the non-trivial ECy
corresponding, respectively, to the trivial and non-trivial characters of the equivariant
fundamental group of Cy. Therefore, the irreducible shifted standard sheaves on V are:

S(1C0
) = jC0 !1C0

[0],
S(1Cy ) = jCy !

1Cy [1], and S(ECy ) = jCy !
ECy [1].

There are three simple objects in PerHλ(Vλ) = PerGm(A1) up to isomorphism:

PerHλ(Vλ)simple
/iso =

{
IC(1C0

), IC(1Cy ), IC(ECy )
}
.
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The perverse extension of 1Cy is the constant sheaf 1Vλ [1] = IC(1Cy ) while the perverse
extension IC(ECy ) of ECy is the standard sheaf obtained by extension by zero from ECy [1].

P P|C0
P|C1

IC(1C0
) 1C0

[0] 0
IC(1Cy ) 1C0

[1] 1Cy [1]
IC(ECy ) 0 ECy [1]

The first two row of this table are clear since C0 and Cy are smooth. To see the third
row, let π : V → V be the proper double cover given by y 7→ y2 and note that

π∗(1V [1]) = IC(1Cy )⊕ IC(ECy ),

by the Decomposition Theorem. Since π∗(1V [1])|C0
is one-dimensional and IC(1Cy )|C0

is one-dimensional, it follows that IC(ECy )|C0
= 0.

Thus, the geometric multiplicity matrix is

S(1C0
) S(1Cy ) S(ECy )

IC(1C0
) 1 0 0

IC(1Cy ) −1 1 0
IC(ECy ) 0 0 1

and the normalised geometric multiplicity matrix is

1
\
C0

1
\
Cy

E\Cy
1
]
C0

1 0 0

1
]
Cy

1 1 0

E]Cy 0 0 1

3.2.3. Cuspidal support decomposition and Fourier transform. Up to conjugation, Ĝ =

SL(2,C) admits exactly two cuspidal Levi subgroups: Ĝ itself and T̂ = GL(1). Thus,

PerHλ(Vλ) = PerHλ(Vλ)T̂ ⊕ PerHλ(Vλ)Ĝ.

Simple objects in these two subcategories are listed below.

PerHλ(Vλ)simple
T̂ /iso

PerHλ(Vλ)simple
Ĝ/iso

IC(1C0
)

IC(1Cy ) IC(ECy )

The Fourier transform is given on simply objects by:

Ft : PerHλ(Vλ) −→ PerHλ(V ∗λ )
IC(1C0) 7→ IC(1C∗0 ) = IC(1Cty )

IC(1Cy ) 7→ IC(1C∗y ) = IC(1Ct0)

IC(ECy ) 7→ IC(EC∗0 ) = IC(ECty )

3.2.4. Equivariant local systems on the regular conormal bundle. The regular conormal
bundle T ∗Hλ(Vλ)reg decomposes into two Hλ orbits

T ∗Hλ(Vλ)reg = T ∗C0
(Vλ)reg

⊔
T ∗Cy (Vλ)reg
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Table 3.2.5.1. Ev : PerHλ(Vλ)→ PerHλ(T ∗Hλ(Vλ)reg) on simple objects,
for λ : WF → LG given at the beginning of Section 3.

PerH(V )
Ev−→ PerH(T ∗H(V )reg)

IC(1C0
) 7→ IC(1O0

)
IC(1Cy ) 7→ IC(1Oy )
IC(ECy ) 7→ IC(EOy )⊕ IC(EO0)

P EvC0 P EvCy P
IC(1C0

) + 0
IC(1Cy ) 0 +
IC(ECy ) − −

given by

T ∗C0
(Vλ)reg =

{(
0 y
y′ 0

)
| y = 0
y′ 6= 0

}
, T ∗Cy (Vλ)reg =

{(
0 y
y′ 0

)
| y 6= 0
y′ = 0

}
.

We remark that

T ∗C0
(Vλ)reg = T ∗C0

(Vλ)sreg = C0 × C∗0 and T ∗Cy (Vλ)reg = T ∗Cy (Vλ)sreg = Cy × C∗y .

These components are Hλ-orbits, so every H-equivariant perverse sheaf on T ∗H(V )reg is a
standard sheaf shifted to degree 1. The equivariant fundamental groups are both given
by

Amic
C = π1(T ∗C(Vλ), (x, ξ))ZHλ (x,ξ)0 = π0(ZHλ(x, ξ)) = Z(Ĝ) ∼= {±1}.

Let 1Oψ be the constant local system on T ∗Cψ (Vλ)sreg and let EOψ be the non-trivial
H-equivariant local system on T ∗Cψ (Vλ)sreg. Then

IC(1Oj ) = S(1Oj ) and IC(EOj ) = S(EOj ).

In summary,
LocH(T ∗C0

(V )sreg)simple
/iso = {1O0

, EO0
}

and
LocH(T ∗Cy (V )sreg)simple

/iso =
{
1Oy , EOy

}
.

3.2.5. Vanishing cycles of perverse sheaves. The functor Ev : PerH(V )→ PerH(T ∗H(V )reg)
is given on simple objects in Table 3.2.5.1. The lower part uses the identification of local
systems on the regular conormal with representations of the corresponding equivariant
fundamental groups, so each EvC P is given as a character of Amic

C .
We now explain the computations behind Table 3.2.5.1.
(a) From [7, Theorem 5.3.1] it follows immediately that

EvCy IC(1Cy ) = 1Oy [1] EvCy IC(ECy ) = EOy [1]
EvCy IC(1C0) = 0 EvC0 IC(1C0) = 1O0 [0].

It only remains, therefore, to determine EvC0
IC(1Cy ) and EvC0

IC(ECy ).
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(b) Since IC(1Cy ) = 1V [1], we have

EvC0 IC(1Cy ) = RΦyy′(1V [1] � 1C∗0
)|T∗C(V )reg .

As 1V � 1C∗0
= 1V×C∗0 is a local system and the function (y, y′) 7→ yy′ is smooth

on V × C∗0 , it follows [10, Exposé XIII, Reformulation 2.1.5] that

EvC0 IC(1Cy ) = 0.

Note that C∗0 specifically excludes the locus y′ = 0, which is where the singularities
would be.

(c) We now consider the case of IC(ECy ), using the proper double cover π : V → V ,
already used in Section 3.2.2. Recall that

π∗(1V [1]) = IC(1Cy )⊕ IC(ECy ).

By [7, Theorem 5.3.1]

EvC0
π∗(1V [1]) = EvC0

IC(1Cy )⊕ EvC0
IC(ECy ).

We have just seen that EvC0
IC(1Cy ) = 0, so

EvC0
IC(ECy ) = EvC0

π∗(1V [1]).

By [7, Lemma 5.2.1],

EvC0 π∗(1V [1]) = π!

(
RΦy2y′(1V×C∗0 [1])|T∗C(V )π-reg

)
.

Since π is an isomorphism on T ∗C(V )π-reg,

EvC0 π∗(1V [1]) = RΦy2y′(1V×C∗0 [1])|T∗C(V )reg .

Now,

RΦy2y′(1V×C∗0 [1]) = π′!1C0×C∗0 [1],

where π′ : C∗0 → C∗0 is the double cover y′ 7→ y′2. Note that

π′!1C0×C∗0 [1] = π′!1O0
[1].

By the Decomposition Theorem,

π′!1O0
[1] = 1O0

[1]⊕ EO0
[1],

where EO0
is the non-trivial equivariant local system on O0 introduced in Sec-

tion 3.2.4, which is the associated to the double cover arising from taking
√
y′

over O0. Therefore,

EvC0
IC(ECy ) = EO0

[1].

This completes the calculation of Ev : PerH(V ) → PerH(T ∗(V )reg) on simple objects, as
displayed in Table 3.2.5.1.
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3.2.6. Fourier transform, vanishing cycles and the twisting functor. Having found Ev :
PerH(V )→ PerH(T ∗H(V )reg) on simple objects, we also know Ev∗ : PerH(V ∗)→ PerH(T ∗H(V ∗)reg)
on simple objects. We gather this information in the table below. The twisting functor
T from Section 1.2.7 is just a∗ in this example.

PerH(V )
Ev−→ PerH(T ∗H(V )reg)

T−→ PerH(T ∗H(V ∗)reg)
Ev∗←− PerH(V ∗)

IC(1C0
) 7→ IC(1O0

) 7→ IC(1O∗0 ) ← [ IC(1C∗0 )
IC(1Cy ) 7→ IC(1Oy ) 7→ IC(1O∗y ) ← [ IC(1C∗y )

IC(ECy ) 7→ IC(EOy )⊕ IC(EO0
) 7→ IC(EO∗y )⊕ IC(EO∗0 ) ← [ IC(EC∗0 )

Since the map from the first to the fourth column is the Fourier transform, this verifies
(24). Note that, in this example, the local system D is trivial.

3.2.7. Arthur sheaves.
Arthur sheaf packet sheaves coronal sheaves
AC0

IC(1C0
) ⊕ IC(ECy )

ACy IC(1Cy )⊕ IC(ECy )

3.3. Adams-Barbasch-Vogan packets.

3.3.1. Admissible representations versus equivariant perverse sheaves. Vogan’s bijection
for λ : WF → LG chosen at the beginning of Section 3 is given by the following table:

PerHλ(Vλ)simple
/iso Πpure,λ(G/F )

IC(1C0
) (π(φ0), 0)

IC(1Cy ) (π(φ1), 0)
IC(ECy ) (π(φ1,−), 1)

The base points for H-orbits in T ∗H(V )reg determined by the Arthur parameters ψ0

and ψ1 are:

(xψ0
, ξψ0

) =

(
0 0
1 0

)
∈ T ∗C0

(Vλ)reg, (xψ1
, ξψ1

) =

(
0 1
0 0

)
∈ T ∗Cy (Vλ)reg.

3.3.2. ABV-packets. Using the bijection of Section 3.3.1, the vanishing cycles calculations
of Section 3.2.5, and the definition of ABV-packets from [7], we find ABV-packets for G
representations with infinitesimal parameter λ : WF → LG from Section 3.1.1:

ΠABV
pure,ψ0

(G/F ) =

{
[π(φ0), 0]

[π(φ1,−), 1]

}
, ΠABV

pure,ψ1
(G/F ) =

{
[π(φ1,+), 0]
[π(φ1,−), 1]

}
.

We see that all pure Arthur packets are Adams-Barbasch-Vogan packets simply by com-
paring this with Section 3.1.4. In this example, all the strata in V are of Arthur type, so
all ABV-packets are Arthur packets.

3.3.3. Stable invariant distributions and their endoscopic transfer. In Section 3.1.6 we re-
called the coefficient appearing in the invariant distributions ηψ,s attached to ψ ∈ Qλ(LG)
and s ∈ ZĜ(ψ). Using Section 3.2.5, compare 〈ssψ, [π, δ]〉ψ with TrEvψ P(π, δ)(ssψ). This
proves (30) and therefore establishes [7, Conjecture 2], in this case:

ηψ,s = ηABV
ψ,s ,

for ψ ∈ Qλ(LG) and s ∈ ZĜ(ψ).
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Also recall from Section 3.1.6 that the only endoscopic group relevant to ψ0 and ψ1 is
G0.

3.3.4. Kazhdan-Lusztig conjecture. Using the bijection of Section 3.3.1 we may compare
the multiplicity matrix from Section 3.1.3 with the normalised geometric multiplicity
matrix from Section 3.2.2:

mrep =

 1 1 0
0 1 0
0 0 1

 , m′geo =

 1 0 0
1 1 0
0 0 1

 .

Since tmrep = m′geo, this confirms the Kazhdan-Lusztig conjecture as it applies to rep-
resentations with infinitesimal parameter λ : WF → LG given in Section 3.1.1.

3.3.5. Aubert duality and Fourier transform. Using Vogan’s bijection from Section 3.3.1
we may compare Aubert duality from Section 3.1.5 with the Fourier transform from
Section 3.2.3 to verify (33).

Using the map Qλ(LG) → T ∗H(V )reg we may compare the twisting characters χψ of
Aψ from Section 3.1.5 with the restriction Dψ to T ∗Cψ (V )reg of the local system Dψ from
Section 3.2.6 to verify (34).

3.4. Endoscopy and equivariant restriction of perverse sheaves. The material of
Section 1.4 is trivial in this example, since ZĜ(ψ) = Z(Ĝ).

4. PGL(4) shallow representations

This example illustrates the utility of [7, Theorem 3.1.1] and the significance of the
decomposition of λ(Fr) into hyperbolic and elliptic parts. Here, the calculation of the
Arthur packets for certain non-tempered representations of PGL(4) is reduced to the
calculation of certain unipotent representations of SL(2). This example also example
concerns a case when H1(F,Gad)→ H1(F,Aut(G)) is surjective but not injective.

Set G = PGL(4) over F and suppose q is odd. So, Ĝ = SL(4) and LG = SL(4)×WF .
In this case, H1(F,G) = H1(F,Gad) ∼= Irrep(µ4), so there are four isomorphism classes
of inner forms of G, each one pure. However, G has only three forms, up to isomorphism:
the split group G0 = G itself, an anisotropic form G1, and a non-quasi-split form G2 with
a proper minimal Levi. In fact, the outer automorphism of G induces an action of order
2 on H1(F,G), and the orbits of this action correspond exactly to the image of H1(F,G)
in H1(F,Aut(G)). The map H1(F,Gad) → H1(F,Aut(G)) from isomorphism classes of
inner form of G to isomorphism classes of forms of G is given by: 0 7→ G0, 1 7→ G1,
2 7→ G2 and 3 7→ G1, where the notation refers to an identification of Irrep(µ4) with
Z/4Z.

Let E be the Galois closure of the ramified extension F ( q+1
√
$). Then E is the com-

positum of an unramified quadratic extension of F and the totally ramified extension
F ( q+1

√
$); now Gal(E/F ) is the dihedral group with generators σ, τ , where σ has

order 2 and τ has order q + 1 and στσ = τ−1 = τ q. Consider the representation
% : Gal(E/F )→ SL(2,C) defined by

σ 7→
(

0 1
−1 0

)
, τ 7→

(
ζ 0
0 ζ−1

)
,
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where ζ ∈ C is a fixed primitive q + 1-th root of unity. Let ρ : WF → SL(2,C) be the
composition of WF → ΓF → Gal(E/F ) with %. Define λ : WF → LG = SL(4)×WF by

λ(w) := ρ(w)⊗ ν2(dw).

Thus, if w|E = σ then

λ(w) =


0 0 |w|1/2 0

0 0 0 |w|−1/2

−|w|1/2 0 0 0

0 −|w|−1/2
0 0


while if w|E = τ then

λ(w) =


ζ 0 0 0
0 ζ 0 0
0 0 ζ−1 0
0 0 0 ζ−1

 .

4.1. Arthur packets.

4.1.1. Parameters. There are two Langlands parameters with infinitesimal parameter λ,
each of Arthur type:

φ0(w, x) := ρ(w)⊗ ν2(dw), φ1(w, x) := ρ(w)⊗ ν2(x)
ψ0(w, x, y) := ρ(w)⊗ ν2(y), ψ1(w, x, y) := ρ(w)⊗ ν2(x).

Note that ψ0 and ψ1 are Aubert dual.

4.1.2. L-packets. There are 5 admissible representations of the three forms G0, G1 and
G2, with infinitesimal parameter λ. In order to list them, we start with the component
groups of φ ∈ Pλ(LG). First, note that

ZĜ(λ) =



s1 0 0 0
0 s2 0 0
0 0 s1 0
0 0 0 s2

 ∣∣ s1s2 = ±1

 ∼= GL(1)× µ2,

under the isomorphism s 7→ (s1, s1s2). Then

Aφ0
= π0(ZĜ(φ0)) = π0(ZĜ(λ)) ∼= µ2 and Aφ1

= π0(ZĜ(φ1)) = π0(Z(Ĝ)) ∼= µ4.

Following our convention, we write + and − for the trivial and non-trivial characters
of µ2, respectively; the characters of µ4 will be labeled by +1, −1, +i and −i. The
admissible representations for the Langlands parameters φ0 and φ1 fall into L-packets for
the three forms of G (up to isomorphism) as follows:

Πφ0
(G0(F )) = {π(φ0,+)} Πφ1

(G0(F )) = {π(φ1,+1)}
Πφ0

(G1(F )) = ∅ Πφ1
(G1(F )) = {π(φ1,+i)}

= {π(φ1,−i)}
Πφ0

(G2(F )) = {π(φ0,−)} Πφ1
(G2(F )) = {π(φ1,−1)}.

However, Πpure,λ(G/F ) consists of 6 representations of 4 pure rational forms of G:

Πpure,φ0(G/F ) =
{

[π(φ0,+), 0], [π(φ0,−), 2]
}
,

and

Πpure,φ1
(G/F ) =

{
[π(φ1,+1), 0], [π(φ1,+i), 1], [π(φ1,−1), 2], [π(φ1,−i), 3]

}
.
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In other words, when passing from the four equivalence classes of pure rational forms
[δ] ∈ H1(F,G) to the three isomorphism classes of forms of G, two representations collapse
to one, namely, [π(φ1,+i), 1] and [π(φ1,−i), 3] map to the same admissible representation
of G1(F ).

4.1.3. Multiplicities in standard modules.

π(φ0,+) π(φ0,−) π(φ1,+1) π(φ1,−1) π(φ1,+i) π(φ1,−i)
M(φ0,+1) 1 0 1 0 0 0
M(φ0,−1) 0 1 0 1 0 0
M(φ1,+1) 0 0 1 0 0 0
M(φ1,−1) 0 0 0 1 0 0
M(φ1,+i) 0 0 0 0 1 0
M(φ1,−i) 0 0 0 0 0 1

4.1.4. Arthur packets. The component groups Aψ0
and Aψ1

are both Z(Ĝ), canonically.
Arthur packets for rational forms G0, G1 and G2 of G are

Πψ0
(G0(F )) = {π(φ0,+)} Πψ1

(G0(F )) = {π(φ1,+1)}
Πψ0

(G1(F )) = {π(φ1,+i)} Πψ1
(G1(F )) = {π(φ1,+i)}

= {π(φ1,−i)} = {π(φ1,−i)}
Πψ0(G2(F )) = {π(φ0,−)} Πψ1(G2(F )) = {π(φ1,−1)}

The pure Arthur packets for ψ0 and ψ1 are

Πpure,ψ0
(G/F ) =

{
[π(φ0,+), 0], [π(φ0,−), 2], [π(φ1,+i), 1], [π(φ1,−1), 2]

}
,

and

Πpure,ψ1
(G/F ) =

{
[π(φ1,+1), 0], [π(φ1,+i), 1], [π(φ1,−1), 2], [π(φ1,−i), 3]

}
.

For later reference, we break these pure Arthur packets apart into packet and coronal
representations:

pure Arthur pure L-packet coronal
packets representations representations
Πpure,ψ0

(G/F ) [π(φ0,+), 0], [π(φ0,−), 2], [π(φ1,+i), 1], [π(φi,−i), 3]
Πpure,ψ1

(G/F ) [π(φ1,+1), 0], [π(φ1,+i), 1], [π(φ1,−i), 3], [π(φ1,−1), 2]

4.1.5. Aubert duality. Aubert duality is given by the following table.

π π̂

π(φ0,+) π(φ1,+1)
π(φ0,−) π(φ1,−1)
π(φ1,+1) π(φ0,+)

π(φ1,+i) = π(φ1,−i) π(φ1,+i) = π(φ1,−i)
π(φ1,−1) π(φ0,−)

The twisting characters χψ0
and χψ1

are trivial.
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4.1.6. Stable distributions and endoscopy. The coefficients 〈asaψ, (π, δ)〉ψ appearing in
the invariant distributions ηψ,s (16) are given by the following list, in which s ∈ Aψ =

Z(Ĝ) ∼= µ4.

ηψ0
= ηψ0,1 = [π(φ0,+), 0] + [π(φ0,−), 2]− [π(φ1,+i), 1]− [π(φ1,−i), 3]
ηψ0,−1 = [π(φ0,+), 0] + [π(φ0,−), 2] + [π(φ1,+i), 1] + [π(φ1,−i), 3]
ηψ0,i = [π(φ0,+), 0]− [π(φ0,−), 2]− i[π(φ1,+i), 1] + i[π(φ1,−i), 3]
ηψ0,−i = [π(φ0,+), 0]− [π(φ0,−), 2] + i[π(φ1,+i), 1]− i[π(φ1,−i), 3]

and
ηψ1

= ηψ1,1 = [π(φ1,+1), 0] + [π(φ1,−i), 1] + [π(φ1,−1), 2] + [π(φ1,−i), 3]
ηψ1,−1 = [π(φ1,+1), 0] + [π(φ1,−i), 1]− [π(φ1,−1), 2]− [π(φ1,−i), 3]
ηψ1,i = [π(φ1,+1), 0]− [π(φ1,−i), 1] + i[π(φ1,−1), 2]− i[π(φ1,−i), 3]
ηψ1,−i = [π(φ1,+1), 0]− [π(φ1,−i), 1]− i[π(φ1,−1), 2] + i[π(φ1,−i), 3].

Since Aψ0
= Z(Ĝ) and Aψ1

= Z(Ĝ), the only endoscopic groups relevant to these
Arthur parameters are G = G0, G1 and G2.

4.2. Vanishing cycles of perverse sheaves.

4.2.1. Vogan variety and orbit duality. The Vogan variety Vλ and its dual V ∗λ may both
be deduced from the conormal bundle

T ∗H(V ) =




0 y 0 0
y′ 0 0 0
0 0 0 y
0 0 y′ 0

 | yy′ = 0


on which H :=ZĜ(λ) ∼= GL(1)× ν2 acts by

s1 0 0 0
0 s2 0 0
0 0 s1 0
0 0 0 s2

 ·


0 y 0 0
y′ 0 0 0
0 0 0 y
0 0 y′ 0

 =


0 s1s

−1
2 y 0 0

s−1
1 s2y

′ 0 0 0
0 0 0 s1s

−1
2 y

0 0 s−1
1 s2y

′ 0

 .

Recall that s1s2 = ±1, so s1s
−1
2 = ±s2

1. From this we see the stratification of V into
H-orbits and the duality on those orbits is exactly as in Section 3.2.1.

We now use [7, Theorem 3.1.1] to replace λ : WF → LG with an unramified infinitesimal
parameter λnr : WF → LGλ of a split group Gλ such that λnr(Fr) is hyperbolic. The
hyperbolic part of λ(Fr) is sλ × 1 with

sλ = ρ(1)⊗ ν2(Fr) =


q1/2 0 0 0

0 q−1/2 0 0
0 0 q1/2 0
0 0 0 q−1/2


while the elliptic part of λ(Fr) is tλ × Fr with

tλ = ρ(Fr)⊗ ν2(1) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
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Then

Jλ :=ZĜ(λ|IF , sλ) =



a b 0 0
c d 0 0
0 0 a b
0 0 c d

 ∣∣ det

(
a b
c d

)
= ±1

 ∼= SL(2)× µ2

under the isomorphism diag(h, h) 7→ (h′,deth) where h′ = h if deth = 1 and h′ = ih if
deth = −1. Therefore, Gλ = PGL(2) and λnr : WF → LGλ is given by

λnr(w) =

(
|w|1/2 0

0 |w|−1/2

)
.

Now

Hλnr = ZĜλ(λnr) =

{(
t 0
0 t−1

)
| t 6= 0

}
∼= GL(1)

and

Vλnr =

{(
0 y
0 0

) ∣∣ y} ∼= A1

with Hλnr -action (
t 0
0 t−1

)
:

(
0 y
0 0

)
7→
(

0 t2y
0 0

)
.

This brings us back to Section 3.2.1. We will freely use notation from there, below. The
Hλ-action on Vλnr is given by

(t,±1) :

(
0 y
0 0

)
7→
(

0 ±t2y
0 0

)
.

From this we see that every Hλ-orbit in Vλnr coincides with a Hλnr orbit in Vλnr .

4.2.2. Equivariant perverse sheaves on Vogan variety. With reference to [7, Theorem
3.1.1] we have

Rep(Aλ) PerHλ(Vλ) PerHλnr
(Vλnr)

Rep(µ2) PerGL(1)×µ2
(A1) PerGL(1)(A1)

π∗

π∗

The image of the trivial representation + of µ2 under the functor Rep(Aλ)→ PerHλ(Vλ)
is the trivial local system on V , denoted here by (+)V to emphasise its genesis; image of
the non-trivial irreducible representation − of µ2 under the functor Rep(Aλ)→ PerHλ(Vλ)
will likewise be denoted by (−)V .

To find the simple objects in PerH(V ), we begin with the equivariant perverse sheaves
on H-orbits in V .

C0: The equivariant fundamental group of C0 is AC0
= π0(H) ∼= µ2. Let us write 1+

C0

and 1−C0
for the local systems corresponding to the trivial and non-trivial repres-

entations of AC0
, respectively. Note that, under the forgetful functor LocH(C0)→

LocHnr(C0), these both map to 1C0
, the constant sheaf on C0.
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Cy: The equivariant fundamental group of Cy is ACy = Z(Ĝ) ∼= µ4. Let us write 1+
Cy

and 1
−
Cy

for the equivariant local systems on Cy that correspond to the trivial
+1 and order-2 characters −1 of ACy , respectively; these both map to 1Cy under
LocH(Cy)→ LocHnr(Cy). We write E+

Cy
and E−Cy for the equivariant local systems

on Cy that correspond to the order-4 characters +i and −i, respectively, of ACy ;
these both map to ECy under LocH(Cy)→ LocHnr(Cy).

