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GEOMETRIZATION OF CONTINUOUS CHARACTERS OF Z×
p

CLIFTON CUNNINGHAM AND MASOUD KAMGARPOUR

We define the p-adic trace of certain rank-one local systems on the mul-
tiplicative group over p-adic numbers, using Sekiguchi and Suwa’s unifi-
cation of Kummer and Artin–Schreier–Witt theories. Our main observa-
tion is that, for every nonnegative integer n, the p-adic trace defines an
isomorphism of abelian groups between local systems whose order divides
( p − 1) pn and `-adic characters of the multiplicative group of p-adic inte-
gers of depth less than or equal to n.

Introduction. Let p and ` be distinct primes and let q be a power of p. Let G be
a connected commutative algebraic group over Fq ; that is, a smooth commutative
group scheme of finite type over a field. To geometrize a character ψ :G(Fq)→Q

×

`

one pushes forward the Lang central extension

0→ G(Fq)→ G
Lang
−→ G→ 0, Lang(x)= Fr(x)− x,

by ψ−1 and obtains a local system Lψ on G. The trace of Frobenius of Lψ equals
ψ ; which is to say that Lψ andψ correspond under the functions–sheaves dictionary.
Thus, we think of Lψ as the geometrization of ψ . Let C(G) be the abelian group
(under tensor product) consisting of Lψ as ψ ranges over Hom(G(Fq),Q

×

` ); in
other words, C(G) is the group of irreducible summands of Lang!Q`. Trace of
Frobenius defines an isomorphism of abelian groups

(1) tFr : C(G)
'
−→ Hom(G(Fq),Q

×

` );

see [Deligne 1977, Sommes Trig.] and [Laumon 1987, Example 1.1.3].
Here we obtain an analogue of this isomorphism for Gm over p-adic numbers.

Theorem. The work of Sekiguchi and Suwa, on unification of Kummer with Artin–
Schreier theories, provides an isomorphism between the abelian group of rank-one
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local systems on Gm,Qp
whose order divides (p− 1)pn and the abelian group of

characters of Z×p of depth less than or equal to n, for every nonnegative integer n.

Motivation and relation to character sheaves. Before proving the theorem, we
take a moment to explain our motivation. Deligne used the local systems Lψ ,
appearing above, to prove bounds on the trigonometric sums over finite fields. A
key fact used by Deligne in his computation is Grothendieck trace formula. An
analogue of this trace formula is missing over p-adic fields. This is the main hurdle
for pursuing an analogue of Deligne’s results. We hope that the local systems we
study here will be of use in obtaining bounds for corresponding sums over p-adic
fields.

According to [Lusztig 1985, Section 2], character sheaves on Gm,Qp
are perverse

sheaves on Gm,Qp
(cohomologically) concentrated in degree 1 where they are rank-

one Kummer local systems. We restrict our attention to those character sheaves on
Gm,Qp

whose order divides (p− 1)pn and find that these are precisely those that
admit a Qp(µpn )-rational structure; that is, they can be defined on Gm,Qp(µpn ). In this
language, the above theorem states the following: The p-adic trace (defined below)
of every Qp(µp∞)-rational character sheaf on Gm,Qp

is a continuous character

Z×p →Q
×

` and, moreover, every continuous `-adic character of Z×p is obtained in
this manner, each one from a unique character sheaf of Gm,Qp

.
Our idea for defining a function from a Qp(µpn )-rational character sheaf K on

Gm,Qp
is to consider Zp[µpn ]-models for Gm,Qp(µpn ) such that K extends to a local

system on the model; then, after restriction to the special fibre of the model, we
recover a local system to which we may apply the trace of Frobenius function,
as above. Using the work of Sekiguchi and Suwa we find that this idea can be
realized if one additional step is introduced: we must consider Zp[µpn ]-models for
Gn+1

m,Qp(µpn ), rather than Gm,Qp(µpn ). We believe that this strategy for passing from
character sheaves on p-adic groups with rational structure to smooth characters by
judicious use of integral models may be of wider applicability in establishing a
relationship between character sheaves on p-adic groups and admissible characters.
This note is meant to illustrate a case of this strategy.

