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Abstract. — In this article we propose a geometric description of Arthur packets

for p-adic groups using vanishing cycles of perverse sheaves. Our approach is inspired
by the 1992 book by Adams, Barbasch and Vogan on the Langlands classification
of admissible representations of real groups and follows the direction indicated by
Vogan in his 1993 paper on the Langlands correspondence. We introduce and study
a functor built from vanishing cycles from the category of equivariant perverse sheaves
on the moduli space of certain Langlands parameters to local systems on the regular
part of the conormal bundle for this variety. By establishing the main properties of
this functor, we show that it plays the role of the microlocalisation functor in the
work of Adams, Barbasch and Vogan. Using this, we define ABV-packets for pure
rational forms of p-adic groups and we also give a geometric description of the transfer
coefficients that appear in Arthur’s work. This article includes conjectures modelled
on Vogan’s work, including the prediction that Arthur packets are ABV-packets for
p-adic groups. We verify these conjectures in several examples and while doing so,
we show how to calculate the transfer coefficients that appear in Arthur’s main local
result in the endoscopic classification of representations, using purely geometric tools.
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Résumé. — Dans cet article nous proposons une description géométrique des
paquets d’Arthur pour les groupes p-adiques en utilisant les cycles évanescents des
faisceaux pervers. Notre approche s’inspire du livre d’Adams, Barbasch et Vogan
sur la classification de Langlands des représentations admissibles des groupes réels
et suit la direction suggérée par Vogan dans son article sur la correspondance de
Langlands. Nous définissons et étudions un foncteur, construit aa partir des cycles
évanescents, de la catégoérie des faisceaux pervers équivariant sur I’espace de modules
de certains paramétres de Langlands vers la catégorie des systémes locaux sur la partie
réguliére du fibré conormal de cette variété. En établissant les principales propriétés
de ce foncteur, nous montrons qu’il joue le role du foncteur de microlocalisation
dans les travaux d’Adams, Barbasch et Vogan. En utilisant cela, nous définissons les
ABV-paquets des formes rationnelles pures des groupes p-adiques et nous donnons
également une description géométrique des coefficients de transfert qui apparaissent
dans les travaux d’Arthur. Cet article contient des conjectures inspirées des travaux de
Vogan et en particulier la prédiction que les paquets d’Arthur sont les ABV-paquets
pour les groupes p-adiques.

Contents
1. Introduction. . ... 2
Part I. Arthur packets and microlocal vanishing cycles..... 10
2. Arthur packets and pure rational forms.......................... 10
3. Equivariant perverse sheaves on parameter varieties............. 20
4. Reduction to unramified parameters............................. 30
5. Arthur parameters and the conormal bundle.................... 36
6. Microlocal vanishing cycles of perverse sheaves.................. 44
7. Arthur packets and ABV-packets...................... ... ... 68
Part I1. Examples..........oo i 75
8. Template for the examples........... ... ... 76
9. SL(2) 4-packet of quadratic unipotent representations........... 91
10. SO(3) unipotent representations, regular parameter............ 97
11. PGL(4) shallow representations...............c.ocovuviinaen... 105
12. SO(5) unipotent representations, regular parameter............ 116
13. SO(5) unipotent representations, singular parameter........... 127
14. SO(7) unipotent representations, singular parameter........... 152
Index. . ..o 196
References. . ... ..o o 197
1. Introduction
1.1. Motivation. — Let F' be a local field of characteristic zero and G be a con-

nected reductive linear algebraic group over F. According to the local Langlands
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conjecture, the set II(G(F')) of isomorphism classes of irreducible admissible repre-
sentations of G(F') can be naturally partitioned into finite subsets, called L-packets.
Moreover, the local Langlands conjecture predicts that if an L-packet contains one
tempered representation, then all the representations in that L-packet are tempered,
so tempered L-packets provide a partition of tempered irreducible admissible repre-
sentations. Tempered L-packets enjoy some other very nice properties. For instance,
every tempered L-packet determines a stable distribution on G(F') by a non-trivial
linear combination of the distribution characters of the representations in the packet.
Tempered L-packets also have an endoscopy theory, which leads to a parametrization
of the distribution characters of the representations in the packet.

These properties fail for non-tempered L-packets. To remedy this, in 1989 Arthur
introduced what are now know as Arthur packets, which enlarge the non-tempered
L-packets in such a way that these last two properties do extend to the non-tempered
case. Arthur’s motivation was global, arising from the classification of automorphic
representations, so the local meaning of Arthur packets was unclear when they first
appeared.

In 1992, shortly after Arthur packets were introduced, Adams, Barbasch and Vogan
suggested a purely local description of Arthur packets for real groups using microlocal
analysis of certain stratified complex varieties built from Langlands parameters. Then,
in 1993 Vogan used similar tools to make a prediction for a local description of Arthur
packets for p-adic groups. Since these constructions are purely local, and since the
initial description of Arthur packets was global in nature, it was not easy to compare
ABV-packets with Arthur packets. The conjecture that Arthur packets are ABV-
packets has remained open since the latter were introduced.

When Arthur finished his monumental work on the classification of automorphic
representations of symplectic and special orthogonal groups in 2013, the situation
changed dramatically. Not only did he prove his own conjectures on Arthur packets
given in | |, but he also gave a local characterisation of them, using twisted
endoscopy. This opened the door to comparing Arthur packets with ABV-packets
and motivated us to compare Arthur’s work with Vogan’s constructions in the p-adic
case. This article is the first in a series making that comparison.