Therefore, the six simple objects in PerH(V ) are given by:

PerH(V )simple
/iso =

{
IC(1+

C0
), IC(1+

Cy
), IC(E+

Cy
)

IC(1−C0
), IC(1−Cy ), IC(E−Cy )

}
.

On simple objects, the functor Rep(Aλ) → PerHλ(V ) is given by (+)V [1] = IC(1+
Cy

)

and (−)V [1] = IC(1−Cy ); the functor PerHλ(V ) → PerHλnr
(Vλnr) is given by IC(1±C0

) 7→
IC(1C0

) and IC(1±Cy ) 7→ IC(1Cy ) and IC(E±Cy ) 7→ IC(ECy ); the functor PerHλnr
(Vλnr) →

PerHλ(V ) is given by IC(1C0
) 7→ IC(1+

C0
)⊕ IC(1−C0

) and IC(1Cy ) 7→ IC(1+
Cy

)⊕ IC(1−Cy )

and IC(ECy ) 7→ IC(E+
Cy

)⊕ IC(E−Cy ).
From this we find the stalks of the simple objects in PerH(V ).

P P|C0 P|C+1

IC(1+
C0

) 1
+
C0

[0] 0

IC(1−C0
) 1

−
C0

[0] 0

IC(1+
C+1

) 1
+
C0

[1] 1
+
C+1

[1]

IC(1−C+1
) 1

−
C0

[1] 1
−
C+1

[1]

IC(E+
C+1

) 0 E+
C+1

[1]

IC(E−C+1
) 0 E−C+1

[1]

This gives us the normalised geometric multiplicity matrix:

(1+
C0

)\ (1−C0
)\ (1+

C1
)\ (1−C1

)\ (E+
C1

)\ (E−C1
)\

(1+
C0

)] 1 0 0 0 0 0

(1−C0
)] 0 1 0 0 0 0

(1+
C1

)] 1 0 1 0 0 0

(1−C1
)] 0 1 0 1 0 0

(E+
C1

)] 0 0 0 0 1 0

(E−C1
)] 0 0 0 0 0 1

4.2.3. Cuspidal support decomposition and Fourier transform. The cuspidal support de-
composition respects the functors appearing in [7, Theorem 3.1.1], so the results here
follow from Section 3.2.3. Specifically, we have

PerHλ(Vλ) = PerHλ(Vλ)T̂ ⊕ PerHλ(Vλ)Ĝ,
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where the simple objects in these summand categories are given here.

PerHλ(Vλ)simple
T̂ /iso

PerHλ(Vλ)simple
Ĝ/iso

IC(1+
C0

)

IC(1−C0
)

IC(1+
Cy

) IC(E+
Cy

)

IC(1−Cy ) IC(E−Cy )

Since the diagram

Rep(Aλ) PerHλ(Vλ) PerHλnr
(Vλnr)

Rep(Aλ) PerHλ(V ∗λ ) PerHλnr
(V ∗λnr

)

id

π∗

Ft

π∗

Ft

π∗

π∗

commutes, the Fourier transform is given on simple objects as follows.

Ft : PerHλ(Vλ) −→ PerHλ(V ∗λ )
IC(1+

C0
) 7→ IC(1+

C∗0
) = IC(1+

Ct1
)

IC(1−C0
) 7→ IC(1−C∗0 ) = IC(1−

Ct1
)

IC(1+
Cy

) 7→ IC(1+
C∗y

) = IC(1+
Ct0

)

IC(1−Cy ) 7→ IC(1−C∗y ) = IC(1−
Ct0

)

IC(E+
Cy

) 7→ IC(E+
C∗0

) = IC(E+
Cty

)

IC(E−Cy ) 7→ IC(E−C∗0 ) = IC(E−Cty )

4.2.4. Equivariant perverse sheaves on the regular conormal bundle. Recall thatHλ orbits
coincide with Hλnr -orbits. The following diagram commutes:

Rep(Aλ) PerHλ(C∗) PerHλnr
(C∗)

Rep(Aλ) PerHλ(T ∗C(Vλ)sreg) PerHλnr
(T ∗C(Vλnr)sreg)

Rep(Aλ) PerHλ(C) PerHλnr
(C)

π∗

π∗

π∗

π∗

π∗

π∗

We now describe the fundamental groups and associated equivariant local systems on
the strongly regular conormal bundle T ∗H(V )sreg . For the computation of the functor
Ev : PerH(V ) → PerH(T ∗H(V )reg) in Section 4.2.5 we will need to know the effect of
pullback along the bundle map T ∗H(V )reg → V , so we also give that information below.

C0: We choose a base point for T ∗C0
(V )sreg:

(x0, ξ0) =

(
0 0
1 0

)
.

Then A(x0,ξ0) = Z(Ĝ) ∼= µ4 and the bundle maps induce the following homo-
morphisms of fundamental groups:

µ2
∼= Ax0 A(x0,ξ0) Aξ0

∼= µ4
id
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Now label local systems on T ∗C0
(V )sreg according to the following chart, which

lists the corresponding characters of A(x0,ξ0) using the convention for characters
of µ4 from Section 4.1.2.

LocH(T ∗C0
(V )sreg) : 1

+
O0

1
−
O0

E+
O0

E−O0

Rep(A(x0,ξ0)) : +1 −1 +i −i

Pullback of equivariant local systems along the bundle map T ∗C0
(V )sreg → C0 is

given on simple objects by:

LocH(C0) → LocH(T ∗C0
(V )sreg)

1
±
C0

7→ 1
±
O0

E±O0

Cy: We choose a base point for T ∗Cy (V )sreg:

(x1, ξ1) =

(
0 1
0 0

)
.

Then A(x1,ξ1) = Z(Ĝ) ∼= µ4 and the bundle maps induce the following homo-
morphisms of fundamental groups:

µ4
∼= Ax1

A(x1,ξ1) Aξ1
∼= µ2

id

Now label local systems on T ∗Cy (V )sreg according to the following chart, which
lists the corresponding characters of A(x1,ξ1) using the convention for characters
of µ4 from Section 4.1.2.

LocH(T ∗Cy (V )sreg) : 1
+
Oy 1

−
Oy E+

Oy E−Oy
Rep(A(x1,ξ1)) : +1 −1 +i −i

Pullback of equivariant local systems along the bundle map T ∗Cy (V )sreg → Cy is
given on simple objects by:

LocH(Cy) → LocH(T ∗Cy (V )sreg)

1
±
Cy

7→ 1
±
Oy

E±Cy 7→ E±Oy

4.2.5. Vanishing cycles of perverse sheaves. Table 4.2.5.1 gives the functor Ev : PerH(V )→
PerH(T ∗H(V )reg) on simple objects. These calculations follow from Table 3.2.5.1.

4.2.6. Vanishing cycles and Fourier transform. The twisting functor T : PerH(T ∗H(V )reg)→
PerH(T ∗H(V ∗)reg) is just a∗ in this example.

PerH(V )
Ev−→ PerH(T ∗Hλ(V )reg)

T−→ PerH(T ∗Hλ(V ∗)reg)
Ev∗←− PerH(V ∗)

IC(1±C0
) 7→ IC(1±O0

) 7→ IC(1±O∗0 ) ← [ IC(1±C∗0 )

IC(1±Cy ) 7→ IC(1±Oy ) 7→ IC(1±O∗y ) ← [ IC(1±C∗y )

IC(E±Cy ) 7→ IC(E±Oy )⊕ IC(E±O0
) 7→ IC(E±O∗y )⊕ IC(E±O∗0 ) ← [ IC(E±C∗0 )

Comparing this table with Ft : PerH(V ) → PerH(V ∗) from Section 4.2.3 verifies (24) in
this example.
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Table 4.2.5.1. Ev : PerHλ(Vλ)→ PerHλ(T ∗Hλ(Vλ)reg) on simple objects,
for λ : WF → LG given at the beginning of Section 4.

PerH(V )
Ev−→ PerH(T ∗Hλ(V )reg)

IC(1+
C0

) 7→ IC(1+
O0

)

IC(1−C0
) 7→ IC(1−O0

)

IC(1+
Cy

) 7→ IC(1+
Oy )

IC(1−Cy ) 7→ IC(1−Oy )

IC(E+
Cy

) 7→ IC(E+
Oy )⊕ IC(E+

O0
)

IC(E−Cy ) 7→ IC(E−Oy )⊕ IC(E−O0
)

P EvC0 P EvC1 P
IC(1+

C0
) +1 0

IC(1−C0
) −1 0

IC(1+
Cy

) 0 +1

IC(1−Cy ) 0 −1

IC(E+
Cy

) +i +i

IC(E−Cy ) −i −i

4.2.7. Arthur sheaves.

Arthur sheaf packet sheaves coronal sheaves
AC0

IC(1+
C0

)⊕ IC(1−C0
) ⊕ IC(E+

Cy
)⊕ IC(E−Cy )

ACy IC(1+
Cy

)⊕ IC(1−Cy )⊕ IC(E+
Cy

)⊕ IC(E−Cy )

4.3. Adams-Barbasch-Vogan packets.

4.3.1. Admissible representations versus perverse sheaves.

PerHλ(Vλ)simple
/iso Πpure,λ(G/F )

IC(1+
C0

) (π(φ0,+), 0)

IC(1−C0
) (π(φ0,−), 2)

IC(1+
Cy

) (π(φ1,+1), 0)

IC(1−Cy ) (π(φ1,−1), 2)

IC(E+
Cy

) (π(φ1,+i), 1)

IC(E−Cy ) (π(φ1,−i), 3)

4.3.2. ABV-packets.

ABV-packets pure L-packet representations coronal representations
ΠABV

pure,φ0
(G/F ) : [π(φ0,+), 0], [π(φ0,−), 2] [π(φ1,+i), 1], [π(φ1,−i), 3]

ΠABV
pure,φ1

(G/F ) : [π(φ1,+1), 0], [π(φ1,+i), 1], [π(φ1,−1), 2], [π(φ1,−i), 3]
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4.3.3. Stable distributions and endoscopic transfer.

ηABV
ψ0

= ηABV
ψ0,1

= [π(φ0,+), 0] + [π(φ0,−), 2]− [π(φ1,+i), 1]− [π(φ1,−i), 3]

ηABV
ψ0,−1 = [π(φ0,+), 0] + [π(φ0,−), 2] + [π(φ1,+i), 1] + [π(φ1,−i), 3]

ηABV
ψ0,i

= [π(φ0,+), 0]− [π(φ0,−), 2]− i[π(φ1,+i), 1] + i[π(φ1,−i), 3]

ηABV
ψ0,−i = [π(φ0,+), 0]− [π(φ0,−), 2] + i[π(φ1,+i), 1]− i[π(φ1,−i), 3]

ηABV
ψ1

= ηABV
ψ1,1

= [π(φ1, 1), 0] + [π(φ1, i), 1] + [π(φ1,−1), 2] + [π(φ1,−i), 3]

ηABV
ψ1,−1 = [π(φ1, 1), 0] + [π(φ1, i), 1]− [π(φ1,−1), 2]− [π(φ1,−i), 3]

ηABV
ψ1,i

= [π(φ1, 1), 0]− [π(φ1, i), 1] + i[π(φ1,−1), 2]− i[π(φ1,−i), 3]

ηABV
ψ1,−i = [π(φ1, 1), 0]− [π(φ1, i), 1]− i[π(φ1,−1), 2] + i[π(φ1,−i), 3]

Comparing with Section 4.1.6 proves (31).

4.3.4. Kazhdan-Lusztig conjecture. From Section 4.1.3 we find the multiplicity matrix:

mrep =


1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

and from Section 4.2.2 we find the normalised geometric multiplicity matrix

m′geo =


1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Since mt
rep = m′geo, this proves the Kazhdan-Lusztig conjecture in this case.

Notice that 
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 =

1 1 0
0 1 0
0 0 1

⊗ (1 0
0 1

)

and compare with Section 3.3.4.

4.3.5. Aubert duality and Fourier transform. Using Vogan’s bijection from Section 4.3.1
we may compare Aubert duality from Section 4.1.5 with the Fourier transform from
Section 4.2.3 to verify (33).

Using the map Qλ(LG)→ T ∗H(V )reg we may compare the twisting characters χψ of Aψ
from Section 4.1.5 with the restriction Dψ to T ∗Cψ (V )reg of the D from Section 4.2.6 to
verify (34).

4.4. Endoscopy and equivariant restriction of perverse sheaves. The material of
Section 1.4 is trivial in this example, since ZĜ(ψ) = Z(Ĝ).



42 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI, AND B. XU

5. SO(5) unipotent representations, regular infinitesimal parameter

In this example, of the four Langlands parameters with infinitesimal parameter λ below,
only two are of Arthur type. Accordingly, we find two ABV-packet that are not Arthur
packets.

Let G = SO(5), so Ĝ = Sp(4) and LG = Ĝ×WF . As in the cases above,

H1(F,G) = H1(F,Gad) = H1(F,Aut(G)) ∼= Z/2Z,

so there are two isomorphism classes of rational forms of G, each pure. We will use the
notation G0 = G and G1 for the non-quasisplit form of SO(5) given by the quadratic
form 

0 0 0 0 1
0 −ε$ 0 0 0
0 0 ε 0 0
0 0 0 $ 0
1 0 0 0 0

 .

Let λ : WF → Ĝ be the unramified homomorphism

λ(Fr) =


|w|3/2 0 0 0

0 |w|1/2 0 0

0 0 |w|−1/2
0

0 0 0 |w|−3/2

 .

Here and below we use the symplectic form 〈x, y〉 = txJy with matrix J given by Jij =

(−1)jδ5−i,j to determine a representation of Ĝ = Sp(4).
Although this example exhibits some interesting geometric phenomena, there is still

no interesting endoscopy here. Nevertheless, this example will be important later when
we consider other groups for which SO(5) is an endoscopic group.

5.1. Arthur packets.

5.1.1. Parameters. Up to ZĜ(λ)-conjugation, there are four Langlands parameters with
infinitesimal parameter λ:

φ0(w, x) = ν4(dw) = λ(w),

φ1(w, x) = ν2
2(dw)⊗ ν2(x) =


|w|x11 |w|x11 0 0
|w|x21 |w|x22 0 0

0 0 |w|−1
x11 |w|−1

x12

0 0 |w|−1
x11 |w|−1

x12

 ,

φ2(w, x) = ν3
2(dw)⊕ ν2(x) =


|w|3/2 0 0 0

0 x11 x12 0
0 x21 x22 0

0 0 0 |w|−3/2

 ,

φ3(w, x) = ν4(x),

where ν4 : SL(2)→ Sp(4) is the irreducible 4-dimensional representation of SL(2). Of the
four Langlands parameters φ0, φ1, φ2 and φ3, only φ0 and φ3 are of Arthur type; define

ψ0(w, x, y) := ν4(y), and ψ3(w, x, y) := ν4(x).
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5.1.2. L-packets. The component groups Aφ0
and Aφ1

are trivial, while the component
groups Aφ2 and Aφ3 each have order two, being canonically isomorphic to Z(Ĝ). There-
fore, the representations in play in this example are:

Πφ0
(G0(F )) = {π(φ0)}, Πφ0

(G1(F )) = ∅,
Πφ1(G0(F )) = {π(φ1)}, Πφ1(G1(F )) = ∅,
Πφ2(G0(F )) = {π(φ2,+)}, Πφ2(G1(F )) = {π(φ2,−)},
Πφ3

(G0(F )) = {π(φ3,+)}, Πφ3
(G1(F )) = {π(φ3,−)}.

Of the four admissible representations of G(F ) with infinitesimal parameter λ, only
π(φ3,+) is tempered – this is the Steinberg representation. The representation π(φ1)
(resp. π(φ2,+)) is denoted by L(ν3/2ζ, ζ StSO(3)) (resp. L(νζ StGL(2))) with ζ = 1 in [17].
When arranged into pure packets, we get

Πpure,φ0
(G/F ) = {[π(φ0), 0]}

Πpure,φ1(G/F ) = {[π(φ1), 0]}
Πpure,φ2(G/F ) = {[π(φ2,+), 0], [π(φ2,−), 1]}
Πpure,φ3

(G/F ) = {[π(φ3,+), 0], [π(φ3,−), 1]}

5.1.3. Multiplicities in standard modules. The standard module M(φ1) (resp. M(φ2,+))
is denoted by ν3/2ζoStSO(3) (resp. νζ StGL(2) o1) with ζ = 1 in [17]. The following table
may be deduced from [17, Proposition 3.3].

π(φ0) π(φ1) π(φ2,+) π(φ3,+) π(φ2,−) π(φ3,−)

M(φ0) 1 1 1 1 0 0
M(φ1) 0 1 0 1 0 0
M(φ2,+) 0 0 1 1 0 0
M(φ3,+) 0 0 0 1 0 0
M(φ2,−) 0 0 0 0 1 1
M(φ3,−) 0 0 0 0 0 1

5.1.4. Arthur packets. The Arthur packets for these representations are

Πψ0
(G0(F )) = {π(φ0,+)}, Πψ0

(G1(F )) = {π(φ1,−)},
Πψ3

(G0(F )) = {π(φ3,+)}, Πψ3
(G1(F )) = {π(φ3,−)}.

When arranged into pure packets, we get

Πpure,ψ0
(G/F ) = {[π(φ0,+), 0], [π(φ1,−), 1]},

Πpure,ψ3
(G/F ) = {[π(φ3,+), 0], [π(φ3,−), 1]}.

5.1.5. Aubert duality. Aubert duality for G0(F ) and G1(F ) are given by the following
table.

π π̂

π(φ0) π(φ3,+)
π(φ1) π(φ2,+)
π(φ2,+) π(φ1)
π(φ3,+) π(φ0)
π(φ2,−) π(φ3,−)
π(φ3,−) π(φ2,−)

The twisting characters χψ0
and χψ1

are trivial.
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5.1.6. Stable distributions and endoscopic transfer. For s ∈ Z(Ĝ) ∼= µ2, the virtual rep-
resentations ηψ0,s and ηψ3,s are given by

ηψ0,1 = [π(φ0), 0]− [π(φ2,−), 1]
ηψ0,−1 = [π(φ0), 0] + [π(φ2,−), 1]

and
ηψ3,1 = [π(φ3,+), 0] + [π(φ3,−), 1]
ηψ3,−1 = [π(φ3,+), 0]− [π(φ3,−), 1].

There are no endoscopic groups relevant to ψ0 or ψ3 other than G0 and G1.

5.2. Vanishing cycles of perverse sheaves.

5.2.1. Vogan variety and orbit duality. Now

H :=ZĜ(λ) =



t1 0 0 0
0 t2 0 0
0 0 t−1

2 0
0 0 0 t−1

1

 | t1 6= 0
t2 6= 0

 .

The Vogan varieties V and V ∗ are given by

V =




0 u 0 0
0 0 x 0
0 0 0 u
0 0 0 0

 | u, x

 , V ∗ =




0 0 0 0
u′ 0 0 0
0 x′ 0 0
0 0 u′ 0

 | u′, x′

 .

The action of H on T ∗(V ) is given by
t1 0 0 0
0 t2 0 0
0 0 t−1

2 0
0 0 0 t−1

1

 :


0 u 0 0
u′ 0 x 0
0 x′ 0 u
0 0 u′ 0

 7→


0 t1t
−1
2 u 0 0

t−1
1 t2u

′ 0 t22x 0
0 t−2

2 x′ 0 t1t
−1
2 u

0 0 t−1
1 t2u

′ 0

 .

The conormal bundle is

T ∗Hλ(Vλ) ∼=




0 u 0 0
u′ 0 x 0
0 x′ 0 u
0 0 u′ 0

 | uu′ = 0
xx′ = 0

 .

Now V is stratified into the following H-orbits:

C0 :=




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , C3 :=




0 u 0 0
0 0 x 0
0 0 0 u
0 0 0 0

 | u 6= 0
x 6= 0

 ,

and

Cu :=




0 u 0 0
0 0 0 0
0 0 0 u
0 0 0 0

 | u 6= 0

 , Cx :=




0 0 0 0
0 0 x 0
0 0 0 0
0 0 0 0

 | x 6= 0

 .
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The dual orbits in V ∗ are

C∗0 =




0 0 0 0
u′ 0 0 0
0 x′ 0 0
0 0 u′ 0

 | u′ 6= 0
x′ 6= 0

 , C∗ux =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

and

C∗u =




0 0 0 0
0 0 0 0
0 x′ 0 0
0 0 0 0

 | x′ 6= 0

 , C∗x =




0 0 0 0
u′ 0 0 0
0 0 0 0
0 0 u′ 0

 | u′ 6= 0

 .

The following diagram gives the closure relations for these orbits.

Cux = Ĉ0 dim = 2 C∗0 = Ctux

Cu = Ĉx Cx = Ĉu dim = 1 C∗u = Ctx C∗x = Ctu

C0 = Ĉux dim = 0 C∗ux = Ct0

5.2.2. Equivariant perverse sheaves. The equivariant fundamental groups for C0 and Cu
are trivial, so they each carry only one equivariant local system, denoted by 1C0

and 1Cu ,
respectively. The equivariant fundamental groups for Cx and Cux have order two, so they
each carry two equivariant local systems, denoted by 1Cx , LCx , 1Cux and LCux . Thus,

PerH(V )simple
/iso = {IC(1C0

), IC(1Cu), IC(1Cx), IC(1Cux), IC(LCx), IC(LCux)}.

The following table describes these perverse sheaves on H-orbits in V .

P P|C0
P|Cu P|Cx P|Cu,x

IC(1C0) 1C0 [0] 0 0 0
IC(1Cu) 1C0 [1] 1Cu [1] 0 0
IC(1Cx) 1C0

[1] 0 1Cx [1] 0
IC(1Cux) 1C0

[2] 1Cu [2] 1Cx [2] 1Cux [2]
IC(LCx) 0 0 LCx [1] 0
IC(LCux) 0 0 LCx [2] LCux [2]

We now explain how to make these calculations.
(a) For the first four rows in the table above, those that deal with IC(1C), it is

sufficient to observe that the closure C of each strata C is smooth, hence the
sheaf 1C [dim(C)] is perverse.

(b) For the remaining two rows, those that deal with IC(LC), we observe that the
closure C of the strata C admits a finite equivarient double cover π : C̃ → C

by taking
√
x. Because C̃ is smooth, the sheaf 1C̃ [dim(C)] is perverse. The de-

composition theorem for finite maps of perverse sheaves yields π!(1C̃ [dim(C)]) =
IC(1C)⊕IC(LC). Proper base change, the decomposition theorem for finite étale
maps, and our earlier computations for IC(1C) then allows us to readily compute
the stalks of IC(LC).
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From this, we easily find the normalised geometric multiplicity matrix

1
\
C0

1
\
Cu

1
\
Cx

1
\
Cux

L\Cx L\Cux
1
]
C0

1 0 0 0 0 0

1
]
Cu

1 1 0 0 0 0

1
]
Cx

1 0 1 0 0 0

1
]
Cux

1 1 1 1 0 0

L]Cx 0 0 0 0 1 0

L]Cux 0 0 0 0 1 1

5.2.3. Cuspidal support decomposition and Fourier transform. Up to conjugation, Ĝ =

Sp(4) admits exactly two cuspidal Levi subgroups: M̂ = Sp(2)×GL(1) and T̂ = GL(1)×
GL(1).

PerHλ(Vλ) = PerHλ(Vλ)T̂ ⊕ PerHλ(Vλ)
M̂
.

Simple objects in these two subcategories are listed below.