Unification of Kummer with Artin–Schreier–Witt. Henceforth, we assume that p
is an odd prime. Fix a nonnegative integer n and a primitive pn-th root of unity
ζ ∈Qp. Set R = Zp[ζ ], K =Qp(ζ ). The main theorem of Sekiguchi and Suwa on
the unification of Kummer and Artin–Schreier–Witt theories provides us with

• an exact sequence

0→ Z/(p− 1)Z×Z/pnZ→ Y
f
−→ X→ 0

of commutative group schemes over R,
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• isomorphisms YK := Y⊗R K
'
−→ Gn+1

m,K and XK → Gn+1
m,K ,

• isomorphisms YFp

'
−→ Gm,Fp ×Wn,Fp and XFp

'
−→ Gm,Fp ×Wn,Fp ,

where Wn,Fp is the Witt ring scheme of dimension n over Fp, such that the following
diagram commutes:

Gm,K

θ

��

Gn+1
m,K

γ

��

moo YK //

fK

��

oo // Y

f

��

YFp
∼= Gm,Fp ×Wn,Fp

oo

fFp

��

Lang

��
Gm,K Gn+1

m,Kα
oo XK //oo // X XFp

∼= Gm,Fp ×Wn,Fp .oo

Here, θ(x)= x (p−1)pn
, m denotes the multiplication map, γ and α are defined by

γ (x0, . . . , xn)=
(

x p−1
0 ,

x p
1

x2
,

x p
2

x3
, . . . ,

x p
n

xn−1

)
,

α(x0, x1, . . . , xn)=
(x0x1x2x3 · · · xn)

pn

x1x p
2 x p2

3 · · · x
pn−1

n

,

and fK and fFp are the restrictions of f to the generic and special fibre, respectively.
The theorem in question was announced in [Suwa and Sekiguchi 1995] and a proof
appeared in the preprint [Sekiguchi and Suwa 1999]. According to Sekiguchi, the
main tools of this preprint have been published in [Sekiguchi and Suwa 2003]. For
a general overview see [Tsuchiya 2003].

The p-adic trace function. Let K(Gm,K ) denote the group (under tensor product)
of local systems that are irreducible summands of θ!Q`. One can easily check that
all the squares in the above diagram are Cartesian; moreover, it is clear that all the
vertical arrows are Galois covers of order (p− 1)pn . It follows that the diagram
above determines a canonical isomorphism of groups

(2) S : K(Gm,K )
'
−→ C(Gm,Fp ×Wn,Fp).

We define the p-adic trace function by

(3)
Trn : K(Gm,K )−→ Hom

(
Gm(Fp)×Wn(Fp),Q

×

`

)
K 7→ tFr(S(K)).

It follows at once from (1) and (2) that Trn is a canonical isomorphism.

Relationship to continuous characters of Z×
p . Since p is odd, the exponential map

defines an isomorphism of algebraic Fp-groups

(4) Gm,Fp ×Wn,Fp

'
−→W∗n+1,Fp
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where W∗n+1,Fp
refers to the group scheme of units in the Witt ring scheme Wn+1,Fp

(see [Greenberg 1962]) and therefore an isomorphism

(5) Gm(Fp)×Wn(Fp)= Z/(p− 1)×Z/pn '
−→ Z×p /(1+ pn+1Zp).

Accordingly, we can think of the p-adic trace as a character of Z×p /(1+ pn+1Zp).
Composing with the quotient Z×p → Z×p /(1+ pn+1Zp), we see that the p-adic trace
can be interpreted as a continuous `-adic character of Z×p .

Conversely, for every continuous character χ : Z×p →Q
×

` , there is a nonnegative
integer n such that χ(Z×p /(1+ pn+1Zp))= {1}. The smallest such n is known as
the depth of χ . We propose to think of Kχ := Tr−1

n (χ) as the geometrization of χ ,
when χ : Z×p →Q

×

` is a continuous character of depth n. We do not discuss how to
vary n in the present text.

We note that choosing an isomorphism of the form (5) is unappetizing. We hope,
in time, to give a construction which does not depend on this choice.
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