1.2. Background. — To begin, let us briefly review Arthur’s main local result in
the endoscopic classification of representations. Let G be a quasi-split connected
reductive algebraic group over a p-adic field F. An Arthur parameter for G is a
homomorphism, v : Lr x SL(2,C) — G, where L is the local Langlands group, to
the Langlands group “G = G x W, satisfying a number of conditions. One important
condition is that the image of ¢(Wg) under the projection onto G must have compact

closure. When G is symplectic or special orthogonal, Arthur | , Theorem 1.5.1]
assigns to any ¢ a multiset IL,(G(F)) over II(G(F)), known as the Arthur packet
of G associated with . It is a deep result of Moeglin | | that IL,(G(F)) is

actually a subset of II{(G(F')). Endoscopy theory [ , Theorem 2.2.1] in this case



4 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

gives rise to a canonical map

O My (G(F)) = 8,

7rr—><~,7r>w

to Sy, the set of irreducible characters of Sy = Za(W)/Z5(¥)°Z(G)Fr . 1f the Arthur
parameter 1) : Lp x SL(2,C) — LG is trivial on the SL(2,C) factor then IL,(G(F))
is a tempered L-packet and the map (1) is a bijection. In general, II,(G(F))
contains the L-packet Il (G (F)), where ¢y is the Langlands parameter given by
¢y (u) :=1(u,d,), where for v € Lr we set d, = diag(|u|1/2,|u|71/2) with | | the
pullback of the norm map on Wr. The map (1) determines a stable distribution on
G(F) by

2) Of= >, fenm,0n

welly, (G(F))
where z, is the image of ¥(1, —1) in Sy with (1,—1) € Lr x SL(2,C) where —1 is the
non-trivial central element of SL(2, C).

In this article we express Arthur’s conjectural generalisation of (1) for inner twists
of G using pure rational forms of G as articulated by Vogan. A pure rational form
(also known as a pure inner form) of G is a cocycle § € Z'(F,G). An inner rational
form is a cocycle o € Z'(F,Inn(G)). Using the maps

ZNF,G) = Z'(F,G,4) = Z'(F,Inn(G)) — Z'(F, Aut(Q)),

every pure rational form of G determines an inner rational form of G and every
inner rational form of G determines a rational form of G. Following | ], a
representation of a pure rational form of G is defined to be a pair (7,d), where ¢ is
a pure rational form of G and 7 is an equivalence class of admissible representations
of G4(F). The action of G(F) by conjugation defines an equivalence relation on
such pairs, which is compatible with the equivalence relation on pure rational forms
ZY(F,G) producing H'(F,G). Again following | |, we write Il (G /F) for
the equivalence classes of such pairs. Then, after choosing a representative for each
class in H!(F,G), we may write

Mouwe(G/F)= || T(G5(F),9),
[(]eH(F,G)
where II(G4(F),6) :={(m,9) | m € II(G4(F))}.

An inner twist of G is a pair (G1,¢) where G is a rational form of G together
with an isomorphism of algebraic groups ¢ from G; ®p F to G @r F such that
v = poy(p)~tis a l-cocycle in Z1(T'p, Inn(G)) | , Section 9.1|. Every inner
rational form o of G determines an inner twist (G, @) such that the action of v € I'p
on G, (F) is given through the o-twisted action on G(F). We use the notation (G, ¢5)
for the inner twist of G determined by the pure rational form §. An Arthur parameter
Y for G is relevant to Gy if any Levi subgroup of G that v factors through is the
dual group of a Levi subgroup of G;. In | , Conjecture 9.4.2], Arthur assigns
to any relevant ¢ a multiset IL,(Gs(F')) over II(G4(F')), which is called the Arthur



ARTHUR PACKETS FOR p-ADIC GROUPS BY WAY OF VANISHING CYCLES 5

packet for G associated to 1. Moeglin’s work shows that, since G5 comes from a
pure rational form, II, (G4 (F)) is again a subset of II(Gy(F)). To extend (1) to this
case, Arthur replaces the group S, with a generally non-abelian group Sy sc [ ,
Section 9.2, which is a central extension of Sy, by Zp,sc; compare with (24). Let Q:Ga
be a character of ZMC and let Rep(Sy sc, zgs) be the set of isomorphism classes of 56'5'
equivariant representations of Sy ¢ and ( -, m) ¥sc 18 the character of the associated
representation of Sy .
Endoscopy theory | , Conjecture 9.4.2] gives a map

(3) Iy (G5(F)) = Rep(Sy sc; Ca, );

the character of the representation attached to an irreducible representation 7 of the
inner twist (Gs, ¢s) is denoted by (-, ), ... The map (3) depends only on (1) and
the pure rational form 4. For any Arthur parameter ¢ for G and any pure rational
form § of G we define

Iy (G5(F),6) == {(m,0) | m € Iy (G5(F))}
where, if 9 is not relevant to G, then IL, (G} (F')) and thus IL,(Gs(F), ) is empty.
Now we introduce
(4) Iy (G/F) :={[m, 6] € Mpure(G/F) | (m,8) € Ty (G5(F), )}

After choosing a representative pure rational form ¢ for every class in H'(F,G), we
have
Mpure s (G/F) = || Ty(G5(F), ).
[(]eH(F,G)
Now, set
Ay =m(Zg(W)) = Zg(¥)/Zg (¥)°

and let xs : m0(Z(G)'F) — C* be the character matching [§] € H'(F,G) under the
Kottwitz isomorphism H!(F,G) = Hom(m(Z(G)"F),Cl). Let Rep(Ay, xs5) denote
the set of equivalence classes of representations of A, such that the pullback of the
representations along

m0(Z(G)"F) = mo(Z5 (%)
is xs. In Proposition 2.10.3 we show that (3) defines a canonical map
(5) Mpure,(G/F) = Rep(Ay)

and we write ( - ,[m,d]),, for the representation attached to [r,d] € pure,y(G/F).
built from canonical maps

(6) IT,(Gs(F),8) — Rep(Ay, xs)-

The maps (6) depend only on 4 and (1), as discussed in Section 2.10. When ¢ = 1,
(6) recovers (1) and if ¢ is tempered then (6) gives a canonical bijection

(7) H¢¢ (Gé (F)v 5) — H(Adh X5)a

where II(Ay, xs) denotes the set of xs-equivariant characters of Ay,.
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1.3. Main results. — In this article we give a geometric and categorical approach
to calculating a generalisation of (5), and therefore of (6) also, which applies to all
quasi-split connected reductive algebraic groups G over p-adic fields, by assuming the
local Langlands correspondence for its pure rational forms, as articulated by Vogan
in | |. The local Langlands correspondence is known for split symplectic and
orthogonal groups by the work of Arthur and others. In | , Chapter 9] Arthur
sets the foundation for adapting his work to inner forms of these groups, which can
be seen as a step toward the version proposed by Vogan in | |. Building on
Arthur’s work, Vogan’s version of the local Langlands correspondence is known for
unitary groups by work of | | and | |; it is expected that similar
arguments should yield the result for symplectic and orthogonal groups, but that has
not been done yet.