PerH(V )Ť PerH(V )M̌
IC(1C0

)
IC(1Cu)
IC(1Cx) IC(LCx)
IC(1Cux) IC(LCux)

The Fourier transform is given as follows:

Ft : PerH(V ) −→ PerH(V ∗)
IC(1C0

) 7→ IC(1C∗0 ) = IC(1Ctux)
IC(1Cu) 7→ IC(1C∗u) = IC(1Ctx)
IC(1Cx) 7→ IC(1C∗x ) = IC(1Ctu)
IC(1Cux) 7→ IC(1C∗ux) = IC(1Ct0)

IC(LCx) 7→ IC(LC∗0 ) = IC(LCtux)
IC(LCux) 7→ IC(LC∗u) = IC(LCtx)

5.2.4. Equivariant local systems on the regular conormal bundle. The regular conormal
bundle to the H-action on V decomposes into H-orbits

T ∗H(V )reg = T ∗C0
(V )reg t T ∗Cu(V )reg t T ∗Cx(V )reg t T ∗Cux(V )reg,

where each T ∗C(V )reg is given below. In each case, the microlocal fundamental group Amic
C

is canonically identified with Z(Ĝ) ∼= {±1}.
C0: Regular conormal bundle:

T ∗C0
(V )reg =




0 0 0 0
u′ 0 0 0
0 x′ 0 0
0 0 u′ 0

 | u′ 6= 0
x′ 6= 0

 = C0 × C∗0

Base point:

(x0, ξ0) =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 ∈ T ∗C0
(V )reg
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Fundamental groups:

1 = Ax0 A(x0,ξ0) Aξ0 = {±1}id

Local systems:
LocH(T ∗C0

(V )sreg) : 1O0 LO0

Rep(A(x0,ξ0)) : + −
Pullback along the bundle map T ∗C0

(V )sreg → C0:

LocH(C0) → LocH(T ∗C0
(V )sreg)

1C0
7→ 1O0

LO0

Cu: Regular conormal bundle:

T ∗Cu(V )reg =




0 u 0 0
0 0 0 0
0 x′ 0 u
0 0 0 0

 | u 6= 0
x′ 6= 0

 = Cu × C∗u

Base point:

(x1, ξ1) =


0 1 0 0
0 0 0 0
0 1 0 1
0 0 0 0

 ∈ T ∗Cu(V )reg

Fundamental groups:

1 = Ax1
A(x1,ξ1) Aξ1 = {±1}id

Local systems:
LocH(T ∗Cu(V )sreg) : 1Ou LOu

Rep(A(x1,ξ1)) : + −
Pullback along the bundle map T ∗Cu(V )sreg → Cu:

LocH(Cu) → LocH(T ∗Cu(V )sreg)
1Cu 7→ 1Ou

LOu
Cx: Regular conormal bundle:

T ∗Cx(V )reg =




0 0 0 0
u′ 0 x 0
0 0 0 0
0 0 u′ 0

 | u′ 6= 0
x 6= 0

 = Cx × C∗x

Base point:

(x2, ξ2) =


0 0 0 0
1 0 1 0
0 0 0 0
0 0 1 0

 ∈ T ∗Cx(V )reg.

Fundamental groups:

{±1} = Ax2 A(x2,ξ2) Aξ2 = 1id
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Local systems:
LocH(T ∗Cx(V )sreg) : 1Ox LOx

Rep(A(x2,ξ2)) : + −
Pullback along the bundle map T ∗Cx(V )sreg → Cx:

LocH(Cx) → LocH(T ∗Cx(V )sreg)
1Cx 7→ 1Ox
LCx 7→ LOx

Cux: Regular conormal bundle:

T ∗Cux(V )reg =




0 u 0 0
0 0 x 0
0 0 0 u
0 0 0 0

 | u 6= 0
x 6= 0

 = Cux × C∗ux

Base point:

(x3, ξ3) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ∈ T ∗Cux(V )reg

Fundamental groups:

{±1} = Ax3
A(x3,ξ3) Aξ3 = 1id

Local systems:

LocH(T ∗Cux(V )sreg) : 1Oux LOux
Rep(A(x3,ξ3)) : + −

Pullback along the bundle map T ∗Cux(V )sreg → Cux:

LocH(Cux) → LocH(T ∗Cux(V )sreg)
1Cux 7→ 1Oux
LCux 7→ LOux

5.2.5. Vanishing cycles of perverse sheaves. The functor Ev : PerH(V )→ PerH(T ∗H(V )reg)
is given on simple objects in Table 5.2.5.1

We now explain how to make these calculations.
(a) To compute EvC0

IC(1Cx) we look at the vanishing cycles

EvC0
IC(1Cx) = RΦxx′(1Cx×C∗0

)|T∗C0
(V )reg [1].

The singular locus of xx′ is x = x′ = 0 but this is not part of T ∗C0
(V )reg, so

EvC0
IC(1Cx) = 0. All the non-diagonal entries in the first four rows work simil-

arly.
(b) To compute the last two rows of the tables above we consider the map π : C̃ ′ → C ′

which comes from taking a square root of x. Rather than directly applying Ev
to IC(LC′) we apply it to π!(1C̃′) and exploit the fact that we have already
computed Ev for the IC sheaves of constant local systems. For example, in the
case of EvC0

(π!(1C̃x)) we will compute:(
π! RΦx2x′(1C̃′ � 1C∗0

)
)
T∗C0

(V )reg
.
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Table 5.2.5.1. Ev : PerHλ(Vλ)→ PerHλ(T ∗Hλ(Vλ)reg) on simple objects,
for λ : WF → LG given at the beginning of Section 5.

PerH(V )
Ev−→ PerH(T ∗H(V )reg)

IC(1C0
) 7→ IC(1O0

)
IC(1Cu) 7→ IC(1Ou)
IC(1Cx) 7→ IC(1Ox)
IC(1Cux) 7→ IC(1Oux)
IC(LCx) 7→ IC(LOx)⊕ IC(LO0

)
IC(LCux) 7→ IC(LOux)⊕ IC(LOu)

P EvC0
P EvCu P EvCx P EvCux P

IC(1C0) + 0 0 0
IC(1Cu) 0 + 0 0
IC(1Cx) 0 0 + 0
IC(1Cux) 0 0 0 +
IC(LCx) − 0 − 0
IC(LCux) 0 − 0 −

The singular locus is precisely x = 0 (noting that x′ is not actually zero on the
variety under consideration). The local structure of the singularity is that it is
a smooth family (in the variable u′) over the singularity of x2x′ over A × Gm It
follows that the vanishing cycles on such a singularity is the sheaf supported on
x = 0 associated to the non-trivial double cover

√
x′. Finally, by observing that

the map π is an isomorphism on the support of RΦ, we conclude that:

EvC0(π!(1C̃x)) = IC(LO0).

The other entries are computed similarly.

5.2.6. Fourier transform, vanishing cycles and the twisting functor. The twisting functor
T : PerH(T ∗H(V )reg)→ PerH(T ∗H(V ∗)reg) is just a∗ in this example.

PerHλ(Vλ)
Ev−→ PerH(T ∗Hλ(Vλ)reg)

T−→ PerH(T ∗Hλ(V ∗λ )reg)
Ev∗←− PerHλ(V ∗λ )

IC(1C0) 7→ IC(1O0) 7→ IC(1O∗0 ) ← [ IC(1C∗0 )
IC(1Cu) 7→ IC(1Ou) 7→ IC(1O∗u) ← [ IC(1C∗u)
IC(1Cx) 7→ IC(1Ox) 7→ IC(1O∗x) ← [ IC(1C∗x )
IC(1Cux) 7→ IC(1Oux) 7→ IC(1O∗ux) ← [ IC(1C∗ux)
IC(LCx) 7→ IC(LOx)⊕ IC(LO0

) 7→ IC(LO∗x)⊕ IC(LO∗0 ) ← [ IC(LC∗0 )
IC(LCux) 7→ IC(LOux)⊕ IC(LOu) 7→ IC(LO∗ux)⊕ IC(LO∗u) ← [ IC(LC∗u)

Comparing this table with the Fourier transform from Section 5.2.3 confirms (24) in this
example.
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5.2.7. Arthur sheaves.
Arthur pure L-packet coronal
sheaf sheaves perverse sheaves
AC0

IC(1C0
) ⊕ IC(LCx)

ACu IC(1Cu) ⊕ IC(LCux)
ACx IC(1Cx) ⊕ IC(LCx)
ACux IC(1Cux) ⊕ IC(LCux)

5.3. Adams-Barbasch-Vogan packets.

5.3.1. Admissible representations versus equivariant perverse sheaves.

PerHλ(Vλ)simple
/iso Πpure,λ(G/F )

IC(1C0
) (π(φ0), 0)

IC(1Cu) (π(φ1), 0)
IC(1Cx) (π(φ2,+), 0)
IC(1Cux) (π(φ3,+), 0)
IC(LCx) (π(φ2,−), 1)
IC(LCux) (π(φ3,−), 1)

The Arthur parameters ψ0 and ψ3 correspond uniquely to the base points (x0, ξ0)
and (x3, ξ3) from Section 5.2.4 under the map Qλ(LG) → T ∗H(V )reg given by [7, The-
orem 4.1.1].

5.3.2. ABV-packets. Using Section 5.2.5 and the bijection of Section 5.3.1, we simply
read off the ABV-packets:

ΠABV
pure,φ0

(G/F ) = {[π(φ0), 0], [π(φ2,−), 1]}
ΠABV

pure,φ1
(G/F ) = {[π(φ1), 0], [π(φ3,−), 1]}

ΠABV
pure,φ2

(G/F ) = {[π(φ2,+), 0], [π(φ2,−), 1]}
ΠABV

pure,φ3
(G/F ) = {[π(φ3,+), 0], [π(φ3,−), 1]}

Using Section 5.1.4, we see
Πpure,ψ0

(G/F ) = ΠABV
pure,φ0

(G/F )

Πpure,ψ3
(G/F ) = ΠABV

pure,φ3
(G/F ),

thus verifying that Arthur packets are ABV-packets for admissible representations with
infinitesimal parameter λ : WF → LG given at the beginning of Section 5.

5.3.3. Stable distributions and endoscopy. For s ∈ Z(Ĝ) ∼= µ2, the virtual representations
ηABV
φ,s of (32) are given by

ηABV
φ0,1

= [π(φ0), 0]− [π(φ2,−), 1]

ηABV
φ0,−1 = [π(φ0), 0] + [π(φ2,−), 1]

ηABV
φ1,1

= [π(φ1), 0] + [π(φ3,−), 1]

ηABV
φ1,−1 = [π(φ1), 0]− [π(φ3,−), 1]

ηABV
φ2,1

= [π(φ2,+), 0]− [π(φ2,−), 1]

ηABV
φ2,−1 = [π(φ2,+), 0] + [π(φ2,−), 1]

ηABV
φ3,1

= [π(φ3,+), 0] + [π(φ3,−), 1]

ηABV
φ3,−1 = [π(φ3,+), 0]− [π(φ3,−), 1]

Comparing with Section 5.1.6, this proves (31) in this example.
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5.3.4. Kazhdan-Lusztig conjecture. Using the bijection of Section 5.3.1 we compare the
normalised geometric multiplicity matrix from Section 5.2.2 with the multiplicity matrix
from Section 5.1.3:

mrep =


1 1 1 1 0 0
0 1 0 1 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

 , m′geo =


1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

 .

Since tmrep = m′geo, this confirms the Kazhdan-Lusztig conjecture as it applies to repres-
entations with infinitesimal parameter λ : WF → LG given at the beginning of Section 5.

5.3.5. Aubert duality and Fourier transform. Using Vogan’s bijection from Section 5.3.1
we may compare Aubert duality from Section 5.1.5 with the Fourier transform from
Section 5.2.3 to verify (33).

Using the map Qλ(LG)→ T ∗H(V )reg we may compare the twisting characters χψ of Aψ
from Section 5.1.5 with the restriction Dψ to T ∗Cψ (V )reg of the D from Section 5.2.6 to
verify (34).

5.3.6. ABV-packets that are not pure Arthur packets. The closed stratum C0 and the
open stratum C3 are of Arthur type, while C1 and C2 are not of Arthur type. Thus, there
are two ABV-packets that are not Arthur packets in this example:

ΠABV
pure,φ1

(G/F ) = {[π(φ1), 0], [π(φ3,−), 1]}
ΠABV

pure,φ2
(G/F ) = {[π(φ2,+), 0], [π(φ2,−), 1]}

From these we extract four stable distributions,

ΘG0

φ1
:= Trπ(φ1) ΘG1

φ1
:= Trπ(φ3,−)

ΘG0

φ2
:= Trπ(φ2,+) ΘG1

φ2
:= Trπ(φ2,−).

We will see more interesting examples of ABV-packets that are not pure Arthur packets
in Section 7.3.5.

5.4. Endoscopy and equivariant restriction of perverse sheaves. The material
from Section 1.4 is trivial in this case.

6. SO(5) unipotent representations, singular infinitesimal parameter

In this example we encounter an L-packet of representations of SO(5, F ) that is lifted
from an L-packet of representations of SO(3, F )×SO(3, F ). In Section 6.4 will see how this
lifting may be understood through equivariant restriction of perverse sheaves on Vogan
varieties, and their vanishing cycles.

Let G = SO(5). Then H1(F,G) ∼= Z/2Z. Let G1 be the non-split form of G, as in
Section 5. We consider admissible representations of G(F ) and G1(F ) with infinitesimal
parameter λ : WF → LG given by

λ(w) =


|w|1/2 0 0 0

0 |w|1/2 0 0

0 0 |w|−1/2
0

0 0 0 |w|−1/2

 .
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6.1. Arthur packets.

6.1.1. Parameters. There are three Langlands parameters with infinitesimal parameter
λ, up to ZĜ(λ)-conjugacy, each of Arthur type. Set

ψ0(w, x, y) := ν2(y)⊕ ν2(y),
ψ2(w, x, y) := ν2(x)⊕ ν2(y),
ψ3(w, x, y) := ν2(x)⊕ ν2(x),

and observe that ψ0 and ψ3 are Aubert dual while ψ2 is self dual. Let φ0, φ2 and φ3 be
the associated Langlands parameters; thus,

φ0(w, x) := ν2(dw)⊕ ν2(dw),
φ2(w, x) := ν2(x)⊕ ν2(dw),
φ3(w, x) := ν2(x)⊕ ν2(x).

6.1.2. L-packets. The pure component groups for these three Langlands parameters are

Aφ0
= 1, Aφ2

∼= {±1}, Aφ3
∼= {±1}.

Thus, there are five admissible representations of two pure forms of SO(5) in play in this
example. When arranged into L-packets, these representations are:

Πφ0(G0(F )) = {π(φ0)}, Πφ0(G1(F )) = ∅,
Πφ2

(G0(F )) = {π(φ2,+)}, Πφ2
(G1(F )) = {π(φ2,−)},

Πφ3
(G0(F )) = {π(φ3,+), π(φ3,−)}, Πφ3

(G1(F )) = ∅.

Of these five admissible representations, only π(φ3,+) and π(φ3,−) are tempered; these
two representations are denoted by τ2 and τ1, respectively, in [17]. The admissible repres-
entation π(φ0) is denoted by L(ν1/2ζ, ν1/2ζ, 1) with ζ = 1 in [17] and π(φ2,+) is denoted
by L(ν1/2ζ, ζ StSO(3)) with ζ = 1.

6.1.3. Multiplicities in standard modules. The standard module M(φ0) is induced from
the Levi subgroup GL(1, F )×GL(1, F )× SO(1, F ) of SO(5, F ); it is denoted by ν1/2ζ ×
ν1/2ζ o 1 with ζ = 1 in [17]. The standard module M(φ2,+) is induced from the Levi
subgroup GL(1, F )×SO(3, F ) of SO(5, F ); it is denoted by ν1/2ζoζ StSO(3) with ζ = 1 in
[17]. The standard moduleM(φ3,±) coincides with the tempered representation π(φ3,±).
The 4× 4 block in the following table may be deduced from [17, Proposition 3.3].

π(φ0) π(φ2,+) π(φ3,+) π(φ3,−) π(φ2,−)

M(φ0) 1 1 1 1 0
M(φ2,+) 0 1 1 0 0
M(φ3,+) 0 0 1 0 0
M(φ3,−) 0 0 0 1 0
M(φ2,−) 0 0 0 0 1

6.1.4. Arthur packets. The component groups for the Arthur parameters in this example
are

Aψ0
∼= {±1}, Aψ2

∼= {±1} × {±1}, Aψ3
∼= {±1}.

We may represent elements of each Aψ as cosets with representatives taken from T̂ [2]. The
map T̂ [2] → Aψ0

is s 7→ s1s2; the map T̂ [2] → Aψ2
is s 7→ (s1, s2); the map T̂ [2] → Aψ3

is s 7→ s1s2.
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The Arthur packets for Arthur parameters with infinitesimal parameter λ are:

Πψ0
(G0(F )) = {π(φ0), π(φ2,+)}, Πψ0

(G1(F )) = ∅,
Πψ2

(G0(F )) = {π(φ2,+), π(φ3,−)}, Πψ2
(G1(F )) = {π(φ2,−)},

Πψ3
(G0(F )) = {π(φ3,+), π(φ3,−)}, Πψ3

(G1(F )) = ∅.
We arrange these representations into pure Arthur packets in the table below.

pure Arthur pure L-packet coronal
packets representations representations
Πpure,ψ0

(G/F ) [π(φ0), 0] [π(φ2,+), 0]
Πpure,ψ2

(G/F ) [π(φ2,+), 0], [π(φ2,−), 1] [π(φ3,−), 0]
Πpure,ψ3(G/F ) [π(φ3,+), 0], [π(φ3,−), 0]

6.1.5. Aubert duality. Aubert duality for G0(F ) and G1(F ) are given by the following
table.

π π̂

π(φ0) π(φ3,+)
π(φ2,+) π(φ3,−)
π(φ3,+) π(φ0,+)
π(φ3,−) π(φ2,+)
π(φ2,−) π(φ2,−)

The twisting characters χψ0
and χψ3

are trivial. The twisting character χψ2
of Aψ2

is
χψ2

(s) = s1s2 = det(s). This is the first non-trivial twisting character to appear in this
paper.

6.1.6. Stable distributions and endoscopic transfer. The stable distributions

Θψ =
∑

π∈Πψ(Gδ(F ))

〈sψ, π〉ψ Trπ

attached the Arthur parameters are:

Θψ0
= Trπ(φ0) + Trπ(φ2,+)

Θψ2
= Trπ(φ2,+)−Trπ(φ3,−)

Θψ3
= Trπ(φ3,+) + Trπ(φ3,+).

The distributions
Θψ,s =

∑
π∈Πψ(Gδ(F ))

〈ssψ, π〉ψ Trπ,

where s ∈ ZĜ(ψ), are obtained by transfer from endoscopic groups. The coefficients above
are given by

〈ssψ, π〉ψ = 〈sψ, π〉ψ〈s, π〉ψ
where 〈sψ, π〉ψ appear above while 〈s, π〉ψ is given by the tables below.

We now give 〈 ·π〉ψ as a character of Aψ, using the isomorphisms from Section 6.1.4.

π 〈 · , π〉ψ0
〈 · , π〉ψ2

〈 · , π〉ψ3

π(φ0) + 0 0
π(φ2,+) − ++ 0
π(φ3,+) 0 0 +
π(φ3,−) 0 −− −
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Now we give the value of this character on the image of s = diag(s1, s2, s
−1
2 , s−1

1 ) ∈ T̂ [2]
in Aψ.

π 〈s, π〉ψ0
〈s, π〉ψ2

〈s, π〉ψ3

π(φ0) 1 0 0
π(φ2,+) s1s2 1 0
π(φ3,+) 0 0 1
π(φ3,−) 0 s1s2 s1s2

For instance, if we take s = diag(1,−1,−1, 1) ∈ T̂ [2] then

ΘG
ψ0,s

= Trπ(φ0)− Trπ(φ2,+),

ΘG
ψ2,s

= Trπ(φ2,+)+ Trπ(φ3,−),

ΘG
ψ3,s

= Trπ(φ3,+)− Trπ(φ3,−).

In this case, the elliptic endoscopic group G′ for G determined by s is G′ = SO(3)×SO(3),
split over F .

6.2. Vanishing cycles of perverse sheaves. We now assemble the geometric tools
needed to calculate the Arthur packets, stable distributions and endoscopic transfer de-
scribed above.

6.2.1. Vogan variety and its conormal bundle.

V =




0 0 z x
0 0 y −z
0 0 0 0
0 0 0 0

 | x, y, z
 V ∗ =




0 0 0 0
0 0 0 0
z′ y′ 0 0
x′ −z′ 0 0

 | x′, y′, z′


so

T ∗(V ) =




0 0 z x
0 0 y −z
z′ y′ 0 0
x′ −z′ 0 0

 | x, y, z
x′, y′, z′

 ⊂ sp(4)

The cotangent bundle T ∗(V ) comes equipped with an action of

H :=ZĜ(λ) =




a1 b1 0 0
c1 d1 0 0
0 0 a2 b2
0 0 c2 d2

 ∈ Sp(4)

 .

We will write h1 = ( a1 b1c1 d1
) and h2 = ( a2 b2c2 d2

). Then h2 = h1 deth−1
1 , by the choice of

symplectic form J in Section 5. In particular, H ∼= GL(2). The action of H on V , V ∗
and T ∗(V ) is given by

h ·
(
z x
y −z

)
= h1

(
z x
y −z

)
h−1

2

h ·
(
z′ y′

x′ −z′
)

= h2

(
z′ y′

x′ −z′
)
h−1

1 .
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The conormal bundle is

T ∗H(V ) =




z x
y −z

z′ y′

x′ −z′

 |
zz′ + xx′ = 0
zz′ + yy′ = 0
zx′ − yz′ = 0
xz′ − zy′ = 0


6.2.2. Equivariant local systems.

C0: Regular conormal bundle above the closed H-orbit C0 ⊂ V :

T ∗C0
(V )reg =




0 0
0 0

z′ y′

x′ −z′

 | x′y′ − z′2 6= 0


Base point:

(x0, ξ0) =


0 0
0 0

0 1
1 0

 ∈ T ∗C0
(V )reg

Fundamental groups:

T̂ [2]

1 = Ax0
A(x0,ξ0) Aξ0

∼= {±1}

s7→s1s2

id

Local systems:
LocH(T ∗C0

(V )sreg) : 1O0
LO0

Rep(A(x0,ξ0)) : + −

Pullback along the bundle map T ∗C0
(V )sreg → C0:

LocH(C0) → LocH(T ∗C0
(V )sreg)

1C0 7→ 1O0

LO0

C2: Regular conormal bundle above C2 ⊂ V :

T ∗C2
(V )reg =




z x
y −z

z′ y′

x′ −z′

 | xy + z2 = 0
[x : y : z] = [y′ : x′ : z′]


Base point:

(x2, ξ2) =


0 1
0 0

0 1
0 0

 ∈ T ∗C2
(V )reg
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Fundamental groups:

T̂ [2]

{±1} = Ax2 A(x2,ξ2) Aξ2 = {±1}

s7→(s1,s2)∼=

s1← [(s1,s2) (s1,s2) 7→s2

Local systems:

LocH(T ∗C2
(V )sreg) : 1O2

LO2
FO2

EO2

Rep(A(x2,ξ2)) : ++ −− −+ +−

Pullback along the bundle map T ∗C2
(V )sreg → C2:

LocH(C2) → LocH(T ∗C2
(V )sreg)

1C2
7→ 1O2

LO2

FC2
7→ FO2

EO2

C3: Regular conormal bundle above C3 ⊂ V :

T ∗C3
(V )reg =




z x
y −z

0 0
0 0

 | xy + z2 6= 0


Base point:

(x3, ξ3) =


0 1
1 0

0 0
0 0

 ∈ T ∗C3
(V )reg

Fundamental groups:

T̂ [2]

{±1} ∼= Ax3 A(x3,ξ3) Aξ3 = 1

s1s2←[s

id

Local systems:

LocH(T ∗C3
(V )sreg) : 1O3

LO3

Rep(A(x3,ξ3)) : + −

Pullback along the bundle map T ∗C3
(V )sreg → C3:

LocH(C3) → LocH(T ∗C3
(V )sreg)

1C3 7→ 1O3

LC3 7→ LO3
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6.2.3. Equivariant perverse sheaves. The following table is helpful to understand the
simple objects in PerH(V ).

P P|C0
P|C2

P|C3

IC(1C0) 1C0 [0] 0 0
IC(1C2) 1C0 [2] 1C2 [2] 0
IC(1C3

) 1C0
[3] 1C2

[3] 1C3
[3]

IC(LC3
) 1C0

[1] 0 LC3
[3]

IC(FC2) 0 FC2 [2] 0

We now explain how we made these calculations:
(a) The first and third row of these tables are computed using the observation that

when C is smooth, the sheaf 1C [dim(C)] is perverse.
(b) For the second row, the relevant cover C̃(1)

2 is the blowup of the nilcone at the
origin. We readily find using the decomposition theorem for semi-small maps that

π
(1)
2 !(1C̃(1)

2
[2]) = IC(1C2

)⊕ IC(1C0
).

Proper base change and exactness allows us to deduce the fibres of IC(1C2
) using

what we already know about IC(1C0).
(c) For the fourth row, we consider the double cover which arises from taking the

square root of the determinant. Although this is singular at the origin, blowing
up resolves this singularity. An alternate model for this blowup is the cover:

C̃3 =
{

[a : b], (x, y, z) ∈ P1 × V | −a2x+ 2abz + b2y = 0
}

with the obvious map π3 to V . The decomposition theorem for semi-small maps
yields

π3!(1C̃3
[3]) = IC(LC3)⊕ IC(1C3).

Proper base change and exactness again allows us to deduce the entries for
IC(LC3

), the key observation being that the map is 2 : 1 over C3, an isomorphism
over C2 and the fibre over C0 is P1.

(d) Finally the fifth row is computed by considering the “symmetric squares” cover
of the nilcone given by π(2)

2 : (a, b) 7→ (−a2, b2, ab). This map is 2 : 1 over C2 and
an isomorphism over C0; we readily confirm using the decomposition theorem for
finite maps that

π
(2)
2 !(1C̃ [2]) = IC(FC2

)⊕ IC(1C2
).

Computing the entries in the table is now immediate using our understanding of
the fibres and what we already know about IC(1C2).