Our approach is based on ideas developed for real groups in | ] and on
results from | | for p-adic groups. We conjecture that this geometric approach
produces a map that coincides with (6) from Arthur, after specializing to the case of
quasi-split symplectic and special orthogonal p-adic groups. The generalisation of (6)
that we propose leads quickly to what should be a generalisation of Arthur packets.

We now sketch our generalisation of (6). Let F' be a p-adic field and let G be any
quasi-split connected reductive algebraic group over F. Every Langlands parameter
¢ for G determines an “infinitesimal parameter” A, : Wr — G by Ay (w) := ¢(w, dy,)
where d,, = diag(|w|1/2, |w|_1/2). The map ¢ — A, is not injective, but the preimage
of any infinitesimal parameter falls into finitely many equivalence classes of Langlands
parameters under G-conjugation. Set Ay =N, Let Iluren, (G/F) be the set of
[, 0] € Hpure(G/F) such that the Langlands parameter ¢, whose associated L-packet
contains 7, satisfies Ay = Ay. The generalisation of (6) that we define takes the form
of a map

(8) Hpuren, (G/F) — Rep(Ay).

The genesis of the map (8) is the interesting part, as it represents a geometrisation
and categorification of (6).

To order to define (8), in Section 3 we review the definition of a variety V), following
[ ], that parametrises the set Py (LG) of Langlands parameters ¢ for G such that
A = A. The variety V) is equipped with an action of Zz()). Then, again following
[ ], we consider the category Per Zs(N) (V) of equivariant perverse sheaves on V).
Together with (7), the version of the Langlands correspondence that applies to G and
its pure rational forms determines a bijection between Il e A (G/F') and isomorphism
classes of simple objects in Perzé()\)(VA):

Mpure A (G/F) = Perg_ () (Va) 7™,
[, 8] — P(m,0).

Inspired by an analogous result in | | for real groups, in Proposition 5.6.1 we
show that every Arthur parameter i) determines a particular element in the conormal
bundle to V),

(9)

(@y, &) € T, (Va,),
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where Cy, C V), is the Z5(\y)-orbit of z,, € Vy, such that the Zz(\y)-orbit of
(2y,&y) is the unique open orbit T¢, (Vi )sreg in T¢:, (Va, ). Then we use (zy,&y)
to show that Ay is the equivariant fundamental group of 7¢, (Va)reg- Thus, (24, &y)
determines an equivalence of categories

LOCZé(,\) (Téw (V/\)sreg) — Rep(Aw)a

where Rep(Ay) denotes the category of representations of Ay,. This means that
the spectral transfer factors ( - ,W)wﬁsc for ¢ appearing in (3) can be interpreted as
equivariant local systems on Té'w (Vay )sreg

In Section 6.3 we use the vanishing cycles functor to define an exact functor

(10) NEVw : Perzé()\) (V)\) — Rep(Aw)

which plays the role of the microlocalisation functor as it appears in | | for
real groups. Vanishing cycles of perverse sheaves on V) are fundamental tools for
understanding the singularities on the boundaries of strata in V) and their appearance
here is quite natural. Passing to isomorphism classes of objects, this functor defines
a map

simple

Perzo 0 (Va)jiso . — Rep(Ay) iso-
When composed with (9), this defines (8).

1.4. Conjecture. — We now explain the conjectured relation between (5) and (8).
With reference to (10), consider the support of (8), which we call the ABV-packet for

P:

(11) ARY 4 (G/F) :={[r, 0] € Myurex(G/F) | NEvy P(m,8) # 0}.
We can break the ABV-packet Hﬁlﬁzw(G /F) apart according to pure rational forms
of G:
Hgﬁ\e/,w(G/F) = |_| HQBV(G(S(F); 5),
[BleHY(F,G)
where

PV (G5(F),8) = {(m,0) € I(Gs(F),d) | NEvy P(m,d) # 0}.
We may now state a simplified version of the main conjecture of this article; see
Conjecture 1 in Section 7.3 for a stronger form. Let ¢ be an Arthur parameter for a
quasi-split symplectic or special orthogonal p-adic group G. Then
Hpure,w(G/F) = H;ﬁZw(G/F)-
Moreover, for all pure rational forms § of G and for all [, 0] € Hpurer, (G/F),
(8, [m,6]),, = traceq, NEvy P(,0),

for all s € Z5(v), where as is the image of s under Zg () € Ay. In particular, taking
the case when 0 is trivial, if m € I, (G(F)) then

(s,m),, = traceq, NEvy, P (),
with s € Zz(v) and as € Ay as above.
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The pithy version of this conjecture is Arthur packets are ABV-packets for p-
adic groups, but that statement obscures the fact that Arthur packets are defined
separately for each inner rational form (more precisely the corresponding inner twist),
while ABV-packets treat all pure rational forms in one go. More seriously, this pithy
version of the conjecture obscures the fact that the conjecture proposes a completely
geometric approach to calculating the characters ( - ,7T>w7sc appearing in Arthur’s
endoscopic classification of representations.