From this, we easily find the normalised geometric multiplicity matrix.

1
\
C0

1
\
C2

1
\
C3

L\C3
F \C2

1
]
C0

1 0 0 0 0

1
]
C2

1 1 0 0 0

1
]
C3

1 1 1 0 0

L]C3
1 0 0 1 0

F ]C2
0 0 0 0 1
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Table 6.2.5.1. Ev : PerHλ(Vλ)→ PerHλ(T ∗Hλ(Vλ)reg) on simple objects,
for λ : WF → LG given at the beginning of Section 6.

PerHλ(Vλ)
Ev−→ PerH(T ∗Hλ(Vλ)reg)

IC(1C0) 7→ IC(1O0)
IC(1C2

) 7→ IC(1O2
)⊕ IC(LO0

)
IC(1C3

) 7→ IC(1O3
)

IC(LC3
) 7→ IC(LO3

)⊕ IC(LO2
)

IC(FC2) 7→ IC(FO2)

P Evψ0 P Evψ2 P Evψ3 P
IC(1C0

) + 0 0
IC(1C2

) − ++ 0
IC(1C3

) 0 0 +
IC(LC3

) 0 −− −
IC(FC2

) 0 +− 0

6.2.4. Cuspidal support decomposition and Fourier transform. Cuspidal Levi subgroups
for Ĝ were given in Section 5.2.3, so the cuspidal support decomposition of PerHλ(Vλ)
takes the same form here:

PerHλ(Vλ) = PerHλ(Vλ)T̂ ⊕ PerHλ(Vλ)
M̂
.

However, simple objects in these two subcategories are quite different in this case:

PerH(V )Ť PerH(V )M̌
IC(1C0

)
IC(1C2

) IC(FC2
)

IC(1C3)
IC(LC3)

Here we record the functor Ft : PerH(V )→ PerH(V ∗) on simple objects, and the composi-
tion of that functor with the equivalence PerH(V ∗)→ PerH(V ) described in Section 1.3.4;
the composition is the functor ∧ : PerH(V )→ PerH(V ) also discussed in Section 1.3.4.

PerH(V )
Ft−→ PerH(V ∗) −→ PerH(V )

IC(1C0) 7→ IC(1C∗0 ) 7→ IC(1C3)
IC(1C2) 7→ IC(LC∗0 ) 7→ IC(LC3)
IC(1C3

) 7→ IC(1C∗3 ) 7→ IC(1C0
)

IC(LC3
) 7→ IC(1C∗2 ) 7→ IC(1C2

)
IC(FC2

) 7→ IC(FC∗2 ) 7→ IC(FC2
)

Note that the Fourier transform respects the cuspidal support decomposition.

6.2.5. Vanishing cycles. Table 6.2.5.1 presents the calculation of EvC on simple objects.
Rows 1 and 3 are straightforward, arguing as in Section 5.2.5, (a). Here we show how

to compute rows 2, 4 and 5.
(a) To compute EvC0

IC(1C2
) we first consider

RΦxx′+yy′+2zz′(1C̃(1)
2 ×C∗0

)
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with

C̃
(1)
2 × C∗0 = {[a : b], (x, y, z), (x′, y′, z′) | −ax+ bz = 0, az + by = 0} .

The Jacobian condition for smoothness tells us that this is singular when x = y =
z = 0 and

−x′ b
a

+ y′
a

b
= 2z′;

re-homogenizing gives:

−a2x′ + 2abz′ + b2y′ = 0.

The restriction of C̃(1)
2 ×C∗0 → C2×C∗0 to the singular locus to give the non-trivial

double cover of C∗0 . From this we conclude

EvC0 π
(1)
2 !1

C̃
(1)
2

[2] = IC(LO0)⊕ IC(1O0).

As we already know that IC(1C0) is the source of the second term, we conclude
that

EvC0 IC(1C2) = IC(LO0).

(b) To compute EvC0 IC(FC2) we consider

RΦ−a2x′+2abz′+b2y′(1C̃(2)
2 ×C∗0

).

By passing to local charts we can describe the detailed local structure of the
singularity, using that we know at least one of x′, y′, z′ is not zero. However, in
this case, the key observation we need is that π(2)

2 is an isomorphism above the
singular locus and that we will obtain a rank-1 sheaf on the singular locus. The
former condition is easily checked using the Jacobian condition, the latter can be
checked by restricting to the chart where none of x′, y′, z′ are zero, and taking an
appropriate coordinate change. We already know this rank-1 sheaf is explained
by EvC0

IC(1C2
), and hence

EvC0
IC(FC2

) = 0.

(c) The smoothness of V makes the computation of Ev IC(1C3
) straightforward.

(d) The computation of EvC0
IC(LC3

) = 0 falls out easily because for the cover that
needs to be considered, the singular locus of π∗(· | ·) avoids the regular conormal
vectors.

(e) The calculation of EvC2 IC(LC3) is slightly more subtle, since the special fibre of
the restriction of (· | ·) ◦ π3 × idC∗2 on the model XC∗2

for V × C∗2 appearing in
[7, Theorem 5.3.1] is not flat. Nevertheless, the proper push-forward along this
finite map above T ∗C2

(V )reg is not difficult to compute, giving

EvC2
IC(LC3

) = IC(LO2
).

6.2.6. Fourier transform, vanishing cycles and the twisting functor. The equivariant local
systemD is non-trivial in this example, so here we display the functor T : PerH(T ∗H(V )reg)→
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PerH(T ∗H(V ∗)reg) given by T( · ) = a∗( · )⊗D∗:

PerH(T ∗H(V )reg)
T−→ LocH(T ∗H(V ∗)reg)

IC(1O0) 7→ IC(1O∗0 )
IC(LO0) 7→ IC(LO∗0 )
IC(1O2) 7→ IC(LO∗2 )
IC(LO2) 7→ IC(1O∗2 )
IC(FO2

) 7→ IC(EO∗2 )
IC(EO2

) 7→ IC(FO∗2 )
IC(1O3

) 7→ IC(1O∗3 )
IC(LO3

) 7→ IC(LO∗3 )

We may now verify (24) by comparing the functors below with the Fourier transform
appearing in Section 6.2.4.

PerHλ(Vλ)
Ev−→ PerH(T ∗Hλ(Vλ)reg)

T−→ PerH(T ∗Hλ(V ∗λ )reg)
Ev∗←− PerHλ(V ∗λ )

IC(1C0) 7→ IC(1O0) 7→ IC(1O∗0 ) ←[ IC(1C∗0 )
IC(1C2) 7→ IC(1O2)⊕ IC(LO0) 7→ IC(LO∗2 )⊕ IC(LO∗0 ) ←[ IC(LC∗0 )
IC(1C3) 7→ IC(1O3) 7→ IC(1O∗3 ) ←[ IC(1C∗3 )
IC(LC3) 7→ IC(LO3)⊕ IC(LO2) 7→ IC(LO∗3 )⊕ IC(1O∗2 ) ←[ IC(1C∗2 )
IC(FC2) 7→ IC(FO2) 7→ IC(EO∗2 ) ←[ IC(FC∗2 )

6.2.7. Arthur sheaves.

Arthur packet coronal
sheaf sheaves sheaves
AC0

IC(1C0
) ⊕ IC(1C2

)
AC2

IC(1C2
⊕ IC(LC2

) ⊕ IC(FC3
)

AC3
IC(1C3

)⊕ IC(FC3
)

6.3. Adams-Barbasch-Vogan packets.

6.3.1. Admissible representations versus equivariant perverse sheaves.

PerHλ(Vλ)simple
/iso Πpure,λ(G/F )

IC(1C0) [π(φ0), 0]
IC(1C2

) [π(φ2,+), 0]
IC(1C3

) [π(φ3,+), 0]
IC(LC3

) [π(φ3,−), 0]
IC(FC2

) [π(φ2,−), 1]

6.3.2. ABV-packets.

ABV-packets packet representations coronal representations
ΠABV

pure,φ0
(G/F ) : [π(φ0,+), 0] [π(φ2,+), 0]

ΠABV
pure,φ2

(G/F ) : [π(φ2,+), 0], [π(φ2,−), 1] [π(φ3,−), 0]

ΠABV
pure,φ3

(G/F ) : [π(φ3,+), 0], [π(φ3,−), 0]



ARTHUR PACKETS AND ABV-PACKETS FOR p-ADIC GROUPS, 2: EXAMPLES 61

6.3.3. Stable distributions and endoscopic transfer. We now calculate the virtual repres-
entations ηABV

φ,s ; see (32). In the list below, we use the notation s = (s1, s2) for elements
of T̂ [2].

φ0:
ηABV
φ0,s

= [π(φ0,+), 0] + (−)(s1s2)[π(φ2,+), 0]

so
ηABV
φ0,(1,1) = [π(φ0,+), 0] + [π(φ2,+), 0]

ηABV
φ0,(1,−1) = [π(φ0,+), 0]− [π(φ2,+), 0]

ηABV
φ0,(−1,1) = [π(φ0,+), 0]− [π(φ2,+), 0]

ηABV
φ0,(−1,−1) = [π(φ0,+), 0] + [π(φ2,+), 0].

φ1:

ηABV
φ2,s

= [π(φ2,+), 0]− (−−)(s)[π(φ2,−), 1]− (+−)(s)[π(φ3,−), 0]

so

ηABV
φ2,(1,1) = [π(φ2,+), 0]− [π(φ2,−), 1]− [π(φ3,−), 0]

ηABV
φ2,(1,−1) = [π(φ2,+), 0] + [π(φ2,−), 1] + [π(φ3,−), 0]

ηABV
φ2,(−1,1) = [π(φ2,+), 0] + [π(φ2,−), 1]− [π(φ3,−), 0]

ηABV
φ2,(−1,−1) = [π(φ2,+), 0]− [π(φ2,−), 1] + [π(φ3,−), 1]

φ3:
ηABV
φ3,s

= [π(φ3,+), 0] + (−)(s1s2)[π(φ3,−), 0]

so
ηABV
ψ3,(1,1) = [π(φ3,+), 0] + [π(φ3,−), 0]

ηABV
ψ3,(1,−1) = [π(φ3,+), 0]− [π(φ3,−), 0]

ηABV
ψ3,(−1,1) = [π(φ3,+), 0]− [π(φ3,−), 0]

ηABV
ψ3,(−1,−1) = [π(φ3,+), 0] + [π(φ3,−), 0].

After comparing with Section 6.1.6, we see

ηABV
ψ0,s

= ηABV
ψ0,s

ηABV
ψ3,s

= ηABV
ψ0,s

.

This proves (31) for admissible represenations with infinitesimal parameter λ given at the
beginning of Section 6.

6.3.4. Kazhdan-Lusztig conjecture. From Section 6.1.3 we find the multiplicity matrix
mrep and from Section 6.2.3 we find the normalised geometric multiplicity matrix m′geo:

mrep =


1 1 1 1 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , m′geo =


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 0 0 1 0
0 0 0 0 1

 .

Since tmrep = m′geo, this confirms the Kazhdan-Lusztig conjecture as it applies to repres-
entations with infinitesimal parameter λ : WF → LG given at the beginning of Section 6.
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6.3.5. Aubert duality and Fourier transform. Using Vogan’s bijection from Section 6.3.1
we may compare Aubert duality from Section 6.1.5 with the Fourier transform from
Section 6.2.4 to verify (33).

Using the map Qλ(LG)→ T ∗H(V )reg we may compare the twisting characters χψ of Aψ
from Section 6.1.5 with the restriction Dψ to T ∗Cψ (V )reg of the D from Section 6.2.6 to
verify (34).

6.4. Endoscopy and equivariant restriction of perverse sheaves. As in Section 6.1.6,
we now take the case s = diag(1,−1,−1, 1) and G′ = SO(3)×SO(3). Then λ : WF → LG

factors through ε : LG
′ → LG to define λ : WF → LG

′ by

λ′(w) =

((
|w|1/2 0

0 |w|−1/2

)
,

(
|w|1/2 0

0 |w|−1/2

))
.

In this section we will calculate both sides of (35). This will illustrate how the Langlands-
Shelstad lift of Θψ′ on G′(F ) to Θψ,s on G(F ) is related to equivariant restriction of
perverse sheaves from V to the Vogan variety V ′ for G′.

6.4.1. Parameters. There are four Arthur parameters with infinitesimal parameter λ′ :
WF → LG′, up to H ′-conjugacy.

Qλ′(
LG′)/H ′ =

{
ψ′0,

1ψ′2,
2ψ′2, ψ

′
3

}
These Arthur parameters for G′ = SO(3)× SO(3) are given as follows:

ψ′0(w, x, y) = (ν2(y), ν2(y)), ψ′0(w, x, y) = (ν2(x), ν2(x)),
1ψ′2(w, x, y) = (ν2(x), ν2(y)), 2ψ′2(w, x, y) = (ν2(y), ν2(x)).

Although ψ2 = ε ◦ 1ψ′2 is H-conjugate to ε ◦ 2ψ′2, 1ψ′2 is not H ′-conjugate to 2ψ′2.

6.4.2. Endoscopic Vogan variety. The Vogan variety V ′ for λ′ is simply two copies of the
Vogan variety appearing in Section 3. As a subvariety of the conormal bundle to V , the
conormal to the Vogan variety V ′ for λ′ : WF → LG′ is

T ∗H′(V
′) =




0 x
y 0

0 y′

x′ 0

 | xy′ = 0
yx′ = 0


C ′0: The regular conormal above the closed H ′-orbit C ′0 ⊂ V ′ is

T ∗C′0(V ′)reg =




0 0
0 0

0 y′

x′ 0

 | x′ 6= 0
y′ 6= 0


Base point:

(x′0, ξ
′
0) =


0 0
0 0

0 1
1 0

 ∈ T ∗C′0(V ′)reg
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Fundamental groups:

T̂ [2]

1 = Ax′0 A(x′0,ξ
′
0) Aξ′0 = {±1} × {±1}

s 7→(s1,s2)

id

Pullback along the bundle map:

LocH′(C
′
0) → LocH′(T

∗
C′0

(V ′)sreg)

1C′0
7→ 1O′0

LO′0
FO′0
EO′0

C ′x: Set C ′x = Cx × C0 ⊂ V ′. Then the regular conormal above C ′x is

T ∗C′x(V )reg =




0 x
0 0

0 y′

0 0

 | x 6= 0
y′ 6= 0


Base point:

( 1x′2,
2ξ′2) =


0 1
0 0

0 1
0 0

 ∈ T ∗C′x(V )reg

Fundamental groups:

T̂ [2]

{±1} = A 1x′2
A( 1x′2,

1ξ′2) A 1ξ′2
= {±1}

s7→(s1,s2)

s1← [(s1,s2) (s1,s2) 7→s2

Pullback along the bundle map:

LocH′(C
′
x) → LocH′(T

∗
C′x

(V )sreg)

1C′x
7→ 1O′2

LO′2
FO′2

LC′x 7→ EO′2
C ′y: Set C ′y = C0 × Cy ⊂ V ′. Then the regular conormal above C ′y is

T ∗C′y (V )reg =




0 0
y 0

0 0
x′ 0

 | x′ 6= 0
y 6= 0


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Base point:

( 2x′2,
2ξ′2) =


0 0
1 0

0 0
1 0

 ∈ T ∗C′y (V )reg

Fundamental groups:

T̂ [2]

{±1} = A 2x′2
A( 2x′2,

2ξ′2) A 2ξ′2
= {±1}

s7→(s1,s2)

s2← [(s1,s2) (s1,s2) 7→s1

Pullback along the bundle map:

LocH(C ′y) → LocH(T ∗C′y (V )sreg)

1C′y
7→ 1O′y

LO′y
LC′y 7→ FO′y

EO′y

C ′xy: Set C ′xy = Cx × Cy ⊂ V ′. Then

T ∗Cxy (V )reg =




0 x
y 0

0 0
0 0

 | xy 6= 0


Base point:

(x′3, ξ
′
3) =


0 1
1 0

0 0
0 0

 ∈ T ∗C′xy (V )reg

Fundamental groups:

T̂ [2]

{±1} × {±1} = Ax′3 A(x′3,ξ
′
3) Aξ′3 = 1

s7→(s1,s2)

id

Pullback along the bundle map:

LocH′(C
′
xy) → LocH(T ∗C′xy (V ′)sreg)

1C′xy
7→ 1O′xy

LC′xy 7→ LO′xy
FC′xy 7→ FO′xy
EC′xy 7→ EO′xy
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Table 6.4.3.1. Ev′ : PerHλ′ (Vλ′) → PerHλ′ (T
∗
Hλ′

(Vλ′)reg) on simple ob-
jects, for λ′ : WF → LG

′ given at the beginning of Section 6.

PerH′(V
′)

Ev′−→ PerH′(T
∗
H′(V

′)reg)
IC(1C′0) 7→ IC(1O′0)
IC(1C′x) 7→ IC(1O′x)
IC(1C′y ) 7→ IC(1O′y )

IC(1C′xy ) 7→ IC(1O′xy )

IC(LC′x) 7→ IC(FO′x)⊕ IC(FO′0)
IC(LC′y ) 7→ IC(EO′y )⊕ IC(EO′0)

IC(LC′xy ) 7→ IC(LO′xy )⊕ IC(LO′x)⊕ IC(LO′y )⊕ IC(LO′0)

P ′ Evψ′0 P
′ Ev 1ψ′2

P ′ Ev 2ψ′2
P ′ Evψ′3 P

′

IC(1C′0) ++ 0 0 0
IC(1C′x) 0 ++ 0 0
IC(1C′y ) 0 0 ++ 0

IC(1C′xy ) 0 0 0 ++

IC(LC′x) −+ −+ 0 0
IC(LC′y ) +− 0 +− 0

IC(LC′xy ) −− −− −− −−

6.4.3. Vanishing cycles. The functor

Ev′ : PerH′(V
′)→ PerH′(T

∗
H′(V

′)reg)

may be deduced from Section 3.2.5. Since we will need to refer to this information in
Section 6.4.5, we present Ev′ here anyhow, from two perspectives, in Table 6.4.3.1.

6.4.4. Restriction.

res : PerH(V ) −→ KPerH′(V
′)

IC(1C0
) 7→ IC(1C′0)

IC(1C2) 7→ IC(1C′x)[1]⊕ IC(1C′y )[1]⊕ IC(1C′0)[1]

IC(1C3
) 7→ IC(1C′xy )[1]

IC(LC3
) 7→ IC(1C′0)[1]⊕ IC(LC′xy )[1]

IC(FC2
) 7→ IC(LC′x)[1]⊕ IC(LC′y )[1]

6.4.5. Restriction and vanishing cycles. We now calculate both sides of (35) in an inter-
esting case. Take P = IC(LC3

). Then, in the Grothendieck group of PerH′(V ′),

IC(LC3
)|V ′ ≡ IC(1C′0)[1]⊕ IC(LC′xy )[1],

so, in the Grothendieck group of PerH′(T ∗H′(V
′)reg),

Ev′ P|V ′ ≡ Ev′
(
IC(1C′0)[1]⊕ IC(LC′xy )[1]

)
= IC(1O′0)[1]⊕ IC(LO′xy )[1]⊕ IC(LO′y )[1]⊕ IC(LO′x)[1]⊕ IC(LO′0)[1]
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(x′3, ξ
′
3): If (x′, ξ′) = (x′3, ξ

′
3) then

(−1)dimC−dimC′ Tr(Ev′(x′,ξ′) P|V ′)(a′s) = (−1)3−2 Tr
(
IC(LO′xy )[1]

)
(1,−1)

= (−1)(−−)(+1,−1)(−1)
= (−1)(−1)(−1)
= −1.

( 1x′2,
1ξ′2): If (x′, ξ′) = ( 1x′2,

1ξ′2) then

(−1)dimC−dimC′ Tr(Ev′(x′,ξ′) P|V ′)(a′s) = (−1)2−1 Tr
(
IC(LO′x)[1]

)
(1,−1)

= (−1)(−−)(1,−1)(−1)
= (−1)(−1)(−1)
= −1.

( 2x′2,
2ξ′2): If (x′, ξ′) = ( 2x′2,

2ξ′2) then

(−1)dimC−dimC′ Tr(Ev′(x′,ξ′) P|V ′)(a′s) = (−1)2−1 Tr
(
IC(LO′y )[1]

)
(1,−1)

= (−1)(−−)(1,−1)(−1)
= −1.

(x′0, ξ
′
0): If (x′, ξ′) = (x′0, ξ

′
0) then

(−1)dimC−dimC′ Tr(Ev′(x′,ξ′) P|V ′)(a′s) = Tr
(
IC(1O′0)[1]⊕ IC(LO′0)[1]

)
(1,−1)

= (−1) ((++)(1,−1) + (−−)(1,−1)) (−1)
= 0.

The right-hand side of (35) is

Tr(Ev(x,ξ) P)(as) = Tr (Ev IC(LC3
)) |T∗C(V )reg(as)

= Tr (IC(LO3)⊕ IC(LO2)) |T∗C(V )reg(as).

(x′3, ξ
′
3): If (x′, ξ′) = (x′3, ξ

′
3) then (x, ξ) = (x3, ξ3) so

Tr(Ev(x,ξ) P)(as) = Tr (IC(LO3
)⊕ IC(LO2

)) |T∗C3
(V )reg(as)

= Tr IC(LO3
)(−1)

= (−)(−1) = −1.

( 1x′2,
1ξ′2): If (x′, ξ′) = ( 1x′2,

1ξ′2) then (x, ξ) = (x2, ξ2) so

Tr(Ev(x,ξ) P)(as) = Tr (IC(LO3
)⊕ IC(LO2

)) |T∗C3
(V )reg(as)

= Tr IC(LO2
)(−1)

= −1.

( 2x′2,
2ξ′2): If (x′, ξ′) = ( 2x′2,

2ξ′2) then (x, ξ) is H-conjugate to (x2, ξ2) so

Tr(Ev(x,ξ) P)(as) = Tr (IC(LO3
)⊕ IC(LO2

)) |T∗C3
(V )reg(as)

= Tr IC(LO2)(−1)
= −1.

(x′0, ξ
′
0): If (x′, ξ′) = (x′0, ξ

′
0) then (x, ξ) is H-conjugate to (x0, ξ0) so

Tr(Ev(x,ξ) P)(as) = Tr (IC(LO3
)⊕ IC(LO2

)) |T∗C3
(V )reg(as)

= 0.
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The proves (35) for P = IC(LC3
).

Here is another interesting example. Take P = IC(FC2). Then

P|V ′ ≡ IC(FC2
)|V ′ = IC(LC′x)[1]⊕ IC(LC′y )[1],

so

Ev′ P|V ′ = Ev′
(
IC(LC′x)[1]⊕ IC(LC′y )[1]

)
= IC(FO′x)[1]⊕ IC(FO′0)[1]⊕ IC(EO′y )[1]⊕ IC(EO′0)[1].

Thus, (−1)dimC−dimC′ Tr(Ev′(x′,ξ′) P|V ′)(a′s) is 0 unless (x′, ξ′) lies in T ∗C′x(V ′)reg or T ∗C′y (V ′)reg

or T ∗C′0(V ′)reg.

( 1x′2,
1ξ′2): If (x′, ξ′) = ( 1x′2,

1ξ′2) then

(−1)dimC−dimC′ Tr(Ev′(x′,ξ′) P|V ′)(a′s) = (−1)2−1 Tr
(
IC(FO′x)[1]

)
(1,−1)

= (−1)(+1)(−1)
= +1

( 2x′2,
2ξ′2): If (x′, ξ′) = ( 2x′2,

2ξ′2) then

(−1)dimC−dimC′ Tr(Ev′(x′,ξ′) P|V ′)(a′s) = (−1)2−1 Tr
(
IC(FO′y )[1]

)
(1,−1)

= (−1)(+1)(−1)
= +1

(x′0, ξ
′
0): If (x′, ξ′) = (x′0, ξ

′
0) then

(−1)dimC−dimC′ Tr(Ev′(x′,ξ′) P|V ′)(a′s) = Tr
(
IC(FO′0)[1]⊕ IC(EO′0)[1]

)
(1,−1)

= ((+1) + (−1)) (−1)
= 0

The right-hand side of (35) is

Tr(Ev(x,ξ) P)(as) = Tr (Ev IC(FC2
)) |T∗C(V )reg(as)

= Tr (IC(EO2
)) |T∗C(V )reg(as).

( 1x′2,
1ξ′2): If (x′, ξ′) = ( 1x′2,

1ξ′2) then (x, ξ) = (x2, ξ2) so

Tr(Ev(x,ξ) P)(as) = Tr IC(EO2)(+1,−1)
= +1.

( 2x′2,
2ξ′2): If (x′, ξ′) = ( 2x′2,

2ξ′2) then (x, ξ) is H-conjugate to (x2, ξ2) so

Tr(Ev(x,ξ) P)(as) = Tr IC(EO2
)(+1,−1)

= +1.

(x′0, ξ
′
0): If (x′, ξ′) = (x′0, ξ

′
0) then (x, ξ) is H-conjugate to (x0, ξ0) so

Tr(Ev(x,ξ) P)(as) = Tr 0(+1,−1)
= 0.