To simplify the discussion, in this overview we have only described ABV-packets
for Arthur parameters; however, as we see in this article, it is possible to attach
an ABV-packet to each Langlands parameter. Consequently, there are more ABV-
packets than Arthur packets. So, while the conjecture above asserts that every Arthur
packet in an ABV-packet, it is certainly not true that every ABV-packet is an Arthur
packet. If validated, the conjecture gives credence to the idea that ABV-packets may
be thought of as generalised Arthur packets.

Although we do not prove the conjecture above in this article, we do have in mind
a strategy for a proof using twisted spectral endoscopic transfer and its geometric
counterpart for perverse sheaves on Vogan varieties; we use this strategy to prove
Conjectures 1 and 2 for unipotent representations of odd orthogonal groups in forth-
coming work [ ].

1.5. Examples. — Our objective in Part II of this article is to show how to use van-
ishing cycles of perverse sheaves to calculate the local transfer coefficients (sy s, )y
that appear in Arthur’s endoscopic classification | , Theorem 1.5.1]. We do this
by independently calculating both sides of Conjecture 1 in examples:

(12) (g5, m)y = (—1)ImCe=dimCr trace, NEv, P(7),

for every s € Z5(v). By making these calculations, we wish to demonstrate that the
functor NEv provides a practical tool for calculating Arthur packets, the associated
stable distributions and their transfer under endoscopy. We also verify the Kazhdan-
Lusztig conjecture for p-adic groups as it applies to our examples.

Specifically, in Part II we consider certain admissible representations of the p-
adic groups: SL(2) and its inner form; PGL(4); split SO(3), SO(5), SO(7) and their
pure rational forms. There are a variety of reasons why we have chosen to present
this specific set of examples. The groups SO(3), SO(5), and SO(7) are the first few
groups in the family SO(2n + 1), and this is the family we study in | | for
unipotent representations. The group SO(7) is the first in this family to exhibit some
of the more general phenomena that meaningfully illuminate the conjectures from
Part I. Moreover, since SO(3) x SO(3) is an elliptic endoscopic group for SO(5) and
SO(5) x SO(3) is an elliptic endoscopic group for SO(7), we are also able to use these
examples to show how to use geometric tools to compute Langlands-Shelstad transfer
of invariant distributions for endoscopic groups. Not only was this ultimately a useful
feature for doing the geometric calculations, but presenting these examples side by
side allows one to see certain relationships that hold more generally for endoscopic
groups. We also include two examples — for SL(2) and PGL(4) — that show how the
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problem of calculating Arthur packets and Arthur’s transfer coefficients is reduced to
unipotent representations.

1.6. Related work. — Using techniques different from those employed in this arti-
cle (namely, microlocalisation of regular holonomic D-modules, rather than vanishing
cycles of perverse sheaves) one of the authors of this article has calculated many
other examples of ABV-packets in his PhD thesis | |. Specifically, if 7 is a
unipotent representation of PGL(n), SL(n), Sp(2n) or SO(2n + 1), of any of its pure
rational forms, and if the image of Frobenius of the infinitesimal parameter of 7 is
regular semisimple in the dual group, then all ABV-packets containing 7 have been
calculated by finding the support of the microlocalisation of the relevant D-modules.
This work overlaps with Sections 10 and 12, here. However, we found it difficult to
calculate the finer properties of the microlocalisation of these D-modules required to
determine the local transfer coefficients appearing in Arthur’s work. This is one of
the reasons we use vanishing cycles of perverse sheaves in this article.

1.7. Disclaimer. — To acknowledge the debt we owe to | ] and | |, we
refer to the packets appearing in this article as ABV-packets for p-adic groups, though
it must be pointed out that they appear neither in | | nor in | |. For
real groups, the definition of "ABV-packets" uses an exact functor Q% : Pery (V) —
Locy (T (V )reg) introduced in | , Theorem 24.8] whose properties are estab-
lished using stratified Morse theory, which we have not used in this article; and for
p-adic groups, | ] uses the microlocal Euler characteristic x3i¢ : Pery (V) — Z
derived from the microlocalisation functor, which we also have not used in this article.
We have elected to use vanishing cycles, or more precisely the functor Ev, in place of
stratified Morse theory or microlocalisation because we found Ev more amenable to
the many calculations we performed in Part IT and because we found some theoretical
advantages to using vanishing cycles.
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PART I. ARTHUR PACKETS AND MICROLOCAL VANISHING
CYCLES

Here are the main features of Part I, by section.

In Section 2 we review the main local result from | |, adapted to pure rational
forms of quasi-split connected reductive groups over p-adic fields.

In Section 3 we describe Vogan’s parameter variety for p-adic groups and review
Vogan’s perspective on the local Langlands conjecture for pure rational forms of quasi-
split connected reductive groups over p-adic fields, based on | |.

Theorem 4.1.1 shows that the Vogan variety for an arbitrary infinitesimal parame-
ter coincides with the Vogan variety for an unramified infinitesimal parameter. This
theorem also shows that the category of equivariant perverse sheaves is related to
the category of equivariant perverse sheaves on a graded Lie algebra, thereby putting
tools from | | at our disposal.

Proposition 5.1.1 shows that Arthur parameters determine conormal vectors to
Vogan’s parameter space and further that representations of the component group
attached to the Arthur parameter correspond exactly to equivariant local systems on
the orbit of that conormal vector, as in the case of real groups | |-

In Section 6 we use vanishing cycles to define two exact functors — denoted by
Evs and NEws — from equivariant perverse sheaves on the Vogan variety to equivariant
local systems on the strongly regular part of the conormal bundle associated to its
stratification. Sections 6.3 through 6.9 establish the main properties of Evs, including
Theorem 6.7.5 which determines the rank of these local systems. Theorem 6.10.1
shows that NEvs replaces microlocalisation by showing that it enjoys properties parallel
to QM from | , Theorem 24.8],

In Section 7 we express Vogan’s conjectures from | | in terms of vanishing
cycles; see Conjectures 1 and 2. One of the most interesting features of the vanishing
cycles approach to Arthur packets is that it suggests two different parametrizations
of Arthur packets, as determined by the two functor Evs and NEws. The conjectures
predict that the one determined by the functor NEws coincides with Arthur’s work.