This proves (35) for P = IC(FC2
).
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7. SO(7) unipotent representations, singular infinitesimal parameter

Let G = SO(7). The calculation of pure inner twists and inner twists and their forms
for G is the same as in Section 5. Let G0 = G be the split form of G and let G1 be the
non-quasisplit form of G, given by the quadratic form

0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 −ε$ 0 0 0 0
0 0 0 ε 0 0 0
0 0 0 0 $ 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


.

One readily verifies that the Hasse invariant of this form is ($, ε) = −1 so that the form
is not split. Note that the choice ε = 1 would give a split form.

Consider the infinitesimal parameter λ : WF → Ĝ given by

λ(w) :=



|w|3/2 0 0 0 0 0

0 |w|1/2 0 0 0 0

0 0 |w|1/2 0 0 0

0 0 0 |w|−1/2
0 0

0 0 0 0 |w|−1/2
0

0 0 0 0 0 |w|−3/2


.

Here, and below, we use the symplectic form 〈x, y〉 = txJy with matrix J given by
Jij = (−1)jδ7−i,j to determine a representation of Sp(6). Note that, in contrast to the
unramified infinitesimal parameters in Sections 3 and 5, in this case the image of Frobenius
is singular semisimple.

7.1. Arthur packets.

7.1.1. Parameters. Up to Hλ-conjugation, there are eight Langlands parameters with
infinitesimal parameter λ, of which six are of Arthur type. The six Langlands parameters
of Arthur type are most easily described through their Arthur parameters:

ψ0(w, x, y) = ν4(y)⊕ ν2(y), ψ7(w, x, y) = ν4(x)⊕ ν2(x),
ψ2(w, x, y) = ν4(y)⊕ ν2(x), ψ6(w, x, y) = ν4(x)⊕ ν2(y),
ψ4(w, x, y) = ν2(x)⊗ ν3(y), ψ5(w, x, y) = ν3(x)⊗ ν2(y).

where ν4 : SL(2) → Sp(4) is a 4-dimensional symplectic irreducible representation of
SL(2), ν3 : SL(2) → SO(3) is a 3-dimensional orthogonal irreducible representation of
SL(2) and, as above, ν2 : SL(2) → SL(2) is the identity representation. Note that ψ0 is
the Aubert dual of ψ7, ψ2 is the Aubert dual of ψ6, and ψ4 is the Aubert dual of ψ5.

These Arthur parameters define the following six Langlands parameters:

φ0(w, x) = ν4(dw)⊕ ν2(dw), φ7(w, x) = ν4(x)⊕ ν2(x),
φ2(w, x) = ν4(dw)⊕ ν2(x), φ6(w, x) = ν4(x)⊕ ν2(dw),
φ4(w, x) = ν2(x)⊗ ν3(dw), φ5(w, x) = ν3(x)⊗ ν2(dw).
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The remaining two Langlands parameters in Pλ(LG)/ZĜ(λ) that are not of Arthur type
are given here:

φ1(w, x) =



|w|x11 |w|x12 0 0 0 0
|w|x21 |w|x22 0 0 0 0

0 0 |w|1/2 0 0 0

0 0 0 |w|−1/2
0 0

0 0 0 0 |w|−1
x11 |w|−1

x12

0 0 0 0 |w|−1
x21 |w|−1

x22


,

φ3(w, x) =


|w|3/2 0 0 0 0 0

0 x11 0 0 x12 0
0 0 x11 x12 0 0
0 0 x21 x22 0 0
0 −x21 0 0 −x22 0

0 0 0 0 0 |w|−3/2

 .

7.1.2. L-packets. In total, there are 15 admissible representations with infinitesimal para-
meter λ, of which 10 are representations of G0(F ) while 5 are representations of G1(F ).
In order to list them, we must enumerate the irreducible representations Aφ, for each
φ ∈ Pλ(LG). In every case but one, the group Aφ is trivial or has order 2; in the latter
case, the irreducible representations of these groups are unambiguously labeled with + or
−; in the former case, we simply elide the trivial representation, such as in the list below.

Πφ0(G0(F )) = {π(φ0)} Πφ0(G1(F )) = ∅
Πφ1

(G0(F )) = {π(φ1)} Πφ1
(G1(F )) = ∅

Πφ2
(G0(F )) = {π(φ2,+)} Πφ2

(G1(F )) = {π(φ2,−)}
Πφ3

(G0(F )) = {π(φ3,+), π(φ3,−)} Πφ3
(G1(F )) = ∅

Πφ4(G0(F )) = {π(φ4,+)} Πφ4(G1(F )) = {π(φ4,−)}
Πφ5(G0(F )) = {π(φ5)} Πφ5(G1(F )) = ∅
Πφ6

(G0(F )) = {π(φ6,+)} Πφ6
(G1(F )) = {π(φ6,−)}

Πφ7
(G0(F )) = {π(φ7,++), π(φ7,−−)} Πφ7

(G1(F )) = {π(φ7,+−), π(φ7,−+)}

The centraliser of φ7 is the following subgroup of 2-torsion elements T̂ [2] in the diagonal
dual torus T̂ :

ZĜ(φ7) =




s1 0 0 0 0 0
0 s2 0 0 0 0
0 0 s3 0 0 0
0 0 0 s3 0 0
0 0 0 0 s2 0
0 0 0 0 0 s1

 ∈ T̂ [2] | s1 = s2


.

We fix the isomorphism ZĜ(φ7) ∼= {±1} × {±1} so that the image of Z(Ĝ) in ZĜ(φ7)
is {(+1,+1), (−1,−1)}; using this isomorphism, we label irreducible representations of
Aφ7

∼= ZĜ(φ7) by the symbols ++, +−, −+ and −−. Note that the restriction of these
representations to Z(Ĝ) is trivial for ++ and −− only.

Of these 15 admissible representations, only the representation π(φ7,+−) of G1(F )
is tempered. We now describe that representation. Let G1 be the parahoric OF -group
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scheme associated to the quadratic form at the beginning of Section 7. The generic fibre
of G1 is the inner form G1 of G∗, and G1(OF ) is a maximal parahoric subgroup of the
F -points on the generic fibre of G1. The reductive quotient of the special fibre of G1 is

G1
red
Fq

= SO(5)× SO(2),

over Fq, where SO(5) and SO(2) are determined, respectively, by
0 0 0 0 1
0 0 0 1 0
0 0 ε 0 0
0 1 0 0 0
1 0 0 0 0

 and
(
−ε 0
0 1

)
,

with ε = ε mod OF . The finite group G1
red
Fq

(k) = SO(5,Fq)× SO(2,Fq) admits a unique
cuspidal unipotent irreducible representation, σ0. Let σ be the representation of G1(OF )

obtained by inflation from σ0 along G1(OF )→ (G)redFq (Fq). Then

π(φ7,+−) = cInd
G1(F )

G1(OF )(σ).

In particular, π(φ7,+−) is a unipotent supercusidal depth-zero representation. It is the
only supercuspidal representation appearing in this example.

7.1.3. Multiplicities in standard modules. In order to describe the other admissible rep-
resentations appearing in this example, we give the multiplicity of π(φ, ρ) in the standard
modules M(φ′, ρ′) for representations of the pure form G0(F ). To save space here we
write π

i
for π(φi) and πεi for π(φi, ε); a similar convention applies to the notation for the

standard modules here.

G0 π0 π1 π+
2 π++

3 π−−3 π+
4 π5 π+

6 π++
7 π−−7

M0 1 1 1 1 1 2 2 1 1 1
M1 0 1 0 0 0 1 1 1 1 1
M+

2 0 0 1 1 0 1 1 1 1 0
M++

3 0 0 0 1 0 0 1 0 1 0
M−−3 0 0 0 0 1 0 1 0 0 1
M+

4 0 0 0 0 0 1 1 1 1 0
M5 0 0 0 0 0 0 1 0 1 1
M+

6 0 0 0 0 0 0 0 1 1 0
M++

7 0 0 0 0 0 0 0 0 1 0
M−−7 0 0 0 0 0 0 0 0 0 1

Passing from G0 to G1, we now list the multiplicity of π(φ, ρ) in the standard modules
M(φ′, ρ′), for representations of the form G1(F ).

G1 π−2 π−4 π−6 π−+
7 π+−

7

M−2 1 1 1 1 0
M−4 0 1 1 0 0
M−6 0 0 1 1 0
M−+

7 0 0 1 0 0

M+−
7 0 0 0 0 1
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The idea of computing the multiplicities in the standard modules is to compare the
Jacquet modules of the standard modules with those of irreducible representations. To
be more precise, one can always make some guesses of what should be inside the standard
modules by looking at the corresponding inducing representations. Then one can further
argue that they are really there. To see there is nothing else, it is enough to show that the
Jacquet modules of the standard modules have been exhausted by these representations.
To give an example, let us look at

M+
6 := Ind(||1/2 ⊗ π(ν4,+)).

It is clear that this will contain π+
6 . Moreover, it has an irreducible submodule π++

7 . To
show there is nothing else, we can compute the Jacquet module of M+

6 with respect to
the standard parabolic subgroup P , whose Levi component is GL(1) × SO(5). By the
geometric lemma, we get

s.s. JacP M+
6 = ||3/2 ⊗ Ind(||1/2 ⊗ π(ν2,+))⊕ ||1/2 ⊗ π(ν4,+)⊕ ||−1/2 ⊗ π(ν4,+)

and

s.s. Ind(||1/2 ⊗ π(ν2,+)) = π(ν2 ⊕ ν2,++)⊕ π′

where π′ is the unique irreducible quotient. On the other hand,

s.s. JacPπ
+
6 = ||−1/2 ⊗ π(ν4,+)⊕ ||3/2 ⊗ π′

and

s.s. JacPπ
++
7 = ||1/2 ⊗ π(ν4,+)⊕ ||3/2 ⊗ π(ν2 ⊕ ν2,++).

Therefore,

s.s.M+
6 = π+

6 ⊕ π
++
7 .

7.1.4. Arthur packets. In order to describe the component groups Aψ, consider the torus

S :=





s1

s2 0
0 s3

s−1
3 0
0 s−1

2

s−1
1

 | s1 = s2


⊂ T̂ ⊂ Ĝ.

Let S[2] be the 2-torsion subgroup of S; Note that Z(Ĝ) ⊂ S[2]. Let us the notation

s(s2, s3) :=


s2

s2 0
0 s3

s3 0
0 s2

s2

 ∈ S[2]
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and let S[2] ∼= {±1} × {±1} be the isomorphism determined by this notation. Then
Z(Ĝ) ∼= {±1} is the diagonal subgroup, for which we will use the notation

s(s1, s1) :=


s1

s1 0
0 s1

s1 0
0 s1

s1

 ∈ Z(Ĝ) ⊂ S[2].

We can now give the component groups Aψ:

Aψ0
= S[2], Aψ7

= S[2],
Aψ2

= S[2], Aψ6
= S[2],

Aψ4
= Z(Ĝ), Aψ5

= Z(Ĝ).

The Arthur packets for admissible representations of G0(F ) with infinitesimal para-
meter λ are

Πψ0
(G0(F )) = {π(φ0), π(φ2,+)},

Πψ2
(G0(F )) = {π(φ2,+), π(φ3,−)},

Πψ4(G0(F )) = {π(φ4,+)},
Πψ5(G0(F )) = {π(φ5)},
Πψ6

(G0(F )) = {π(φ6,+), π(φ7,−−)},
Πψ7

(G0(F )) = {π(φ7,++), π(φ7,−−)},

and the Arthur packets for admissible representations of G1(F ) with infinitesimal para-
meter λ are

Πψ0
(G1(F )) = {π(φ4,−), π(φ7(+−)},

Πψ2
(G1(F )) = {π(φ2,−), π(φ7,+−)},

Πψ4
(G1(F )) = {π(φ4,−), π(φ7,+−)},

Πψ5(G1(F )) = {π(φ7,−+), π(φ7,+−)},
Πψ6(G1(F )) = {π(φ6,−), π(φ7,+−)},
Πψ7

(G1(F )) = {π(φ7,−+), π(φ7,+−)}.

For later reference, we arrange these representations into pure Arthur packets.

pure Arthur pure L-packet coronal
packets representations representations
Πpure,ψ0

(G/F ) [π(φ0), 0], [π(φ2,+), 0], [π(φ4,−), 1], [π(φ7,+−), 1]
Πpure,ψ2

(G/F ) [π(φ2,+), 0], [π(φ2,−), 1], [π(φ3,−), 0], [π(φ7,+−), 1]
Πpure,ψ4(G/F ) [π(φ4,+), 0], [π(φ4,−), 1], [π(φ7,+−), 1]
Πpure,ψ5(G/F ) [π(φ5), 0], [π(φ7,−+), 1], [π(φ7,+−), 1]
Πpure,ψ6

(G/F ) [π(φ6,+), 0], [π(φ6,−), 1], [π(φ7,−−), 0], [π(φ7,+−), 1]
Πpure,ψ7

(G/F ) [π(φ7,++), 0], [π(φ7,−−), 0], [π(φ7,−+), 1], [π(φ7,+−), 1]
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7.1.5. Aubert duality. Aubert duality for G0(F ) and G1(F ) is given by the following table.

π π̂

π(φ0) π(φ7,++)
π(φ1,+) π(φ3,+)
π(φ2,+) π(φ7,−−)
π(φ3,+) π(φ1,+)
π(φ3,−) π(φ6,+)
π(φ4,+) π(φ5)
π(φ5) π(φ4,+)
π(φ6,+) π(φ3,−)
π(φ7,++) π(φ0)
π(φ7,−−) π(φ2,+)
π(φ2,−) π(φ6,−)
π(φ4,−) π(φ7,−+)
π(φ6,−) π(φ2,−)
π(φ7,+−) π(φ7,+−)

The twisting characters χψ0
, χψ4

, χψ5
and χψ7

are trivial. The twisting characters χψ2

and χψ6
are nontrivial, both given (−−), using the isomorphisms Aψ2

= S[2] ∼= {±1} ×
{±1} and Aψ6

= S[2] ∼= {±1} × {±1} fixed in Section 7.1.4.

7.1.6. Stable distributions and endoscopy. The stable distributions on G0(F ) attached to
these Arthur packets are:

ΘG0

ψ0
= Trπ(φ0) + Trπ(φ2,+), ΘG0

ψ7
= Trπ(φ7,++) + Trπ(φ7,−−),

ΘG0

ψ2
= Trπ(φ2,+)− Trπ(φ3,−), ΘG0

ψ6
= Trπ(φ6,+)− Trπ(φ7,−−),

ΘG0

ψ4
= Trπ(φ4,+), ΘG0

ψ5
= Trπ(φ5).

The characters 〈 · , π〉ψ of Aψ are given by

π 〈 · , π〉ψ0
〈 · , π〉ψ2

〈 · , π〉ψ4
〈 · , π〉ψ5

〈 · , π〉ψ6
〈 · , π〉ψ7

π(φ0) ++ 0 0 0 0 0
π(φ2,+) −− ++ 0 0 0 0
π(φ3,−) 0 −− 0 0 0 0
π(φ4,+) 0 0 + 0 0 0
π(φ5) 0 0 0 + 0 0
π(φ6,+) 0 0 0 0 ++ 0
π(φ7,++) 0 0 0 0 0 ++
π(φ7,−−) 0 0 0 0 −− −−

With this, we easily find the coefficients 〈ssψ, π〉ψ in ΘG0

ψ,s. First calculate sψ :=ψ(1, 1,−1):

sψ0
= ν4(−1)⊕ ν2(−1) = s(−1,−1), sψ7

= ν4(1)⊕ ν2(1) = s(1, 1),
sψ2

= ν4(−1)⊕ ν2(1) = s(−1, 1), sψ6
= ν4(1)⊕ ν2(−1) = s(1,−1),

sψ4
= ν2(1)⊗ ν3(−1) = s(1, 1), sψ5

= ν3(1)⊗ ν2(−1) = s(−1,−1).

Then, using the notation s = s(s2, s3) from Section 7.1.4, we have:

ΘG0

ψ0,s
= Trπ(φ0) + s2s3 Trπ(φ2,+),

ΘG0

ψ2,s
= Trπ(φ2,+)− s2s3 Trπ(φ3,−),

ΘG0

ψ4,s
= Trπ(φ4,+),
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and

ΘG0

ψ7,s
= Trπ(φ7,++) + s2s3 Trπ(φ7,−−),

ΘG0

ψ6,s
= Trπ(φ6,+)− s2s3 Trπ(φ7,−−),

ΘG0

ψ5,s
= Trπ(φ5).

We now turn our attention to the distributions on G1(F ) attached to these Arthur
packets:

ΘG1

ψ0
= − (− Trπ(φ4,+)− Trπ(φ7,+−))

ΘG1

ψ2
= − (+ Trπ(φ2,−)− Trπ(φ7,+−))

ΘG1

ψ4
= − (+ Trπ(φ4,−) + Trπ(φ7,+−))

and

ΘG1

ψ7
= − (+ Trπ(φ7,−+) + Trπ(φ7,+−))

ΘG1

ψ6
= − (+ Trπ(φ6,−)− Trπ(φ7,+−))

ΘG1

ψ5
= − (− Trπ(φ7,−+)− Trπ(φ7,+−))

For these representations, the characters 〈 · , π〉ψ of Aψ are given by

π 〈 · , π〉ψ0
〈 · , π〉ψ2

〈 · , π〉ψ4
〈 · , π〉ψ5

〈 · , π〉ψ6
〈 · , π〉ψ7

π(φ2,−) 0 +− 0 0 0 0
π(φ4,−) −+ 0 − 0 0 0
π(φ6,−) 0 0 0 0 −+ 0
π(φ7,−+) 0 0 0 − 0 −+
π(φ7,+−) +− −+ − − +− +−

With this, we easily find the coefficients 〈ssψ, π〉ψ in ΘG1

ψ,s, again using the notation
s = s(s2, s3) or s = s(s1, s1) from Section 7.1.4 from which we deduce

ΘG1

ψ0,s
= − (−s2 Trπ(φ4,+)− s3 Trπ(φ7,+−))

ΘG1

ψ2,s
= − (+s3 Trπ(φ2,−)− s2 Trπ(φ7,+−))

ΘG1

ψ4,s
= − (+s1 Trπ(φ4,−) + s1 Trπ(φ7,+−))

and

ΘG1

ψ7,s
= − (+s2 Trπ(φ7,−+) + s3 Trπ(φ7,+−))

ΘG1

ψ6,s
= − (+s2 Trπ(φ6,−)− s3 Trπ(φ7,+−))

ΘG1

ψ5,s
= − (−s1 Trπ(φ7,−+)− s1 Trπ(φ7,+−))

We now describe the endoscopic groups relevant to the Arthur parameters in this
example. If s = s(1,−1) or s = s(−1, 1) then ΘG

ψ,s is the endoscopic transfer of a stable
distribution ΘG′

ψ′ where G
′ = SO(5)× SO(3) split over F ; likewise, ΘG1

ψ,s is the endoscopic

transfer of a stable distribution Θ
G′1
ψ′ where G

′
1 = SO(5)×SO(3) with anisotropic quadratic

forms for SO(3) and SO(5) given at the beginning of Sections 3 and 6, respectively.
Here, ψ′ = (ψ(2), ψ(1)) and ψ(1) is an Arthur parameter for SO(3) and ψ(2) is an Arthur
parameter for SO(5). The following table gives ψ(1) from Section 3.1.1 and ψ(2) from
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Section 6.1.1, for each Arthur parameter ψ appearing in Section 7.1.1.

§7.1.1 §6.1.1 §3.1.1
ψ ψ(2) ψ(1)

ψ0 ψ0 ψ0

ψ2 ψ2 ψ0

ψ4 ψ2 ψ1

ψ5 ψ3 ψ1

ψ6 ψ2 ψ2

ψ7 ψ3 ψ2

7.2. Vanishing cycles of perverse sheaves.

7.2.1. Vogan variety and its conormal bundle. The centralizer in Ĝ of the infinitesimal
parameter λ : WF → LG is

Hλ :=




h1

a2 b2
c2 d2

a3 b3
c3 d3

h4

 ∈ Ĝ

∼= GL(1)×GL(2)

We will write h2 = ( a2 b2c2 d2
) and h3 = ( a3 b3c3 d3

). Then h3 = h2 deth−1
2 and h4 = h−1

1 , by the
choice of symplectic form J at the beginning of Section 7. The Vogan varieties Vλ and
V ∗λ are:

Vλ =




u v

z x
y −z

−v
u




, V ∗λ =




u′

v′

z′ y′

x′ −z′
−v′ u′




so

T ∗(Vλ) =




u v

u′ z x
v′ y −z

z′ y′ −v
x′ −z′ u

−v′ u′

 |
u, v, x, y, z

u′, v′, x′, y′, z′


⊂ ĝ

The action of Hλ on V , V ∗ and T ∗(Vλ) is simply the restriction of the adjoint action
of H ⊂ Ĝ on T ∗(V ) ⊂ ĝ. This action is given by

h ·
(
u v

)
= h1

(
u v

)
h−1

2

h ·
(
z x
y −z

)
= h2

(
z x
y −z

)
h−1

3
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and

h ·
(
u′

v′

)
= h2

(
u′

v′

)
h−1

1 ,

h ·
(
z′ y′

x′ −z′
)

= h3

(
z′ y′

x′ −z′
)
h−1

2 .

We remark that for µ ∈ C, (
u v

)(z x
y −z

)
= µ

(
u v

)
if and only if

h ·
(
u v

)
h ·
(
z x
y −z

)
= (µdeth2) h ·

(
u v

)
.

The H-invariant function ( · | · ) : T ∗(Vλ)→ A1 is the quadratic form
u v

u′ z x
v′ y −z

z′ y′ −v
x′ −z′ u

−v′ u′

 7→ 2uu′ + 2vv′ + xx′ + yy′ + 2zz′.

The Hλ-invariant function [·, ·] : T ∗(Vλ)→ hλ is given by
u v

u′ z x
v′ y −z

z′ y′ −v
x′ −z′ u

−v′ u′

 7→ (uu′ + vv′)H1 + (xx′ + zz′)H2 + (yy′ + zz′)H3

+(zy′ − xz′)E + (yz′ − zx′)F

where, {H1, H2, H3} is the standard basis for the standard Cartan in ĝ and, with reference
to Hλ ⊂ Ĝ and hλ ⊂ ĝ, {H1}, {H2, H3, E, F} is the Chevalley basis for gl(2) in sp(6).
Thus, the conormal bundle is

T ∗H(Vλ) =




u v

u′ z x
v′ y −z

z′ y′ −v
x′ −z′ u

−v′ u′

 |
uu′ + vv′ = 0
xx′ + zz′ = 0
yy′ + zz′ = 0
zy′ − xz′ = 0
yz′ − zx′ = 0


Note that the fibre of ( · | · ) : Vλ × V tλ → A1 above 0 properly contains the conormal
bundle T ∗H(Vλ) as a codimension-4 subvariety.

Although it is possible to continue to work with V and T ∗(V ) as matrices in ĝ and
make all the following calculations, we now switch to the perspective on Vogan vari-
eties discussed in Section 1.2.1. This new perspective has several advantages: it is
notationally less awkward, it generalises to all classical groups after unramification in
the sense of [7, Theorem 3.1.1] and it helps clarify the proper covers which play a
crucial role in the calculations of the vanishing cycles that we make later in this sec-
tion. Write ĝ = sp(E, J), so E is a six-dimensional vector space equipped with the
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symplectic form described in Section 7.1.1. Let E1 be the eigenspace of λ(Fr) with ei-
genvalue q3/2; let E2 be the eigenspace of λ(Fr) with eigenvalue q1/2; let E3 be the
eigenspace of λ(Fr) with eigenvalue q−1/2; let E4 be the eigenspace of λ(Fr) with eigen-
value q−3/2. Then GL(E4) × GL(E3) × GL(E2) × GL(E1) acts naturally on the variety
Hom(E3, E4) × Hom(E2, E3) × Hom(E1, E2). If we identify E3 with the dual space E∗2
and E4 with E∗1 then V may be identified with the subvariety

V ∼=
{

(w1, w2, w3) ∈ Hom(E1, E2)×Hom(E2, E
∗
2 )×Hom(E∗2 , E

∗
1 ) |

tw3 = w1
tw2 = w2

}
∼=

{
(w,X) ∈ Hom(E1, E2)×Hom(E2, E

∗
2 ) | tX = X

}
∼= Hom(E1, E2)× Sym2(E∗2 )

The action of H on V now corresponds to the natural action of GL(E1) × GL(E2) on
Hom(E1, E2) × Hom(E2, E

∗
2 ). After choosing bases for E1 and E2, the conversion from

the matrices in ĝ to pairs (w,X) ∈ Hom(E1, E2)× Sym2(E∗2 ) is given by

w =

(
u
v

)
and X :=

(
−x z
z y

)
=

(
z x
y −z

)(
0 1
−1 0

)
.

We will use coordinates (w,X) for Vλ when convenient. The same perspective gives
coordinates (w′, X ′) for V ∗λ where

w′ =
(
u′ v′

)
and X ′ :=

(
−x′ z′

z′ y′

)
=

(
0 −1
1 0

)(
z′ y′

x′ −z′
)
.

In these coordinates, the action of H on V is given by

h · w = th−1
2 w th1 h · w′ = h1w

′h−1
2

h ·X = h2X
th2 h ·X ′ = h2X

′ th2,

the H-invariant function ( · | · ) : T ∗(Vλ)→ A1 is given by

((w,X) | (w′, X ′)) = w′w + TrX ′X,

and the H-invariant function [·, ·] : T ∗(Vλ)→ hλ is given by

[(w,X), (w′, X ′)] = (w′w,X ′X).

In particular, the conormal may be written as

T ∗(Vλ) ∼= {((w,X), (w′, X ′)) ∈ V × V ∗ | w′w = 0, X ′X = 0}.

7.2.2. Equivariant local systems and orbit duality. The variety Vλ is stratified into H-
orbits according to the possible values of rankX (either 2, 1 or 0), rank tw (either 1 or
0) and rank twXw (either 1 or 0). There are eight compatible values for these ranks. We
now describe these eight locally closed subvarieties C ⊂ V , the singularities in the closure
C̄ ⊂ V and the equivariant local systems on C. For each H-orbit C ⊂ V except the open
orbit C7 ⊂ V , the H-equivariant fundamental group of C is trivial or of order 2. So in
each of these cases we use the notation 1C for the constant local system and LC or FC
for the non-constant irreducible equivariant local system on C. (The choice of LC or FC
will be explained in Section 7.2.4.)

C0: Closed orbit:
C0 = {0}.

This corresponds to the minimal rank values

rankX = 0, rank tw = 0, rank twXw = 0.
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This is the only closed orbit in Vλ.
C1: Punctured plane:

C1 = {(w,X) ∈ Vλ | X = 0, w 6= 0}.

This corresponds to the rank values

rankX = 0, rank tw = 1, rank twXw = 0.

While C1 is not affine, its closure C̄1 = {(w,X) ∈ Vλ | X = 0} is A2. This orbit
is not of Arthur type. Since AC1

is trivial, 1C1
is the only simple equivariant

local system on C1.
C2: Smooth cone:

C2 = {(w,X) ∈ Vλ | rankX = 1, w = 0}.

This corresponds to the rank values

rankX = 1, rank tw = 0, rank twXw = 0.

Then C2 is not an affine variety and the singular locus of its closure

C̄2
∼= {(x, y, z) | xy + z2 = 0}

is precisely C0. We remark that xy + z2 is a semi-invariant of Vλ with character
h 7→ deth2

2. Now AC2
∼= {±1}; let FC2

be the equivariant local system for the
non-trivial character of AC2

. Then FC2
coincides with the local system denoted

by the same symbol in Section 6.2.3.
C3: The rank values

rankX = 2, rank tw = 0, rank twXw = 0.

determine

C3 = {(w,X) ∈ Vλ | rankX = 2, w = 0} ∼= {(x, y, z) | xy + z2 6= 0}.

The closure of C3 is smooth:

C̄3 = {(w,X) ∈ Vλ | w = 0} ∼= A3.

This orbit is not of Arthur type. Since AC3
∼= {±1}, there are two simple equivari-

ant local systems on C3, denoted by 1C3 and LC3 . Then LC3 coincides with the
local system denoted by the same symbol in Section 6.2.3.

C4: The rank values

rankX = 1, rank tw = 1, rank twXw = 0

determine

C4 = {(w,X) ∈ Vλ | rankX = 1, w 6= 0, Xw = 0}.

The singular locus of the closure

C̄4
∼= {(u, v, x, y, z) | xy + z2 = 0, −xu+ zv = 0 = zu+ yv}

is C0. Here, AC4
∼= {±1}. Let 1C4

and FC4
be the local systems for the trivial

and non-trivial characters, respectively, of AC4
.
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C5: The rank values

rankX = 2, rank tw = 1, rank twXw = 0

determine

C5 = {(w,X) ∈ Vλ | rankX = 2, w 6= 0, twXw = 0}.

The closure of C5,

C̄5
∼= {(u, v, x, y, z) | − u2x+ 2uvz + v2y = 0},

has singular locus C̄3. We remark that −u2x+ 2uvz + v2y is a semi-invariant of
Vλ with character h 7→ h2

1. The group AC5
is trivial.

C6: The rank values

rankX = 1, rank tw = 1, rank twXw = 1

determine

C6 = {(w,X) ∈ Vλ | rankX = 1, w 6= 0, twXw 6= 0}.

The singular locus of

C̄6
∼= {(u, v, x, y, z) | xy + z2 = 0}

is C̄1. Then AC6
∼= {±1}. Let 1C6 and FC6 be the local systems for the trivial and

non-trivial characters, respectively, of AC6 . The local system FC6 is associated
to the double cover from adjoining d2 = −u2x+ 2uvz + v2y, which is isomorphic
to the pullback of the double cover from FC2

.
C7: Open dense orbit:

C7 = {(w,X) ∈ Vλ | rankX = 2, w 6= 0, twXw 6= 0}.

This corresponds to the maximal rank values:

rankX = 2, rank tw = 1, rank twXw = 1.

Now, AC7
= S[2] ∼= {±1} × {±1}. Let 1C7

be the local system for the trivial
character (++) of AC7

; let LC7
be the local system for the character (−−) of

AC7 ; let FC7 be the local system for the character (−+) of AC7 ; let EC7 be the
local system for the character (+−) of AC7 . Equivalently, LC7 is the local system
on C7 associated to the double cover d2 = xy + z2, FC7

is the local system
associated to the double cover d2 = −u2x + 2uvz + v2y, and EC7

is the local
system associated to the double cover d2 = (xy + z2)(−u2x+ 2uvz + v2y).
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Closure relations for these eight orbits in V , and their dual orbits in V ∗, are given as
follows:

C7 = Ĉ0 5

C5 = Ĉ4 C6 = Ĉ2 4

C3 = Ĉ1 C4 = Ĉ5 3

C2 = Ĉ6 C1 = Ĉ3 2

C0 = Ĉ7 0

7.2.3. Equivariant perverse sheaves. Table 7.2.3.1 shows the results of calculating P|C
for every simple equivariant perverse sheaf IC(C,L) and every stratum C in V , together
with the normalised geometric multiplicity matrix, m′geo. Notice that m′geo decomposes
into block matrices of size 10× 10, 4× 4 and 1× 1.

We now give a few explicit examples of the technique, sketched in Section 1.2.3, which
we used to find the geometric multiplicity matrix.

(a) The calculations from Section 6.2.3 show how to find rows 1–5 and row 11 so here
we begin with row 6.

(b) To compute IC(1C4
)|C for every H-orbit C ⊂ V , observe that

C4 =
{

(w,X) ∈ Vλ | twX = 0, det(X) = 0
}
.

Note that twX = 0 implies det(X) = 0 provided w 6= 0. This variety is singular
precisely when w and X are both zero; in other words, C0 is the singular locus of
C4, as we remarked in Section 7.2.1. The blowup of C4 at the origin is:

C̃
(1)
4 :=

{
((w,X), [a : b]) ∈ Vλ × P1 |

(
−b a

)
w = 0,

(
a b

)
X = 0

twX = 0, detX = 0

}
.

Let π(1) : C̃
(1)
4 → C4 be the obvious projection. In the definition of C̃(1)

4 , the first
two equations imply the second two; this observation greatly simplifies checking
the following claims. The cover π(1) : C̃

(1)
4 → C4 is proper and the variety C̃4 is

smooth. Moreover, the fibres of π(1) have the following structure:
• above C4, C2 and C1, π(1) is an isomorphism;
• the fibre of π(1) above C0 is P1.

It follows that π(1) is semi-small. By the decomposition theorem,

π
(1)
! (1

C̃
(1)
4

[3]) = IC(1C4
).

By proper base change,

IC(1C4
)|C4

= 1C4
[3] IC(1C4

)|C2
= 1C2

[3]
IC(1C4

)|C1
= 1C1

[3] IC(1C4
)|C0

= 1C0
[1]⊕ 1C0

[3],

and IC(1C4
)|C = 0 for all other strata C.
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Table 7.2.3.1. Standard sheaves and perverse sheaves in PerHλ(Vλ),
and the normalised geometric multiplicity matrix for λ : WF → LG
introduced at the beginning of Section 7.

P P|C0 P|C1 P|C2 P|C3 P|C4 P|C5 P|C6 P|C7

IC(1C0) 1C0 [0] 0 0 0 0 0 0 0

IC(1C1) 1C0 [2] 1C1 [2] 0 0 0 0 0 0

IC(1C2) 1C0 [2] 0 1C2 [2] 0 0 0 0 0

IC(1C3) 1C0 [3] 0 1C2 [3] 1C3 [3] 0 0 0 0

IC(LC3) 1C0 [1] 0 0 LC3 [3] 0 0 0 0

IC(1C4) 1C0 [1]⊕ 1C0 [3] 1C1 [3] 1C2 [3] 0 1C4 [3] 0 0 0

IC(1C5) 1C0 [2]⊕ 1C0 [4] 1C1 [4] 1C2 [4] 1C3 [4]⊕ LC3 [4] 1C4 [4] 1C5 [4] 0 0

IC(1C6) 1C0 [4] 1C1 [4] 1C2 [4] 0 1C4 [4] 0 1C6 [4] 0

IC(1C7) 1C0 [5] 1C1 [5] 1C2 [5] 1C3 [5] 1C4 [5] 1C5 [5] 1C6 [5] 1C7 [5]

IC(LC7) 1C0 [3] 1C1 [3] 0 LC3 [5] 0 1C5 [5] 0 LC7 [5]

IC(FC2) 0 0 FC2 [2] 0 0 0 0 0

IC(FC4) 0 0 FC2 [3] 0 FC4 [3] 0 0 0

IC(FC6) 0 0 FC2 [4] 0 FC4 [4] 0 FC6 [4] 0

IC(FC7) 0 0 FC2 [5] 0 0 0 FC6 [5] FC7 [5]

IC(EC7) 0 0 0 0 0 0 0 EC7 [5]

1
\
C0

1
\
C1

1
\
C2

1
\
C3

L\
C3

1
\
C4

1
\
C5

1
\
C6

1
\
C7

L\
C7

F\
C2

F\
C4

F\
C6

F\
C7

E\C7

1
]
C0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
]
C1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1
]
C2

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1
]
C3

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

L]
C3

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1
]
C4

2 1 1 0 0 1 0 0 0 0 0 0 0 0 0

1
]
C5

2 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1
]
C6

1 1 1 0 0 1 0 1 0 0 0 0 0 0 0

1
]
C7

1 1 1 1 0 1 1 1 1 0 0 0 0 0 0

L]
C7

1 1 0 0 1 0 1 0 0 1 0 0 0 0 0

F]
C2

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

F]
C4

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

F]
C6

0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

F]
C7

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

E]C7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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(c) Next, we show how to compute IC(FC4
). The singular variety C4 also admits a

finite double cover:

C̃
(2)
4 :=

((w,X), (α, β)) ∈ Vλ × A2 | X =

(
α
β

)(
α β

)
,
(
α β

)
w = 0

twX = 0, detX = 0

 .

Again, the first two equations imply the second two. This variety is singular
precisely when w, X, and (α, β) are all zero. Consider the pullback:

C̃
(3)
4

C̃
(1)
4 C̃

(2)
4

C4.

π(3)

π(1)

π(2)

Then C̃(3)
4 is smooth and the projections onto C̃(2)

4 , C̃(1)
4 and C4 are all proper.

The fibres of π(3) : C̃
(3)
4 → C4 have the following structure:

• the fibre of π(3) over C4 is the non-split double cover of C4;
• the fibre of π(3) over C2 is the non-split double cover of C2;
• the fibre of π(3) over C1 is isomorphic to C1;
• the fibre of π(3) over C0 is P1.

It follows that π(3) is semi-small and, by the Decomposition Theorem, that:

π
(3)
! (1

C̃
(3)
4

[3]) = IC(1C4)⊕ IC(FC4).

It now follows that:
IC(FC4

)|C4
= FC4

[3] IC(FC4
)|C2

= FC2
[3]

IC(FC4
)|C1

= 0 IC(FC4
)|C0

= 0.

We simply list the other covers needed to calculate P|C in all other cases except P = E7,
following the procedure illustrated above in the cases P = IC(1C4

) and P = IC(FC4
).

• C̃5 =

{
((w,X), [a : b]) ∈ V × P1 |

(
a b

)
X

(
a
b

)
= 0,

(
−b a

)
w = 0

}
• C̃(1)

6 =
{

((w,X), [a : b]) ∈ V × P1 |
(
a b

)
X = 0

}
• C̃(2)

6 =

{
((w,X), (α, β)) ∈ V × A2 | X =

(
α
β

)(
α β

)}
• C̃(1)

7 =

{
(w,X, [a : b]) ∈ V × P1 |

(
a b

)
X

(
a
b

)
= 0

}
• C̃(2)

7 =

{
((w,X), [a : b : r]) ∈ V × P2 |

(
a b

)
X

(
a
b

)
= r2,

(
−b a

)
w = 0

}
Finally there is the most complex example: the smooth cover Ṽ of C7 = V needed

to understand IC(E7). The construction of the smooth cover Ṽ of V proceeds by first
adjoining a square root of

(−u2x+ 2uvz + v2y)(xy + z2).
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This results in a variety which is singular on C4. After blowing up along C4 the result
will still be singular along C3, so a further blow up along C3 is needed. The following
steps construct Ṽ in detail.

(i) Let Ṽ (1) be the blow up V along C4 This equivalent to adding coordinates [a :
b] ∈ P1 and the condition (

a b
)
Xw = 0,

because the two equations Xw = 0 define C4.
(ii) Let Ṽ (2) be the blow up of C̃(1)

7 along C3. For this one must add coordinates
[c : d] ∈ P1 with the condition(

−d c
)
w = 0,

because the equation w = 0 defines C3. The additional equation necessary to
define the blow up is (

a b
)
X

(
c
d

)
= 0.

(iii) Next, we replace [a : b] with [a : b : r] and add the equation(
a b

)
X

(
a
b

)
= r2.

The resulting variety, Ṽ (3) has coordinates:

(w,X, [a : b : r], [c : d])

together with all the above equations. Then Ṽ (3) is a double cover of Ṽ (2) and is
singular precisely when

X

(
a
b

)
= 0 and [a : b] = [c : d].

(iv) We now form the blowup Ṽ of Ṽ (3) along the singular locus. In order to have
homogeneous equations we write our relations in the form

X

(
a
b

)(
c d

)
= 0

(
a b

)( d
−c

)
= 0.

Then Ṽ is formed by introducing coordinates [Y : y], where Y is a 2 by 2 matrix,
and the conditions

X

(
a
b

)(
c d

)
y = Y

(
a b

)( d
−c

)
and (

c
d

)
Y = 0 Trace(Y ) = 0.

Note that [c : d] determines Y up to rescaling.
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7.2.4. Cuspidal support decomposition and Fourier transform. Up to conjugation, Ĝ =

Sp(6) admits three cuspidal Levi subgroups: Ĝ = Sp(6) itself, M̂ = Sp(2)×GL(1)×GL(1)

and T̂ = GL(1) ×GL(1) ×GL(1). Simple objects in these three subcategories are listed
below. This decomposition is responsible for the choice of symbols L, F and E made in
Section 7.2.3.

PerH(V )Ť PerH(V )M̌ PerH(V )Ǧ
IC(1C0

)
IC(1C1

)
IC(1C2

) IC(FC2
)

IC(1C3) IC(LC3)
IC(1C4) IC(FC4)
IC(1C5

)
IC(1C6

) IC(FC6
)

IC(1C7
) IC(LC7

) IC(FC7
) IC(EC7

)

The Fourier transform respects the cuspidal support decomposition:

Ft : PerHλ(Vλ) −→ PerHλ(V ∗λ )
IC(1C0) 7→ IC(1C∗0 ) = IC(1Ct7)

IC(1C1) 7→ IC(1C∗1 ) = IC(1Ct3)

IC(1C2) 7→ IC(LC∗0 ) = IC(LCt7)

IC(1C3) 7→ IC(1C∗3 ) = IC(1Ct1)

IC(LC3) 7→ IC(1C∗2 ) = IC(1Ct6)

IC(1C4) 7→ IC(1C∗4 ) = IC(1Ct5)

IC(1C5) 7→ IC(1C∗5 ) = IC(1Ct4)

IC(1C6) 7→ IC(LC∗1 ) = IC(LCt3)

IC(1C7) 7→ IC(1C∗7 ) = IC(1Ct0)

IC(LC7) 7→ IC(1C∗6 ) = IC(1Ct2)

IC(FC2) 7→ IC(FC∗2 ) = IC(FCt6)

IC(FC4) 7→ IC(FC∗0 ) = IC(FCt7)

IC(FC6) 7→ IC(FC∗6 ) = IC(FCt2)

IC(FC7) 7→ IC(FC∗5 ) = IC(FCt4)

IC(EC7) 7→ IC(EC∗0 ) = IC(ECt7)

7.2.5. Equivariant perverse sheaves on the regular conormal bundle. For each stratum C,
we pick (x, ξ) ∈ T ∗C(V )reg such that the H-orbit T ∗C(V )sreg of (x, ξ) is open in T ∗Ci(V )reg.
Then, we find all equivariant local systems on each T ∗C(V )sreg. The perverse extensions
of these local systems to the regular conormal bundle T ∗H(V )reg will be needed when we
compute vanishing cycles of perverse sheave on V in Section 7.2.6. Here we revert to
expressing V as a subvariety in ĝ, largely for typographic reasons.

C0: Base point for T ∗C0
(Vλ)sreg:

(x0, ξ0) =


0 0

1 0 0
0 0 0

0 1 0
1 0 0

0 1


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Equivariant fundamental groupA(x0,ξ0) is ZHλ((x0, ξ0)) = S[2]. Thus, T ∗C0
(Vλ)sreg

carries four local systems. The following table displays how we label equivariant
local systems on T ∗C0

(Vλ)sreg by showing the matching representation of A(x0,ξ0):

LocHλ(T ∗C0
(Vλ)sreg) : 1O0

LO0
FO0

EO0

Rep(A(x0,ξ0)) : ++ −− −+ +−
The map on equivariant fundamental groups A(x0,ξ0) → Ax0

induced from the
projection T ∗C0

(V )sreg → C0 is trivial; on the other hand, the map on equivariant
fundamental groups A(x0,ξ0) → Aξ0 induced from the projection T ∗C0

(V )sreg →
C∗0 = Ct7 is the identity isomorphism.

S[2]

1 = Ax0 A(x0,ξ0) Aξ0

id

id

Pull-back along the bundle map:
PerH(C0) → PerH(T ∗C0

(V )reg)
IC(1C0

) 7→ IC(1O0
)

IC(LO0
)

IC(FO0
)

IC(EO0)

C1: Base point for T ∗C1
(Vλ)sreg:

(x1, ξ1) =


1 0

0 0 0
0 0 0

0 1 0
1 0 1

0 0

 ,

Equivariant fundamental group A(x1,ξ1) of T ∗C1
(Vλ)sreg is ZHλ((x1, ξ1)) = S[2].

Thus, T ∗C1
(Vλ)reg carries four local systems. The following table displays how we

label equivariant local systems on T ∗C1
(Vλ)sreg by showing the matching repres-

entation of A(x1,ξ1):

LocHλ(T ∗C1
(Vλ)sreg) : 1O1

LO1
FO1

EO1

Rep(A(x1,ξ1)) : ++ −− −+ +−
For use below, we remark that LO1 is the local system associated to the double
cover arising from taking

√
detX ′.

The map on equivariant fundamental groups A(x1,ξ1) → Ax1
induced from the

projection T ∗C1
(V )sreg → C1 is trivial; on the other hand, the map on equivariant

fundamental groups A(x1,ξ1) → Aξ1 induced from the projection T ∗C1
(V )sreg →

C∗1 = Ct3 is (s2, s3) 7→ s2s3.

S[2]

1 = Ax1 A(x1,ξ1) Aξ1 = {±1}

id

(s2,s3) 7→s2s3
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Pull-back along the bundle map:

LocH(C1) → LocH(T ∗C1
(V )sreg)

1C1
7→ 1O1

LO1

FO1

EO1

C2: Base point for T ∗C2
(V )sreg:

(x2, ξ2) =


0 0

1 0 0
0 1 0

0 0 0
1 0 0

0 1


The equivariant fundamental group for T ∗C2

(V )sreg is A(x2,ξ2) = ZHλ((x2, ξ2)) =
S[2]. Thus, T ∗C2

(Vλ)reg carries four local systems.

LocHλ(T ∗C2
(Vλ)sreg) : 1O2

LO2
FO2

EO2

Rep(A(x2,ξ2)) : ++ −− −+ +−

The map on equivariant fundamental groups A(x2,ξ2) → Ax2
induced from the

projection T ∗C2
(V )sreg → C2 is given by projection to the second factor while

the map on equivariant fundamental groups A(x2,ξ2) → Aξ2 induced from the
projection T ∗C2

(V )sreg → C∗2 = Ct6 is projection to the first factor:

S[2]

{±1} = Ax2
A(x2,ξ2) Aξ2 = {±1}

id

s3← [(s2,s3) (s2,s3) 7→s2

Pull-backalong the bundle map:

LocH(C2) → LocH(T ∗C2
(V )sreg)

1C2
7→ 1O2

LO2

FO2

FC2
7→ EO2

C3: Base point for T ∗C3
(V )sreg:

(x3, ξ3) =


0 0

1 0 1
0 1 0

0 0 0
0 0 0

0 1


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The equivariant fundamental group for T ∗C3
(V )sreg is A(x3,ξ3) = ZHλ((x3, ξ3)) =

S[2]. Thus, T ∗C3
(Vλ)reg carries four local systems.

LocHλ(T ∗C3
(Vλ)sreg) : 1O3 LO3 FO3 EO3

Rep(A(x3,ξ3)) : ++ −− −+ +−

The map on equivariant fundamental groups A(x3,ξ3) → Ax3
induced from the

projection T ∗C3
(V )sreg → C2 has kernel Z(H), while A(x3,ξ3) → Aξ3 is trivial.

S[2]

{±1} = Ax3
A(x3,ξ3) Aξ3 = 1

id

s2s3← [(s2,s3)

Pull-back along the bundle map:

LocH(C3) → LocH(T ∗C3
(V )sreg)

1C3
7→ 1O3

LC3 7→ LO0

FO0

EO0

C4: Base point for T ∗C4
(Vλ)sreg:

(x4, ξ4) =


1 0

0 0 0
1 1 0

1 0 0
0 −1 1

−1 0


The equivariant fundamental group of T ∗C4

(Vλ)sreg is A(x4,ξ4) = ZHλ((x4, ξ4)) =

Z(Ĝ). Thus, T ∗C4
(Vλ)reg carries two local systems.

LocHλ(T ∗C4
(Vλ)sreg) : 1O4 FO4

Rep(A(x4,ξ4)) : + −

The map on equivariant fundamental groups A(x4,ξ4) → Ax4
induced from the

projection T ∗C4
(V )sreg → C4 is the identity isomorphism, while A(x4,ξ4) → Aξ4 is

trivial.

Z(Ĝ)

{±1} = Ax4
A(x4,ξ4) Aξ4 = 1

id

id

Pull-back along the bundle map:

LocH(C4) → LocH(T ∗C4
(V )sreg)

1C4 7→ 1O4

FC4 7→ FO4
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C5: Base point for T ∗C5
(Vλ)sreg:

(x5, ξ5) =


0 1

1 1 0
0 0 −1

0 1 −1
0 0 0

0 1


The equivariant fundamental group of T ∗C5

(Vλ)sreg is A(x5,ξ5) = ZHλ((x5, ξ5)) =

Z(Ĝ). Thus, T ∗C5
(Vλ)reg carries two local systems.

LocHλ(T ∗C5
(Vλ)sreg) : 1O5

FO5

Rep(A(x5,ξ5)) : + −

The map on equivariant fundamental groups A(x5,ξ5) → Ax5
induced from the

projection T ∗C5
(V )sreg → C5 is trivial, while A(x5,ξ5) → Aξ5 is the identity iso-

morphism.

Z(Ĝ)

1 = Ax5
A(x5,ξ5) Aξ5 = {±}

id

id

Pull-back along the bundle map:

LocH(C5) → LocH(T ∗C5
(V )sreg)

1C5
7→ 1O5

FO5

C6: Base point for T ∗C6
(Vλ)sreg:

(x6, ξ6) =


1 0

0 0 1
0 0 0

0 1 0
0 0 1

0 0


The equivariant fundamental group of T ∗C6

(Vλ)sreg is A(x6,ξ6) = ZHλ((x6, ξ6)) =
S[2]. Thus, T ∗C6

(Vλ)reg carries four local systems.