2. Arthur packets and pure rational forms
The goal of this section is primarily to set some notation and recall the characters

of Ay and Ay s appearing in Arthur’s work as they pertain to pure rational forms.

2.1. Local Langlands group. — Let F' be a p-adic field; let ¢ = gr be the
cardinality of the residue field for F'. Let F' be an algebraic closure of I and set
I'p:=Gal(F/F). There is an exact sequence

1 IF FF Gal(Fq/Fq) E— 1,

where Ip is the inertia subgroup of I'r and IF‘q is an algebraic closure of F,. Since
Gal(F,/F,) = Z, it contains a dense subgroup Wy, = Z, in which 1 corresponds to
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the automorphism x — % in Fq. We fix a lift Fr in I'p of z +— 297 in Wy,. The
Weil group Wr of F is the preimage of Wy, in I'p,

K_\
1 IF WF Wkp 17

topologized so that the compact subgroup I is open in Wg. Let
| |F : WF — R*

be the norm homomorphism, trivial on Ir and sending Fr to gr. Then || is
continuous with respect to this topology for Wg.
The local Langlands group of F' is the trivial extension of Wr by SL(2,C):

e~

2.2. L-groups. — Let GG be a connected reductive linear algebraic group over F'.
Let

\IIO(G) = (X*a Aa X*a AV)
be the based root datum of G. The dual based root datum is

UY(GQ) = (X, AV, X" A).
A dual group of G is a complex connected reductive algebraic group G together with
a bijection

g : Vg (G) = Wo(G).

The Galois group I'r acts on ¥o(G) and ¥ (G); see | , Section 1.3]. This action
induces a homomorphism

Let G be a dual group of G. Then we can compose 75 with 1 and get a homomorphism

~

pa T — Aut(¥o(G)).

An L-group data for G is a triple ((A?,p, Splg), where G is a dual group of G,
p: I'r — Aut(G) is a continuous homomorphism and Splg := (B,T,{X.}) is a
splitting of G such that p preserves Splg and induces pg on Wo(G) (see | )
Sections 1, 2] for details.)

The L-group of G determined by the L-group data (é, p,Splg) is
LG = é X WF,
where the action of Wg on G factors through p. Since p induces Ha on \Ilo(@) and
since Aut(¥o(@)) is finite, the action of Wr on G factors through a finite quotient of
Wp. We remark that the L-group, “G, only depends on G and p and is unique up to
conjugation by elements in G fixed by I'p.

Henceforth we fix an L-group, “G, of G and make G a topological group by giving
G the complex topology and Wr the profinite topology.
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2.3. Langlands parameters. — If ¢ : Lp — G is a group homomorphism that
commutes with the projections Lr — Wr and “G — Wpg, then we may define
¢° : Lp — G by d(w,z) = ¢°(w,z) x w. Then we have the following map of
split short exact sequences:

1 —— SL(2 1

l/l H

1 1.

A Langlands parameter for G is a homomorphism ¢ : Lr — “G such that

(P.i) ¢ is continuous;

(P.ii) ¢ commutes with the projections Lr — Wy and LG — Wp:
(P.iii) ¢°[sr(2,c) : SL(2,C) — G is induced from a morphism of algebraic groups;
(P.iv) the image of ¢|w, consists of semisimple elements in G.

See | , Section 8.2(i)] and Section 4.2 for the meaning of semisimple elements
in L-groups.
Let P(LG) be the set of Langlands parameters for G. For ¢ € P(*G), we refer to

Ay =m0(Zg(0)) = Za(6)/Z5(9)°
as the component group for ¢.
Langlands parameters are equivalent if they are conjugate under G. The set
of equivalence classes of Langlands parameters of G is denoted by ®(G/F); it is
independent of the choice of L-group “G made above.

2.4. Arthur parameters. — If ¢ : Ly x SL(2,C) — G is a group homomor-
phism that commutes with the projections L xSL(2,C) — Lr — Wr and G — W,
then we define ¢° : Lp x SL(2,C) — G by ¢¥(w,z,y) = ¢°(w,z,y) X w, where
(w,x) € L and y € SL(2,C).

An Arthur parameter for G is a homomorphism 1 : Ly x SL(2,C) — LG such
that

(Q.i) ¥|r, is a Langlands parameter for G;
(Q.ii) ¥°lsp2,c) : SL(2,C) — G is induced from a morphism of algebraic groups;
(Q.iii) the image ¥°|w, : Wr — G is bounded (its closure is compact).

Following | , Definition 4.2], the set of Arthur parameters for G will be denoted
v Q('G). The set of G-conjugacy classes of Arthur parameters will be denoted by
U(G/F).

For ¢ € Q(*G), we refer to
Ay =m0(Zg(W)) = Zg(¥)/Z5()°

as the component group for 1.
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2.5. Langlands parameters of Arthur type. — Define d : Wr — SL(2,C) by

13 dy = - .
(13) ( o ey

Note that w — (w,d,,) is a section of Lp — Wg. For ¢ : Ly x SL(2,C) — LG, define
¢¢ :Lp — e by
Py (w,z) = h(w, z, dw ).
This defines a map
Q(*G) — P(*G)
Vo= Py
We will refer to ¢ as the Langlands parameter for ¢p. The function @ — ¢y is
neither injective nor surjective. Langlands parameters in the image of the map
Q(*G) — P(*G) are called Langlands parameters of Arthur type. The function
U(G/F) — ®(G/F),
induced from Q(*G) — P(*G), is injective.