LocHλ(T ∗C6
(Vλ)sreg) : 1O6

LO6
FO6

EO6

Rep(A(x6,ξ6)) : ++ −− −+ +−

The map on equivariant fundamental groups A(x6,ξ6) → Ax6
induced from the

projection T ∗C6
(V )sreg → C6 is given by projection to the first factor while the map

on equivariant fundamental groups A(x6,ξ6) → Aξ6 induced from the projection
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T ∗C6
(V )sreg → C∗6 = Ct2 is projection to the second factor:

S[2]

{±1} = Ax6
A(x6,ξ6) Aξ6 = {±1}

id

s2← [(s2,s3) (s2,s3) 7→s3

Pull-back along the bundle map:

LocH(C6) → LocH(T ∗C6
(V )sreg)

1C6
7→ 1O6

LO6

FC6 7→ FO6

EO6

C7: Base point for T ∗C7
(Vλ)sreg:

(x7, ξ7) =


1 0

0 0 1
0 1 0

0 0 0
0 0 1

0 0


The equivariant fundamental group of T ∗C7

(Vλ)sreg is A(x7,ξ7) = ZHλ((x7, ξ7)) =
S[2]. Thus, T ∗C7

(Vλ)reg carries four local systems.

LocHλ(T ∗C7
(Vλ)sreg) : 1O7 LO7 FO7 EO7

Rep(A(x7,ξ7)) : ++ −− −+ +−

The map on equivariant fundamental groups A(x7,ξ7) → Ax7
induced from the

projection T ∗C7
(V )sreg → C7 is the identity, while the map on equivariant funda-

mental groups A(x7,ξ7) → Aξ7 induced from the projection T ∗C7
(V )sreg → C∗7 = Ct0

is trivial.
S[2]

Ax7
A(x7,ξ7) Aξ7 = 1

id

id

Pull-back along the bundle map:

LocH(C7) → LocH(T ∗C7
(V )sreg)

1C7 7→ 1O7

LC7
7→ LO7

FC7
7→ FO7

EC7
7→ EO7

7.2.6. Vanishing cycles of perverse sheaves. Table 7.2.6.1 records the functor Ev on simple
objects, from two perspectives.

We now give a few examples showing how to make the calculations for Table 7.2.6.1.
(a) Rows 1–5 and row 11 of Table 7.2.6.1 follow from Section 6.2.5.
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Table 7.2.6.1. Ev : PerHλ(Vλ)→ PerHλ(T ∗Hλ(Vλ)reg) on simple objects,
for λ : WF → LG given at the beginning of Section 7.

PerH(V )
Ev−→ PerH(T ∗H(V )reg)

IC(1C0
) 7→ IC(1O0

)
IC(1C1

) 7→ IC(1O1
)

IC(1C2) 7→ IC(1O2)⊕ IC(LO0)
IC(1C3) 7→ IC(1O3)
IC(LC3

) 7→ IC(LO3
)⊕ IC(LO2

)
IC(1C4

) 7→ IC(1O4
)

IC(1C5
) 7→ IC(1O5

)
IC(1C6) 7→ IC(1O6)⊕ IC(LO1)
IC(1C7) 7→ IC(1O7)
IC(LC7

) 7→ IC(LO7
)⊕ IC(LO6

)
IC(FC2

) 7→ IC(EO2
)

IC(FC4
) 7→ IC(FO4

)⊕ IC(FO1
)⊕ IC(FO0

)
IC(FC6) 7→ IC(FO6)
IC(FC7) 7→ IC(FO7)⊕ IC(FO5)⊕ IC(FO3)
IC(EC7

) 7→ IC(EO7
)⊕ IC(EO6

)⊕ IC(EO5
)⊕ IC(EO4

)
⊕ IC(FO3

)⊕ IC(FO2
)⊕ IC(FO1

)⊕ IC(EO0
)

P EvC0
P EvC1

P EvC2
P EvC3

P EvC4
P EvC5

P EvC6
P EvC7

P
IC(1C0

) ++ 0 0 0 0 0 0 0
IC(1C1) 0 ++ 0 0 0 0 0 0
IC(1C2) −− 0 ++ 0 0 0 0 0
IC(1C3

) 0 0 0 ++ 0 0 0 0
IC(LC3

) 0 0 −− −− 0 0 0 0
IC(1C4

) 0 0 0 0 + 0 0 0
IC(1C5

) 0 0 0 0 0 + 0 0
IC(1C6) 0 −− 0 0 0 0 ++ 0
IC(1C7) 0 0 0 0 0 0 0 ++
IC(LC7

) 0 0 0 0 0 0 −− −−
IC(FC2) 0 0 +− 0 0 0 0 0
IC(FC4) −+ −+ 0 0 − 0 0 0
IC(FC6

) 0 0 0 0 0 0 −+ 0
IC(FC7

) 0 0 0 −+ 0 − 0 −+
IC(EC7) +− −+ −+ −+ − − +− +−

(b) We show how to compute row 6. As recalled in Section 1.2.6, EvC IC(1C4
) = 0

unless C ⊂ C4, and EvC4
(1C4

) = IC(1O4
) by [7, Theorem 5.3.1 (g)]. So next

we determine EvCi 1C4
for i = 0, 1, 2. Recall the cover π(1)

4 : C̃
(1)
4 → C4 from

Section 7.2.3. As explained in Section 1.2.6, we begin by finding the singularities
of the composition ( · | · ) ◦ (π

(1)
4 × id) on C̃

(1)
4 × C∗i . The equations that define

C̃
(1)
4 × C∗i as a subvariety of V × P1 × V ∗ with coordinates (w,X, [a : b], w′, X ′)
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are (
−b a

)
w = 0,

(
a b

)
X = 0,

twX = 0, det(X) = 0

together with the equations that define C∗i in terms of w′ and X ′. The conormal
bundle to this variety is generated by the differentials of the functions(

−b a
)
w = 0,

(
a b

)
X = 0,

together with the equations that define C∗i . Thus, to find the singular locus of
( · | · ) ◦ (π

(1)
4 × id) on C̃(1)

4 ×C∗i . we examine the Jacobian of these functions and
check to see when its rank is less than maximal. As explained in Section 1.2.6,
this will determine the support of the sheaf

RΦ
( · | · )◦(π(1)

4 ×id)
(1
C̃

(1)
4 ×C∗i

), (40)

which is a sheaf on the zero locus of ( · | · ) ◦ (π
(1)
4 × id). We show below that

( · | · ) ◦ (π
(1)
4 × id) is smooth on C̃

(1)
4 × C∗i for i = 0, 1, 2; thus EvCi 1C4 = 0 for

i = 0, 1, 2. We now show the remaining calculations for row 6.
(i = 0) Consider the case Ci = C0. The singularities of ( · | · )◦(π(1)

4 ×id) on C̃(1)
4 ×C∗0 ,

are found by examining the Jacobian for the functions(
−b a

)
w,

(
a b

)
X, w′w + Tr(X ′X).

The Jacobian for those equations, in order, is below.

du dv dx dy dz da db du′ dv′ dx′ dy′ dz′

−b a 0 0 0 v −u 0 0 0 0 0
0 0 −a 0 b −x z 0 0 0 0 0
0 0 0 b a z y 0 0 0 0 0
u′ v′ x′ y′ 2z′ 0 0 u v x y 2z

This system of equations form an H-bundle over P1, so we can specialize
the [a : b] coordinates to [1 : 0] without loss of generality. Now we can
see that if the rank of this matrix is less than 4 on C̃

(1)
4 × C∗i then u′ =

y′ = 0, which implies tw′X ′w′ = 0, which contradicts (w′, X ′) ∈ C∗0 . Since
( · | · ) ◦ (π

(1)
4 × id) is smooth on C̃(1)

4 ×C∗0 , the vanishing cycles sheaf (40) is
0. Therefore, EvC0

IC(1C4
) = 0.

(i = 1) Now consider the case Ci = C1. To find the singularities of ( · | · )◦ (π
(1)
4 × id)

on C̃
(1)
4 × C∗1 we simply add the equation that defines C∗1 to the list of

functions in the case above. The Jacobian for the functions(
−b a

)
w,

(
a b

)
X, w′w + Tr(X ′X), w′ = 0,

is below.
du dv dx dy dz da db du′ dv′ dx′ dy′ dz′

−b a 0 0 0 v −u 0 0 0 0 0
0 0 −a 0 b −x z 0 0 0 0 0
0 0 0 b a z y 0 0 0 0 0
u′ v′ x′ y′ 2z′ 0 0 u v x y 2z
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
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Arguing as above, by setting [a : b] = [1 : 0] we find x = z = u = 0. If
the rank of this Jacobian were less than 6 then u′ = y′ = 0 so twX ′w = 0,
which would force the point to be non-regular in the conormal bundle. It
follows that ( · | · ) ◦ (π

(1)
4 × id) is smooth on the regular part of C̃(1)

4 × C∗1 .
Therefore, EvC1

IC(1C4
) = 0.

(i = 2) The closed equation that cuts out C∗2 is rankX ′ = 1. Thus, to find the
singular locus of ( · | · ) ◦ (π

(1)
4 × id) on C̃(1)

4 × C∗2 we consider the functions(
−b a

)
w,

(
a b

)
X, w′w + Tr(X ′X), detX ′,

and the associated Jacobian, below.

du dv dx dy dz da db du′ dv′ dx′ dy′ dz′

−b a 0 0 0 v −u 0 0 0 0 0
0 0 −a 0 b −x z 0 0 0 0 0
0 0 0 b a z y 0 0 0 0 0
u′ v′ x′ y′ 2z′ 0 0 u v x y 2z
0 0 0 0 0 0 0 0 0 y′ x′ 2z′

If the rank of this Jacobian is not maximal, then u′ = y′ = 0, which implies
tw′X ′w′ = 0 which contradicts (w′, X ′) ∈ C∗2 . Thus, ( · | · ) ◦ (π

(1)
4 × id) is

smooth on C̃(1)
4 × C∗2 . It follows that EvC2

IC(1C4
) = 0.

This completes the calculations needed for row 6 of Table 7.2.6.1.
(c) We show how to compute row 12. As recalled in Section 1.2.6, EvC IC(FC4

) = 0
unless C ⊂ C4, and EvC4

IC(FC4
) = IC(FO4

); see Section 7.2.5. So here we
determine EvCi IC(FC4) for i = 0, 1, 2. Recall the cover π(3)

4 : C̃
(3)
4 → C4 from

Section 7.2.3. As above, we begin by finding the singularities of the composition
( · | · )◦(π(3)

4 ×id) on C̃(3)
4 ×C∗i . The equations that define C̃

(3)
4 ×C∗i as a subvariety

of V × A2 × P1 × V ∗ with coordinates (w,X,A,B, [a : b], w′, X ′) are(
a b

)(A
B

)
= 0,

(
a b

)
X = 0,(

−b a
)
w = 0, X =

(
A B

)(A
B

)
,(

−B A
)
w = 0, twX = 0, det(X) = 0,

together with the equations that define C∗i in terms of w′ and X ′. The conormal
bundle to this variety is generated by the differentials of the functions(

a b
)(A

B

)
= 0

(
−b a

)
w = 0,

together with the equations that define C∗i . We find the singular locus of ( · | · ) ◦
(π

(3)
4 × id) on C̃(3)

4 ×C∗i by checking the rank of the Jacobian of these functions.
This will determine the support of the sheaf

RΦ
( · | · )◦(π(3)

4 ×id)
(1
C̃

(3)
4 ×C∗i

). (41)

If ( · | · )◦(π
(3)
4 × id) is smooth on C̃(3)

4 × C∗i or if the restriction of this sheaf to the
preimage of (C4×C∗i )reg under π(3)

4 × id is 0, then EvCi FC4
= 0. However, if the

restriction of (41) to the preimage of (C4 × C∗i )reg under π(3)
4 × id is not 0, then
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to determine EvCi IC(FC4
) we must calculate the pushforward of this restriction

along the proper morphism π
(3)
4 × id (and in principle eliminate any contribution

from EvCi(1C4
), however in each of the following three cases there is none). We

now show the remaining calculations for row 12.
(i = 2): To find the support of (41) when Ci = C2, we consider the differentials of

the following functions.(
−b a

)
w,

(
a b

)(A
B

)
, w′w + Tr(X ′X), detX ′.

This gives the following Jacobian, in which we hide x, y and z since x = −A2,
z = AB and y = B2. In this table the rows are the differentials of the above
functions, in that order.

du dv dA dB da db du′ dv′ dx′ dy′ dz′

−b a 0 0 v −u 0 0 0 0 0
0 0 a b A B 0 0 0 0 0
u′ v′ 2(−Ax′ +Bz′) 2(Az′ +By′) 0 0 u v −A2 B2 2AB
0 0 0 0 0 0 0 0 y′ x′ 2z′

Again we observe that this system of equations is an H-bundle over P1 and
therefore we can set [a : b] = [1 : 0] without loss of generality. If we do this
we find v = x = z = A = 0. Moreover, if we suppose that the rank is not
maximal, then u′ = 0 by inspecting the first four columns and y′ = 0 by
inspecting the fourth column. This implies tw′X ′w′ = 0 with contradicts
(w′, X ′) ∈ C∗2 . Thus, the singular locus of ( · | · ) ◦ (π

(3)
4 × id) on C̃(3)

4 ×C∗2 is
empty. It follows that EvC2 IC(F4) = 0.

(i = 1): To find the support of (41) when Ci = C1, we consider the differentials of
the following functions.(

−b a
)
w,

(
a b

)(A
B

)
, Tr(X ′X).

In this case we have u′ = v′ = 0, so they may be omitted, and so the relevant
Jacobian is:

du dv dA dB da db dx′ dy′ dz′

−b a 0 0 v −u 0 0 0
0 0 a b A B 0 0 0
0 0 2(−Ax′ +Bz′) 2(Az′ +By′) 0 0 −A2 B2 2AB

On C̃(3)
4 × C∗1 we can compute that the singular locus of ( · | · ) ◦ (π

(3)
4 × id)

is cut out by
A = B = 0,

(
−b a

)
w = 0.

Note, this is already sufficient to conclude that EvC1
IC(FC4

) 6= 0.
Since we only need to compute the vanishing cycles (41) over the regular
part of the conormal bundle, we may assume w 6= 0. We claim that local
coordinates for the regular part of the conormal bundle are given by (X ′, w).
Indeed, the coordinate [a : b] is determined by w and all other coordinates
are zero on the singular locus. It follows from this that the map from the
singular locus to T ∗C(Vλ)reg is one to one. Moreover, we are free to localize
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away from the exceptional divisor of the blowup and thus essentially ignore
[a : b] while computing the vanishing cycles. Doing this, we can give new
coordinates for our variety by setting(

A
B

)
= cw

for some new coordinate c. That is, on this open we have local coordinates
u, v, c, x′, y′, z′, with no relations, and we wish to compute

RΦc2(−u2x′+2uvz′+v2z′)(1).

The function−u2x′+2uvz′+v2z′ is smooth and non-vanishing (on the regular
part of the conormal bundle), so by setting f = −u2x′ + 2uvz′ + v2z′, we
may consider the smooth map on our open subvariety induced from the map
A6 → A2 given on coordinates by (u, v, c, x′, y′, z′) 7→ (c, f). By smooth
base change RΦc2(−u2x′+2uvz′+v2z′)(1) is the pullback of RΦc2f (1). It can
be shown that RΦc2f (1) is the skyscraper sheaf on c = 0 associated to the
cover arising from taking the square root of f . Pulling this back, we have
the same. This is the cover associated to the sheaf FO1

in Section 7.2.5, so
EvC1 IC(FC4) = IC(FO1).

(i = 0): To find the support of (41) when Ci = C0, we consider the differentials of
the following functions.(

−b a
)
w,

(
a b

)(A
B

)
, w′w + Tr(X ′X).

This determines the following Jacobian:

du dv dA dB da db du′ dv′ dx′ dy′ dz′

−b a 0 0 v −u 0 0 0 0 0
0 0 a b A B 0 0 0 0 0
u′ v′ 2(−Ax′ +Bz′) 2(Az′ +By′) 0 0 u v −A2 B2 2AB

The singular locus of ( · | · ) ◦ (π
(3)
4 × id) on C̃(3)

4 × C∗0 is

u = v = A = B = 0,
(
a b

)
w′ = 0.

Note, this is already sufficient to conclude that EvC1 IC(FC4) 6= 0.
We may assume w′ 6= 0, since we only need to compute (41) the vanishing
cycles over the regular part of the conormal bundle. Local coordinates for
the conormal bundle are now given by (w′, X ′). Since [a : b] is determined
by w′, and all other coordinates are zero, it follows that the map from the
singular locus to T ∗C(V )reg is one to one. In the following, wherever we write
(a, b) you should interpret this as either (1, b) or (a, 1) as though we were
working in one of the two charts for P1.
We pick new local coordinates in a neighbourhood of the singular locus:
these will be [a : b], c, d,X ′, w′ with the change of coordinates given by
(A,B) = c(−b, a) and (u, v) = d(a, b). The function ww′ + Tr(XX ′) may
now be re-written in the form

d
(
a b

)
w′ + c2

(
−b a

)
X ′
(
−b
a

)
.
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The functions f =
(
a b

)
w′ and g =

(
−b a

)
X ′
(
−b
a

)
are smooth (on the

regular part of the conormal bundle). We may thus consider the map to A4

induced by:

([a : b], c, d,X ′, w′) 7→ (c, d, f, g)

The map ww′ + Tr(XX ′) is simply the pullback of df + c2g.
Thus, if we can compute RΦdf+c2g(1) on A4, by smooth base change this
will give us RΦw′w+Tr(X′X)(1) over the regular part of the conormal bundle.
Again, it can be shown that RΦdf+c2g(1) is the skyscraper sheaf over d =
f = c = 0 associated to the cover coming from adjoining the square root of
g. Pulling this back to C̃(3)

4 ×C∗0 and identifying the singular locus with the
regular part of the conormal, we conclude that EvC0

IC(FC4
) = IC(FO0

) by
comparing the covers associated to the local systems in Section 7.2.5.

We close Section 7.2.7 by briefly discussing a different approach to making these
calculations and then illustrate this approach by showing an alternate calculation of
EvC1

IC(FC4
) = IC(FO1

).
We have already demonstrated that it is reasonably straight forward to compute the

support of the sheaf EvC by computing the singular locus in the appropriate cover. The
challenging thing is computing the actual sheaf, because it tends to require adhoc changes
of coordinates to understand the local structure of the singularity. However, it is still
typically straight forward to compute the rank of the resulting local system. This is
because we can compute this by passing to a finite étale cover which trivializes the sheaf,
and by passing to an arbitrary Zariski open. In every case in this paper, when the rank is
non-zero, one can immediately deduce that the rank of EvC P will be 1 on the basis that
the local structure is an isolated singularity direct product with an affine space.

Once one knows that the rank of EvC P is 1, we need only compute the action of
the fundamental group on the sheaf to identify the sheaf, and because the rank is 1,
this is equivalent to computing the trace of the action of the elements of the equivariant
fundamental group. We would like to illustrate now how the Lefshetz fixed point formula
may be used to make these calculations.

In this section, what we need to compute is the trace of the actions of the two elements
s(−1, 1) and s(1,−1) on W :=C4 × C∗1 , noting that these determine the action of the
central element s(−1,−1). Because s(−1, 1) and s(1,−1) differ by a central element,
they have the same fixed point set. The fixed point set of s acting on W is

W s = Spec(k[x, y, v, x′, y′]/(xy, xv))

and the restriction of f := ( · | · ) toW s is f = xx′+yy′. Now, the restriction of IC(FC4)�
1C∗1

to W s is sheaf associated to pullback of the original cover to this fixed point set, so
it appears in the proper pushforward formed by adjoining x = A2, y = B2:

W̃ s = Spec(k[A,B, v, x′, y′]/(AB,B2v)).

In these coordinates, fs = A2x′+B2y′. The map W̃ s →W s is an equivariant cover which
admits a non-trivial action of s(−1, 1) and s(1,−1), where the former acts as A 7→ −A
and the later acts as B 7→ −B. By observing that the map W̃ s → W s restricts to a
bijection on the singular locus of fs, we may conclude that the trace of the action on
stalks of the cover will agree with that on the base.
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Though it is possible by working with local coordinates to compute the vanishing cycles
here as we did above, we will instead use the Lefshetz theorem again. There are now two
cases:

s(−1, 1): Recall that map W̃ s → W s is an equivariant cover which admits a non-trivial
action of s(−1, 1) given by A 7→ −A, in the coordinates above. The fix of this
action on W̃ s and the restriction of fs to that fix, is

Spec(k[B, v, x′, y′]/(B2v)) fs = B2y′.

We note that this cover is of relative dimension 1. Noting further that we wish
to evaluate the action over regular conormal vectors this imposes the condition
u 6= 0 which implies B = 0, and leads us to consider:

Spec(k[v, x′, y′]) fs = 0

which allows us to conclude that the vanishing cycles are the constant sheaf and
so the trace is 1, accounting for relative dimension leads to a trace of −1 for the
original sheaf.

s(1,−1): The action of s(−1, 1) on the cover W̃ s →W s is given by B 7→ −B so restriction
to the fix of that action forces B = 0 Thus, the fix of the action of s(−1, 1) on
W̃ s and the restriction of fs to that fix, is

Spec(k[A, v, x′, y′]) fs = A2x′.

We note that this is relative dimension 0 and that we know, as above, that the
vanishing cycles are associated to the cover coming from taking

√
x′. However,

s(1,−1) acts trivially on this cover and so again we conclude the trace is 1 and
this is still the case after accounting for relative dimensions.

Checking the association between characters of the fundamental group and sheaves on
the regular conormal bundle allows us to conclude EvC1

IC(FC4
) = IC(FO1

), as above.

7.2.7. Vanishing cycles and the Fourier transform. The equivariant local system D is non-
trivial in this example, so here we display the twisting functor T : PerH(T ∗H(V )reg) →
PerH(T ∗H(V ∗)reg) given by T( · ) = a∗( · ) ⊗ D∗. For typographic reasons, we break the
display into four pieces.

PerH(T ∗H(V )reg)
T−→ LocH(T ∗H(V ∗)reg)

IC(1O0
) 7→ IC(1O∗0 )

IC(LO0) 7→ IC(LO∗0 )
IC(FO0) 7→ IC(FO∗0 )
IC(EO0) 7→ IC(EO∗0 )
IC(1O7

) 7→ IC(1O∗7 )
IC(LO7

) 7→ IC(LO∗7 )
IC(FO7

) 7→ IC(FO∗7 )
IC(EO7

) 7→ IC(EO∗7 )
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PerH(T ∗H(V )reg)
T−→ LocH(T ∗H(V ∗)reg)

IC(1O1) 7→ IC(1O∗1 )
IC(LO1) 7→ IC(LO∗1 )
IC(FO1) 7→ IC(FO∗1 )
IC(EO1) 7→ IC(EO∗1 )
IC(1O3

) 7→ IC(1O∗3 )
IC(LO3

) 7→ IC(LO∗3 )
IC(FO3

) 7→ IC(FO∗3 )
IC(EO3

) 7→ IC(EO∗3 )

PerH(T ∗H(V )reg)
T−→ LocH(T ∗H(V ∗)reg)

IC(1O2) 7→ IC(LO∗2 )
IC(LO2) 7→ IC(1O∗2 )
IC(FO2) 7→ IC(EO∗2 )
IC(EO2) 7→ IC(FO∗2 )
IC(1O6

) 7→ IC(LO∗6 )
IC(LO6

) 7→ IC(1O∗6 )
IC(FO6

) 7→ IC(EO∗6 )
IC(EO6

) 7→ IC(FO∗6 )

PerH(T ∗H(V )reg)
T−→ LocH(T ∗H(V ∗)reg)

IC(1O4) 7→ IC(1O∗4 )
IC(FO4) 7→ IC(FO∗4 )
IC(1O5) 7→ IC(1O∗5 )
IC(FO5) 7→ IC(FO∗5 )

Compare Table 7.2.7.1 with the Fourier transform from Section 7.2.4 to confirm (24)
in this example.

7.2.8. Arthur sheaves. Arthur perverse sheaves in PerHλ(Vλ), decomposed into pure packet
sheaves and coronal perverse sheaves, are displayed below.

Arthur pure packet coronal
sheaves sheaves sheaves
AC0 IC(1C0) ⊕ IC(1C2)⊕ IC(FC4)⊕ IC(EC7)
AC1

IC(1C1
) ⊕ IC(1C6

)⊕ IC(FC4
)⊕ IC(EC7

)
AC2

IC(1C2
)⊕ IC(FC2

) ⊕ IC(LC3
)⊕ IC(EC7

)
AC3

IC(1C3
)⊕ IC(LC3

) ⊕ IC(FC7
)⊕ IC(EC7

)
AC4

IC(1C4
)⊕ IC(FC4

) ⊕ IC(EC7
)

AC5 IC(1C5) ⊕ IC(FC7)⊕ IC(EC7)
AC6 IC(1C6)⊕ IC(FC6) ⊕ IC(LC7)⊕ IC(EC7)
AC7

IC(1C7
)⊕ IC(LC7

)⊕ IC(FC7
)⊕ IC(EC7

)

7.3. Adams-Barbasch-Vogan packets.

7.3.1. Admissible representations versus perverse sheaves. Using Vogan’s bijection between
PerHλ(Vλ)simple

/iso and Πpure,λ(G/F ) as discussed in Section 1.3.1, we now match the 8
Langlands parameters from Section 7.1.1 with the 8 strata from Section 7.2.1 and the
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Table 7.2.7.1. Fourier transform, vanishing cycles and the twisting functor

PerHλ(Vλ)
Ev−→ PerH(T ∗Hλ(Vλ)reg)

T−→ PerH(T ∗Hλ(V ∗λ )reg)
Ev∗←− PerHλ(V ∗λ )

IC(1C0
) 7→ IC(1O0

) 7→ IC(1O∗0 ) ← [ IC(1C∗0 )
IC(1C1

) 7→ IC(1O1
) 7→ IC(1O∗1 ) ← [ IC(1C∗1 )

IC(1C2
) 7→ IC(1O2

)⊕ IC(LO0
) 7→ IC(LO∗2 )⊕ IC(LO∗0 ) ← [ IC(LC∗0 )

IC(1C3
) 7→ IC(1O3

) 7→ IC(1O∗3 ) ← [ IC(1C∗3 )
IC(LC3) 7→ IC(LO3)⊕ IC(LO2) 7→ IC(LO∗3 )⊕ IC(1O∗2 ) ← [ IC(1C∗2 )
IC(1C4) 7→ IC(1O4) 7→ IC(1O∗4 ) ← [ IC(1C∗4 )
IC(1C5) 7→ IC(1O5) 7→ IC(1O∗5 ) ← [ IC(1C∗5 )
IC(1C6) 7→ IC(1O6)⊕ IC(LO1) 7→ IC(LO∗6 )⊕ IC(LO∗1 ) ← [ IC(LC∗1 )
IC(1C7) 7→ IC(1O7) 7→ IC(1O∗7 ) ← [ IC(1C∗7 )
IC(LC7) 7→ IC(LO7)⊕ IC(LO6) 7→ IC(LO∗7 )⊕ IC(1O∗6 ) ← [ IC(1C∗6 )
IC(FC2) 7→ IC(EO2) 7→ IC(FO∗2 ) ← [ IC(FC∗2 )
IC(FC4) 7→ IC(FO4)⊕ IC(FO1) 7→ IC(FO∗4 )⊕ IC(FO∗1 ) ← [ IC(FC∗0 )

⊕ IC(FO0) ⊕ IC(FO∗0 )
IC(FC6

) 7→ IC(FO6
) 7→ IC(EO∗6 ) ← [ IC(FC∗6 )

IC(FC7
) 7→ IC(FO7

)⊕ IC(FO5
) 7→ IC(FO∗7 )⊕ IC(FO∗5 ) ← [ IC(FC∗5 )

⊕ IC(FO3
) ⊕ IC(FO∗3 )

IC(EC7
) 7→ IC(EO7

)⊕ IC(EO6
) 7→ IC(EO∗7 )⊕ IC(FO∗6 ) ← [ IC(EC∗0 )

⊕ IC(EO5
)⊕ IC(EO4

) ⊕ IC(EO∗5 )⊕ IC(EO∗4 )
⊕ IC(FO3

)⊕ IC(FO2
) ⊕ IC(FO∗3 )⊕ IC(EO∗2 )

⊕ IC(FO1
)⊕ IC(EO0

) ⊕ IC(FO∗1 )⊕ IC(EO∗0 )

15 admissible representations from Section 7.1.2 with the 15 perverse sheaves from Sec-
tion 7.2.3.

PerHλ(Vλ)simple
/iso Πpure,λ(G/F )

IC(1C0
) [π(φ0), 0]

IC(1C1
) [π(φ1), 0]

IC(1C2) [π(φ2,+), 0]
IC(1C3) [π(φ3,+), 0]
IC(LC3

) [π(φ3,−), 0]
IC(1C4

) [π(φ4,+), 0)]
IC(1C5

) [π(φ5), 0]
IC(1C6

) [π(φ6,+), 0]
IC(1C7) [π(φ7,++), 0]
IC(LC7) [π(φ7,−−), 0]
IC(F2) [π(φ2,−), 1]
IC(F4) [π(φ4,−), 1]
IC(F6) [π(φ6,−), 1]
IC(F7) [π(φ7,−+), 1]
IC(E7) [π(φ7,+−), 1]

7.3.2. ABV-packets. Using the bijection from Section 7.3.1 and the calculation of the
functor Ev from Section 7.2.6, we now easily find the ABV-packets ΠABV

pure,φ(G/F ) for
Langlands parameters φ with infinitesimal parameter λ : WF → LG, using Section 1.3.2.
In each case we find the pure L-packet Πpure,φ(G/F ) and ΠABV

pure,φ(G/F ) and the remaining
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coronal representations:

ABV-packet pure L-packet coronal representations
ΠABV

pure,φ0
(G/F ) [π(φ0), 0] [π(φ2,+), 0], [π(φ4,−), 1], [π(φ7,+−), 1]

ΠABV
pure,φ1

(G/F ) [π(φ1), 0] [π(φ4,−), 1], [π(φ6,+), 0], [π(φ7,+−), 1]

ΠABV
pure,φ2

(G/F ) [π(φ2,+), 0], [π(φ2,−), 1] [π(φ3,−), 0], [π(φ7,+−), 1]

ΠABV
pure,φ3

(G/F ) [π(φ3,+), 0], [π(φ3,−), 0] [π(φ7,−+), 1], [π(φ7,+−), 1]

ΠABV
pure,φ4

(G/F ) [π(φ4,+), 0], [π(φ4,−), 1] [π(φ7,+−), 1]

ΠABV
pure,φ5

(G/F ) [π(φ5), 0] [π(φ7,−+), 1], [π(φ7,+−), 1]

ΠABV
pure,φ6

(G/F ) [π(φ6,+), 0], [π(φ6,−), 1] [π(φ7,−−), 0], [π(φ7,+−), 1]

ΠABV
pure,φ7

(G/F ) [π(φ7,++), 0], [π(φ7,−−), 0], [π(φ7,−+), 1], [π(φ7,+−), 1]

We record the stable distributions ηABV
ψ arising from ABV-packets through our calcu-

lations. We will examine the invariant distributions ηABV
ψ,s , later.

ABV- pure L-packet coronal
packets representations representations
ηABV
ψ0

+π(φ0) +π(φ2,+) + π(φ4,−) + π(φ7,+−)

ηABV
φ1

+π(φ1) +π(φ4,−) + π(φ6,+) + π(φ7,+−)

ηABV
ψ2

+π(φ2,+)− π(φ2,−) −π(φ3,−) + π(φ7,+−)

ηABV
φ3

+π(φ3,+) + π(φ3,−) −π(φ7,−+)− π(φ7,+−)

ηABV
ψ4

+π(φ4,+)− π(φ4,−) −π(φ7,+−)

ηABV
ψ5

+π(φ5) +π(φ7,−+) + π(φ7,+−)

ηABV
ψ6

+π(φ6,+)− π(φ6,−) −π(φ7,−−) + π(φ7,+−)

ηABV
ψ7

+π(φ7,++) + π(φ7,−−)− π(φ7,−+)− π(φ7,+−)

7.3.3. Kazhdan-Lusztig conjecture. Using the bijection of Section 7.1.4, we compare the
multiplicity matrix from Section 7.1.3

mrep =



1 1 1 1 1 2 2 1 1 1 0 0 0 0 0
0 1 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 1 1 0 1 1 1 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


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with the normalised geometric multiplicity matrix from Section 7.2.3.

m′geo =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 1 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 1 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Since tmrep = m′geo, this confirms the Kazhdan-Lusztig conjecture in this example.

7.3.4. Aubert duality and Fourier transform. Using Vogan’s bijection from Section 7.3.1
we may compare Aubert duality from Section 7.1.5 with the Fourier transform from
Section 7.2.4 to verify (33).

Using the map Qλ(LG)→ T ∗H(V )reg we may compare the twisting characters χψ of Aψ
from Section 7.1.5 with the restriction Dψ to T ∗Cψ (V )reg of the D from Section 7.2.7 to
verify (34).

7.3.5. ABV-packets that are not Arthur packets. We conclude Section 7.3 by drawing at-
tention to the two ABV-packets ΠABV

pure,φ1
(G/F ) and ΠABV

pure,φ3
(G/F ) that are not Arthur

packets, as φ1 and φ3 are not of Arthur type. While the following two admissible homo-
morphisms LF ×SL(2,C)→ LG are not Arthur parameters because they are not bounded
on WF ,

ψ1(w, x, y) := ν2(y)⊕ (ν2
2(dw)⊗ ν2(x)),

ψ3(w, x, y) := ν2(x)⊕ (ν2
2(dw)⊗ ν2(y)),

they do behave like Arthur parameters in other regards, as we now explain. First φψ1
= φ1

and φψ3
= φ3. We note too that ψ3 is the Aubert dual of ψ1. Let us define

Πpure,ψ1
(G/F ) := ΠABV

pure,φ1
(G/F ) and Πpure,ψ3

(G/F ) := ΠABV
pure,φ3

(G/F ).

Then Πpure,ψ1(G/F ) and Πpure,ψ3(G/F ) define the following pseudo-Arthur packets for
G1 and G0:

Πψ1
(G0(F )) := {π(φ1), π(φ6,+)},

Πψ3(G0(F )) := {π(φ3,+), π(φ3,−)},
and

Πψ1(G1(F )) := {π(φ4,−), π(φ7,+−)},
Πψ3(G1(F )) := {π(φ7,−+), π(φ7,+−)}.

Aubert duality defines a bijection between Πψ3
(G0(F )) and Πψ1

(G0(F )) and between
Πψ3

(G1(F )) and Πψ1
(G1(F )). Moreover, it follows from the Kazhdan-Lusztig conjecture,
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which we have already established for this example in Section 7.3.3, that the associated
distributions

ΘG0

ψ1
:= Trπ(φ1) + Trπ(φ6,+)

ΘG0

ψ3
:= Trπ(φ3,+) + Trπ(φ3,−)

and
ΘG1

ψ1
:= − (−Trπ(φ4,−)− Trπ(φ7,+−))

ΘG1

ψ3
:= − (+ Trπ(φ7,−+) + Trπ(φ7,+−))

are stable. Moreover, using the characters of microlocal fundamental groups arising from
our calculation of the functor EvC1 and EvC3 we may define ΘG0

ψ1,s
, ΘG1

ψ1,s
, ΘG0

ψ1,s
and ΘG0

ψ1,s
.

It follows from Section 7.1.6 that these distributions coincide with the endoscopic transfer
of stable distributions from an elliptic endoscopic group G′; those stable distributions on
G′(F ) also arise from ABV-packets that are not Arthur packets. In these regards, the
pseudo-Arthur packets Πψ1

(G0(F )), Πψ1
(G1(F )), Πψ3

(G0(F )), and Πψ3
(G1(F )) behave

like Arthur packets.

7.4. Endoscopy and equivariant restriction of perverse sheaves. In this section
we will calculate both sides of (35) forG = SO(7) and the elliptic endoscopicG′ = SO(5)×
SO(3), which already appeared in Section 7.1.6. This will illustrate how the Langlands-
Shelstad lift of Θψ′ on G′(F ) to Θψ,s on G(F ) is related to equivariant restriction of
perverse sheaves from V to the Vogan variety V ′ for G′; see Section 7.1.6 for ψ′.

The endoscopic datum for G′ includes s ∈ H given by

s :=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Note that

ZĜ(s) =


 A 0 B

0 E 0
C 0 D

 | ( A B
C D

)
∈ Sp(4), E ∈ Sp(2)

 ∼= Sp(4)× Sp(4),

so Ĝ′ = ZĜ(s).

7.4.1. Endoscopic Vogan variety. The infinitesimal parameter λ : WF → LG factors
through ε : LG

′
↪→ LG to define λ′ : WF → LG

′ by

λ′(w) =



|w|3/2 0 0 0

0 |w|1/2 0 0

0 0 |w|−1/2
0

0 0 0 |w|−3/2

 ,

(
|w|1/2 0

0 |w|−1/2

) .

To simplify notation below, let us set G(1) := SO(3) and G(2) := SO(5) and define λ(1) :

WF → LG
(1) and λ(2) : WF → LG

(2) accordingly. Also set

H(1) :=ZĜ(1)(λ
(1)) and H(2) :=ZĜ(2)(λ

(2))
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and V (1) :=Vλ(1) and V (2) :=Vλ(2) . Then,

H ′ = H(1) ×H(2) and V ′ = V (2) × V (2),

with the action of H(1) on V (1) given in Section 3 and the action of H(2) on V (2) given
in Section 5. It follows that, with reference to Sections 3 and 5, V ′ is stratified into eight
H ′-orbits:

Cux × Cy Cx × Cy Cu × Cy C0 × Cy
Cux × C0 Cx × C0 Cu × C0 C0 × C0.

For all H ′-orbits C ′ ⊂ V ′, the microlocal fundamental group Amic
C′ is canonically iso-

morphic to the centre Z(Ĝ′) = Z(Ĝ(2)) × Z(Ĝ(1)), because we have chosen G′ so that
the unramified infinitesimal parameter λ′ is regular semisimple at Fr. Consequently, the
image of Z(Ĝ′) under ε : Ĝ′ ↪→ Ĝ is the group S[2] introduced in Section 7.1.4.

7.4.2. Restriction. We now describe the restriction functor DH(V )→ DH′(V
′) on simple

perverse sheaves, after passing to Grothendieck groups.
res : PerH(V ) −→ KPerH′(V

′)
IC(1C0) 7→ IC(1C0 � 1C0)[0]
IC(1C1

) 7→ IC(1Cu � 1C0
)[1]

IC(1C2
) 7→ IC(1Cx � 1C0

)[1]⊕ IC(1C0
� 1Cy )[1]⊕ IC(1C0

� 1C0
)[1]

IC(1C3
) 7→ IC(1Cx � 1Cy )[1]

IC(LC3) 7→ IC(LCx � ECy )[1]⊕ IC(1C0 � 1C0)[1]
IC(1C4) 7→ IC(1Cx � 1C0)[2]⊕ IC(1Cu � 1Cy )[1]
IC(1C5

) 7→ IC(1Cu � 1Cy )[2]⊕ IC(1Cx � 1Cy )[2]⊕ IC(1C0
� 1Cy )[2]

⊕ IC(LCx � ECy )[2]⊕ IC(1C0
� 1C0

)[2]
IC(1C6

) 7→ IC(1Cux � 1C0
)[2]⊕ IC(1Cu � 1Cy )[2]⊕ IC(1Cu � 1C0

)[2]
IC(1C7) 7→ IC(1Cux � 1Cy )[2]
IC(LC7) 7→ IC(LCux � ECy )[2]⊕ IC(1Cu � 1C0)[2]
IC(FC2

) 7→ IC(LCx � 1C0
)[1]⊕ IC(1C0

� ECy )[1]
IC(FC4

) 7→ IC(1Cu � ECy )[1]⊕ IC(LCx � 1C0
)[2]

IC(FC6
) 7→ IC(LCux � 1C0

)[2]⊕ IC(1Cu � ECy )[2]
IC(FC7) 7→ IC(LCux � 1Cy )[2]⊕ IC(LCx � 1Cy )[2]⊕ IC(LCx � 1C0)[4]

⊕ IC(1C0 � ECy )[4]
IC(EC7

) 7→ IC(LCux � ECy )[2]⊕ IC(LCx � ECy )[2]

7.4.3. Restriction and vanishing cycles. Although the inclusion V ′ ↪→ V induces a map
of conormal bundles ε : T ∗H′(V

′) ↪→ T ∗H(V ), this does not restrict to a map of regular
conormal bundles. Instead, we have

T ∗C0
(V )reg ∩ T ∗H′(V

′)reg = T ∗C0×C0
(V ′)reg

T ∗C1
(V )reg ∩ T ∗H′(V

′)reg = T ∗Cu×C0
(V ′)reg

T ∗C2
(V )reg ∩ T ∗H′(V

′)reg = T ∗C0×Cy (V ′)reg
T ∗C3

(V )reg ∩ T ∗H′(V
′)reg = T ∗Cx×Cy (V ′)reg

T ∗C4
(V )reg ∩ T ∗H′(V

′)reg = ∅
T ∗C5

(V )reg ∩ T ∗H′(V
′)reg = ∅

T ∗C6
(V )reg ∩ T ∗H′(V

′)reg = T ∗Cux×C0
(V ′)reg

T ∗C7
(V )reg ∩ T ∗H′(V

′)reg = T ∗Cux×Cy (V ′)reg

Thus, the hypothesis (35) is met only for (x′, ξ′) ∈ T ∗H′(V
′)reg from the list of regular

conormal bundles appearing on the right-hand side of these equations.
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Here is another interesting example of (35). Take P = IC(EC7
). Then, in the Grothen-

dieck group of PerH′(T ∗H′(V
′)reg),

Ev′ P|V ′
≡ Ev′

(
IC(LCux � ECy )⊕ IC(LCx � ECy )

)
=

(
Ev(2) IC(LCux) � Ev(1) IC(ECy )

)
⊕
(
Ev(2) IC(LCx) � Ev(1) IC(ECy )

)
=

(
(IC(LOux)⊕ IC(LOu)) � (IC(EOy )⊕ IC(EO0

))
)

⊕
(
(IC(LOx)⊕ IC(LO0

)) � (IC(EOy )⊕ IC(EO0
))
)

= IC(LOux � EOy )⊕ IC(LOux � EO0
)⊕ IC(LOu � EOy )

⊕ IC(LOu � EO0
)⊕ IC(LOx � EOy )⊕ IC(LOx � EO0

)
⊕ IC(LO0 � EOy )⊕ IC(LO0 � EO0).

We now calculate the values of Tr
(
Ev′ P|V ′

)
(a′s) on all six components of T ∗H(V )reg ∩

T ∗H′(V
′)reg.

(Cux × Cy): If (x′, ξ′) ∈ T ∗Cux×Cy (V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)5−3 Tr

(
IC(LOux � EOy )

)
(1,−1)

= (+1)(−−)(1,−1) = −1.

(Cux × C0): If (x′, ξ′) ∈ T ∗Cux×C0
(V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)4−2 Tr (IC(LOux � EO0

)) (1,−1)

= (+1)(−−)(1,−1) = −1.

(Cx × Cy): If (x′, ξ′) ∈ T ∗Cx×Cy (V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)3−2 Tr

(
IC(LOx � EOy )

)
(1,−1)

= (−1)(−−)(1,−1) = +1.

(C0 × Cy): If (x′, ξ′) ∈ T ∗C0×Cy (V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)2−1 Tr

(
IC(LO0

� EOy )
)

(1,−1)

= (−1)(−−)(1,−1) = +1.

(Cu × C0): If (x′, ξ′) ∈ T ∗Cu×C0
(V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)2−1 Tr (IC(LOu � EO0

)) (1,−1)

= (−1)(−−)(1,−1) = +1.

(C0 × C0): If (x′, ξ′) ∈ T ∗C0×C0
(V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)0−0 Tr (IC(LOu � EO0)) (1,−1)

= (+1)(−−)(1,−1) = −1.

To compare with the calculation of the left-hand side of (35), above, we must now calculate
the values of Tr (EvP) (as) on all six components of T ∗H(V )reg ∩ T ∗H′(V ′)reg.

Tr(Ev(x,ξ) P)(as) = Tr (Ev IC(EC7)) |T∗C(V )reg(as)

= Tr (IC(EO7
)⊕ IC(EO6

)) |T∗C(V )reg(as)

+ Tr (IC(EO5
)⊕ IC(EO4

)) |T∗C(V )reg(as)

+ Tr (IC(FO3
)⊕ IC(FO2

)) |T∗C(V )reg(as)

+ Tr (IC(FO1
)⊕ IC(EO0

)) |T∗C(V )reg(as)
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(Cux × Cy): If (x′, ξ′) ∈ T ∗Cux×Cy (V ′)reg then (x, ξ) ∈ T ∗C7
(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (IC(EO7

)) (1,−1)
= (+−)(1,−1) = −1.

(Cux × C0): If (x′, ξ′) ∈ T ∗Cux×C0
(V ′)reg then (x, ξ) ∈ T ∗C6

(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (IC(EO6

)) (1,−1)
= (+−)(1,−1) = −1.

(Cx × Cy): If (x′, ξ′) ∈ T ∗Cx×Cy (V ′)reg then (x, ξ) ∈ T ∗C3
(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (IC(FO3)) (1,−1)

= (−+)(1,−1) = +1.

(C0 × Cy): If (x′, ξ′) ∈ T ∗C0×Cy (V ′)reg then (x, ξ) ∈ T ∗C2
(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (IC(FO2

)) (1,−1)
= (−+)(1,−1) = +1.

(Cu × C0): If (x′, ξ′) ∈ T ∗Cu×C0
(V ′)reg then (x, ξ) ∈ T ∗C1

(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (IC(FO1)) (1,−1)

= (−+)(1,−1) = +1.

(C0 × C0): If (x′, ξ′) ∈ T ∗C0×C0
(V ′)reg then (x, ξ) ∈ T ∗C0

(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (IC(EO0)) (1,−1)

= (+−)(1,−1) = −1.

This confirms (35) for P = IC(EC7
).

Here is another interesting example of (35). Take P = IC(FC4
). Then, in the Grothen-

dieck group of PerH′(T ∗H′(V
′)reg),

Ev′ P|V ′
≡ Ev′

(
IC(1Cu � ECy )[1]⊕ IC(LCx � 1C0

)
)

=
(
Ev(2) IC(1Cu) � Ev(1) IC(ECy )

)
⊕
(
Ev(2) IC(LCx) � Ev(1) IC(1C0)

)
=

(
IC(1Ou) � (IC(EOy )⊕ IC(EO0))

)
⊕ ((IC(LOx)⊕ IC(LO0)) � IC(1O0))

= IC(1Ou � EOy )⊕ IC(1Ou � EO0
)⊕ IC(LOx � LO0

)⊕ IC(LO0
� 1O0

).

We now calculate the values of Tr
(
Ev′ P|V ′

)
(a′s) on all six components of T ∗H(V )reg ∩

T ∗H′(V
′)reg.

(Cux × Cy): If (x′, ξ′) ∈ T ∗Cux×Cy (V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)5−3 Tr (0) (1,−1)

= (+1)(0)(1,−1) = 0.

(Cux × C0): If (x′, ξ′) ∈ T ∗Cux×C0
(V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)4−2 Tr (0) (1,−1)

= (+1)(0)(1,−1) = 0.

(Cx × Cy): If (x′, ξ′) ∈ T ∗Cx×Cy (V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)3−2 Tr (0) (1,−1)

= (−1)(0)(1,−1) = 0.



ARTHUR PACKETS AND ABV-PACKETS FOR p-ADIC GROUPS, 2: EXAMPLES 105

(C0 × Cy): If (x′, ξ′) ∈ T ∗C0×Cy (V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)2−1 Tr (0) (1,−1)

= (−1)(0)(1,−1) = 0.

(Cu × C0): If (x′, ξ′) ∈ T ∗Cu×C0
(V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)2−1 Tr (IC(1Ou � EO0

)) (1,−1)

= (−1)(+−)(1,−1) = +1.

(C0 × C0): If (x′, ξ′) ∈ T ∗C0×C0
(V ′)reg then

(−1)dimC−dimC′ Tr
(
Ev′(x′,ξ′) P|V ′

)
(a′s) = (−1)0−0 Tr (IC(LO0

� 1O0
)) (1,−1)

= (+1)(−+)(1,−1) = +1.

To compare with the calculation of the left-hand side of (35), above, we must now calculate
the values of Tr (EvP) (as) on all six components of T ∗H(V )reg ∩ T ∗H′(V ′)reg.

Tr(Ev(x,ξ) P)(as) = Tr (Ev IC(FC4
)) |T∗C(V )reg(as)

= Tr (IC(FO4
)⊕ IC(FO1

)⊕ IC(FO0
)) |T∗C(V )reg(as).

(Cux × Cy): If (x′, ξ′) ∈ T ∗Cux×Cy (V ′)reg then (x, ξ) ∈ T ∗C7
(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (0) (1,−1)

= (0)(1,−1) = 0.

(Cux × C0): If (x′, ξ′) ∈ T ∗Cux×C0
(V ′)reg then (x, ξ) ∈ T ∗C6

(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (0) (1,−1)

= (0)(1,−1) = 0.

(Cx × Cy): If (x′, ξ′) ∈ T ∗Cx×Cy (V ′)reg then (x, ξ) ∈ T ∗C3
(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (0) (1,−1)

= (0)(1,−1) = 0.

(C0 × Cy): If (x′, ξ′) ∈ T ∗C0×Cy (V ′)reg then (x, ξ) ∈ T ∗C2
(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (0) (1,−1)

= (0)(1,−1) = 0.

(Cu × C0): If (x′, ξ′) ∈ T ∗Cu×C0
(V ′)reg then (x, ξ) ∈ T ∗C1

(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (IC(FO1)) (1,−1)

= (−+)(1,−1) = +1.

(C0 × C0): If (x′, ξ′) ∈ T ∗C0×C0
(V ′)reg then (x, ξ) ∈ T ∗C0

(V )reg in which case

Tr
(
Ev(x,ξ) P

)
(as) = Tr (IC(FO0

)) (1,−1)
= (−+)(1,−1) = +1.

This confirms (35) for P = IC(FC4
).
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