(14)

2.6. Pure rational forms. — We suppose now that the connected reductive alge-
braic group G over F is quasi-split.

An inner rational form o of G is a l-cocycle of I'r in G,,4, where G, is the
adjoint group of G. It determines an inner twist (G,,¢%) of G as follows. Let
G (F) := G*(F) and ¢, be the identity map. The action of v € T'z on G, (F)
is given through the twisted Galois action on G(F), i.e., v : g — Ad(c(7))(y - 9)
for g € G(F), where v - g refers to the action of I'r on G(F) defining G over F.
We will represent the inner twist by G, and identify G, (F) as a subgroup of G(F)
through ¢,. Two inner rational forms o, 02 of G are equivalent if they give the same
cohomology class in H'(F,G,,), or equivalently G, (F) and G, (F) are conjugate
under G(F). There is a canonical isomorphism

HY(F,G,y) = Hom(Z(G,,)'r,Ch)
where CAY'SC is the simply connected cover of the derived group of G. The character of
Z(Gy)'F determined by [0] € HY(F, G, ) will be denoted (,.

A pure rational form § of G is a 1-cocycle of I'r in G. It determines an inner
rational form o := §(o) by the canonical map

(15) ZNF,G) — Z'(F,G,q).
We will denote the inner twist G, by G5. Two pure rational forms of G are equivalent

if they give the same cohomology class in H'(F,G,,). There is also a canonical
isomorphism

sC

H'(F,G) = Hom(mo(Z(G)'7),CY).
The character of mo(Z(G)TF) corresponding to the equivalence class of § will be
denoted by xs5. By | , Proposition 6.4], the homomorphism G — G4 induces a
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commuting diagram:

HY(F,G) HY(F,G,y)
Hom(7o(Z(G)'7),C') —— Hom(Z(G,.)'",CL).
So (, is the image of xs and we will also denote it by (s.
2.7. Langlands packets for pure rational forms. — An isomorphism class of

representations of a pure rational form of G is a pair (7, ), where 7 is an isomorphism
class of admissible representations of G5(F). Then G(F')-conjugation defines an
equivalence relation on such pairs, which is compatible with the equivalence relation
on pure rational forms Z!(F,G). We denote the equivalence class of (, &) by [, d],
and following | |, write Hpue(G/F) for the set of these equivalence classes.
The local Langlands correspondence for pure rational forms of G can be stated as
in the following conjecture. There is a natural bijection between Ilpy..(G/F) and G-
conjugacy classes of pairs (¢, p) with ¢ € P(*G) and p € Irrep(A,). We will call the
pair (¢, p) in this conjecture a complete Langlands parameter. For ¢ € P(*G), we
define the corresponding pure Langlands packet

Hpure,¢(G/F)

to be consisting of [m, ] in Il ue(G/F), such that they are associated with G-
conjugacy classes of (¢, p) for any p € Irrep(A4,) under the local Langlands cor-
respondence for pure rational forms. This is also known as the Langlands-Vogan
packet.

2.8. Arthur packets for quasi-split symplectic or special orthogonal groups.
— From now on until the end of Section 2, we will assume G is a quasi-split symplectic
or special orthogonal group over F. In | , Theorem 1.5.1], Arthur assigns to
Y € Q(YG) a multiset I, (G(F)) over II(G(F)), which is usually referred to as the
Arthur packet of G associated with ¢. It is a deep result of Moeglin | | that
II,(G(F)) is actually a subset of II(G(F)). Arthur | , Theorem 2.2.1] also
associates Il (G(F')) with a canonical map

I, (G(F)) = S,

16

(16) T (LT
where

(17) Sy =2a(0)/Z5W)° Z(G)'r,

and 3; denotes the set of irreducible characters of Sy,. We use (16) to define a stable
virtual representation of G(F) by

(18) ngi= > (spm), T
€I, (G(F))
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where sy, € Sy is the image of ¢(1,1,—1) under the mapping Z5(¢)) — S, and
where (1,1,—1) € Lr with —1 denoting the non-trivial central element in SL(2,C).
Every semisimple s € Zz(1)) determines an element x of Sy and thus a new virtual
representation

(19) 77575 = Z (sypx,m),, .
welly (G(F))

Turning to the stable distributions on G(F), we set

(20) 0= > (sy,m), O,
melly (G (F)

and

(21) 95,5 = Z (sypz,m), Or.

m€lly (G (F))

The pair (¢, s) also determines an endoscopic datum (G’,LG/,S,f) for G and an
Arthur parameter v’ for G’ so that ¢ = £ 04)’. In fact, G’ is a product group, whose
factors consist of symplectic, special orthogonal and general linear groups. So one can
extend the above discussions about G to G’ without difficulty, as done in | |-

Arthur’s main local result shows that, for locally constant compactly supported
function f on G(F), we have

(22) 0F..(f) = 05 (1),
where f’ is the Langlands-Shelstad transfer of f from G(F) to G'(F). It is in this
sense that the maps (16) are compatible with spectral endoscopic transfer to G(F').

On the other hand, there is an involution § of G := GL(N) over F such that
(G,1G,s,£N) is a twisted endoscopic datum for GT(F):= GL(N, F) x (f) in the
sense of | , Section 2.1], for suitable semisimple s € 69, the component of 9 in
Gt =G x <§>, where 6 is the dual involution. Arthur’s main local result also shows
that, for locally constant compactly supported function f¢ on G?(F) := G(F) x 0,
(23) 0% (f) = O (1),
where f is the Langlands-Kottwitz-Shelstad transfer of f¢ from GY(F) to G*(F) and
@g;,s is the twisted character of a particular extension of the Speh representation of
GL(N, F) associated with Arthur parameter ¢y := {x o4 to the disconnected group
GT(F). It is in this sense that the maps (16) are compatible with twisted spectral
endoscopic transfer from G(F).

Arthur shows that the map (16) is uniquely determined by: the stability of @g;
property (22) for all endoscopic data G’; and property (23) for twisted endoscopy of
GL(N). In particular, the endoscopic character identities that are used to pin down
(-,m), involve values at all elements of Sy.

When 9 is trivial on the second SL(2, C), it becomes a tempered Langlands param-
eter. In this case, Arthur shows (16) is a bijection. By the Langlands classification
of II(G(F')), which is in terms of tempered representations, this bijection extends to
all Langlands parameters of G. Moreover, it follows from Arthur’s results that there



16 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

is a bijection between II(G(F)) and G-conjugacy classes of pairs (¢, ) for ¢ € P(LQ)
and € € Sy.

2.9. Arthur packets for inner rational forms. — A conjectural description of
Arthur packets for inner twists of G is presented in | , Chapter 9], though
the story is far from complete. Let ¢ be an inner rational forms of G. An Arthur
parameter ¥ of G, is said to be relevant if any Levi subgroup of LG, that 1 factors
through is the L-group of a Levi subgroup of G,. We denote the subset of relevant
Arthur parameter by Que(G,). In | , Conjecture 9.4.2], Arthur assigns to
¥ € Qra(G,) a multiset II,(G,(F)) over II(G,(F)), which is called the Arthur
packet of G, associated with ¢. This time Moeglin’s results [ | only show
I, (G, (F)) is a subset of II(G,(F)) in case when ¢ comes from a pure rational form;
see also | , Conjecture 9.4.2, Remark 2|. For the purpose of comparison with
the geometric construction of Arthur packets, in this article we define IL; (G, (F'))
simply as the image of this multiset in II(G, (F)).

To extend (16) to this case, one must replace the group Sy with a larger, finite,
generally non-abelian group Sy sc, which is a central extension

(24) 1 Z\w,sc Sw,sc — 8¢ — 1
of Sy by the finite abelian group
Z\’WSC = Z(é:c)/z(é:c) N Sg,sc‘

To explain the group in this exact sequence, we introduce the following notations. Set

Sy=Zz.(¥) and Sy:=Zs (¥)/Z(G)'".
So Sy is the image of Sy in (A?Zd, whose preimage in G* is S¢Z(CA¥). Let Sy s be the
preimage of S_’w under the projection G, — G7,, which is the same as the preimage
of SyZ(G) in GY,. Let SEJ . be the preimage of Sy in GZ, and Zf be the preimage
of Z(G)'r in GZ.. Let us write Z(G*) (resp. Z(G2.)) for Z (vesp. Zs.). It is clear
that ZLr < Zf . Then we have the following commutative diagram, which is exact
on each row:

1 ZPF S’(/) S’l/) 1
1 78 Sfb o — Sy —— 1
1 ,Z\sc Sw,sc E— 5’1/, — 1.

Note Sy sc = Sﬁ} chscv and hence Sy . = (Sfp )0 After passing to the component

groups, we have the following commutative diagram, which is again exact on each
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Tow:
1 zZr Ay Sy 1
1 Z&,SC Sﬁ;,sc — Sy — 1
1 /Z\w’sc Sz[;,sc E— Sw — 1.

Here Ay, Sy, 82} scr Sy sc are the corresponding component groups and
728 70r /7T 0
Z,f =7 1ZTE NS,
Z’lﬁ/j7sc = ch/ch N Sg,sc
Zyse = Zse| Zse N S, 4

Let {, be the character of ZFCF corresponding to the equivalence class of 0. We will
also fix an extension of {, to Zs. and denote that by (,. By | , Lemma 2.1], an
Arthur parameter v of G, is relevant if and only if the restriction of {, to ZLF N sz}
is trivial.

,SC

Lemma 2.9.1. — ZECF N Sg,sc =Zy N Sq(z);,sc'

Proof. — It suffices to show Zy N8y, € ZL¥. Let Ly x SL(2,C) act on GZ, by
conjugation of the preimage of (Lr x SL(2,C)) in “G,.. Then we can define the
group cohomology HSJ (Lr x SL(2,C), G%,), which is the group of fixed points in G,
under the action of Lr x SL(2,C). It is clear that HS,(LF X SL(Q,C),é;‘C) - Siﬁsc.
In fact, it is also not hard to show that
(HY(Lr x SL(2,C), GL))’ = (57, ..)"-

As a result, we have

ZseNSY oo € Zse N(HY(Lr x SL(2,C), G2.))° C Zy NHY(Lp x SL(2,C), G%,) = ZLr.
This finishes the proof. o

So, if 1 is relevant, it follows from Lemma 2.9.1 that 5,, descends to a character
of Zy . Let Rep(Sysc;(r) be the set of isomorphism classes of (,-equivariant
representations of Sy . In | , Conjecture 9.4.2], Arthur conjectures a map

(25) I, (G, (F)) — Rep(Sy.scs Co)

and writes (-, ) bose for the character of the associated representation of Sy .
Because of our definition of II, (G, (F)) here, one can not replace Rep(Sy sc; Cs) by
the subset II(Sy s, (o) of {,-equivariant irreducible characters of Sy sc as in Arthur’s

original formulation. The map (25) is far from being canonical for it depends on (16)
and various other choices implicitly.
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When 9 is a tempered Langlands parameter, Arthur states all these results as a
theorem | , Theorem 9.4.1]. In particular, he claims (25) gives a bijection

(26) 16 (G (F)) = T(Sp,sc Co)-

By the Langlands classification of II(G, (F')), which is in terms of tempered represen-
tations, this bijection extends to all relevant Langlands parameters of G . Moreover,
it follows from | , Theorem 9.4.1] that there is a bijection between II(G, (F))
and é—conjugacy classes of pairs (¢, €) for ¢ € Poey(*G.) and € € II(Sg sc, ég)

2.10. Pure Arthur packets. — Let § be a pure rational form of G and v be an
Arthur parameter of G5. Let xs be the character of 70(Z(G)'r) corresponding to
the equivalence class of . We will also denote its pull-back to Z (é)FF by xs. Let
Gs = (o(5) be the character of Z(éSC)FF, which is also the pull-back of x5 along

Z(Gy)"'r = mo(Z(G)'T).

sC

Lemma 2.10.1. — ;s is trivial on ZFFOSS) if and only if (s is trivial on ZECFOSS},SC.

Proof. — One just needs to notice that Sy, is the product of (Z'F)0 with the image

of S&sc in Sy. O

As a direct consequence, we have the following corollary.

Corollary 2.10.2. — An Arthur parameter i of G is relevant if and only if x5 is
trivial on ZTF N SS).

Let us assume v is relevant. Then ys descends to a character of ZiF . Let
Rep(Ay, xs5) be the set equivalence classes of xs-equivariant representations of A.
Let g}; be a character of ZSC extending (s, so that its restriction to Egc is the pull-back
of x5. Since v is relevant, (s descends to a character of Z\w,so Let Rep(Sy sc, 55) be
the set of equivalence classes of fg—equivariant representations of Sy sc-

Proposition 2.10.3. — Let x a character of WO(Z((A?)FF). Let ¢ be a character of

~ o~ ~

Z(G,,) Suppose the pull-back of x along Z%, — Z(G)'F — 70(Z(G)'F) coincides
with the restriction of ¢ to Z%, < Z(G,,). Then there is a canonical bijection

(27) Rep(Awa X) — Rep(sw,sca é:)

Proof. — Since

Ker(S?

wse = Ay) = Ker(Zﬁ

728
wﬁsc — quF))

there is a canonical bijection
Rep(Ay, x) = Rep(S}, ., ¢*),
where ¢* is the pull-back of y; to 23} - Oince

Spse = Zysc St

7 g _ ot
W .s5c and Zpsc NS s = Z

,se?
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there is also a canonical bijection

Rep(Sy sc,¢) — Rep(SF, .., ¢F).

Combining the two isomorphisms above, we obtain the canonical bijection promised
above. O

Let us take 6 among various other choices to be made in defining (25). To emphasize
this choice, we will define

Iy (G5(F),8) :== {(m, 0) [ m € Ty (G5(F))}
Then by composing (25) with (27) modulo isomorphisms, we can have a canonical
map

HW(GJ(F)a 6) — Rep(Aw, X(S)
(7T56) = < : 5(71-’6))1[;
which only depends on § and (16). In particular, it becomes (16) when § = 1. For

equivalent pure rational forms §; and d2 of G, it follows from the construction of (25)
that the following diagram commutes.

Iy (Gy, (F),81) —— Ty(Gy, (F),02)

| |

Rep(AdMXﬁl)/iso E— Rep(AdHXﬁz)/iso'

(28)

As a result, (28) is also well-defined for the equivalence class [, d].

Let v be an Arthur parameter of G. For pure rational form ¢ such that v is
not relevant, we will define IL,,(G5(F'),d) to be empty. Then we can define the pure
Arthur packet associated with 1 to be

(29) Mowe s (G/F) = || Tu(Gs(F),0)
[]leH!(F,G)

as a subset of II,ue(G/F). It is equipped with a canonical map
Mpure,(G/F) — Rep(Ay)

[Wv 5] = <'7 [Wv 5]>¢
When 9 is a tempered Langlands parameter, this induces a bijection

Mpure,o(G/F) — I1(Ag)
[m, 6] = (-, [, 6])o.

This bijection also extends to all Langlands parameters ¢ of GG, according to the dis-
cussion in the end of Section 2.9. Combined with the local Langlands correspondence
for each pure rational form of G, we can conclude the local Langlands correspondence
for pure rational forms of G appearing in Section 2.7.

(30)

2.11. Virtual representations of pure rational forms. — Let KII,y.(G/F) be
the free abelian group generated by the set IIpure(G/F). Define ny € Kllpue(G/F)
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by
(31) My "= Z e(8) {ay, [, 5]>w [, 4],
[an]enpure,w(G/F)
where e(d) = e(Gy) is the Kottwitz sign | | of the group Gy, and ay, is the image

of (1,1,—1) in Ay. Using (29) we have
ne= >, el n
[(]eH(F,G)
where, for each pure rational form ¢ of G,
773; = Z (ay, (m, 5)>w [T, 6].
(Wvé)EHW(Ga(F)vé)

For semisimple s € Z5 (1)), we define 1y, s € Kll,ue(G/F) by
(32) Np,s = Z e(9) (ayas, (m,6)),, [r,d],

[“vﬂenpure,w(G/F)

where a; is the image of s in A,. As above, we can break this into summands indexed
by pure rational form by writing

Thy,s = Z 6(5) 773),5
[S]eHL(F,G)
where, for each pure rational form § of G,
s = Yoo (ayas, (m,0),, [m, 0]
(m,0)ElLy (G 4(F),0)

Then 773),1 = 771‘2 and 7,1 = 7. We note that, with reference to (18) and (19),

ny=ny  and o =ng,.
Turning from virtual representations to distributions, we see that each 773) and 773)75
determines a distribution on G4(F') by

09 = Z (ayas, (m,6)),, Ox.
(m,0) €Iy (G5(F),0)

This extends (20) and (21) from G(F) to G4(F') arising from pure rational forms ¢
of G:
1 G 1 G
Oy =06y and Oyp.s =0y ;-

3. Equivariant perverse sheaves on parameter varieties
In this section we drop the quasi-split hypothesis and let G be an arbitrary con-

nected reductive algebraic group over a p-adic field F.

3.1. Infinitesimal parameters. — An infinitesimal parameter for G is a homo-
morphism X : Wr — G such that

(R.i) A is continuous;
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(R.ii) ) is a section of LG’ — Wi;
(R.iii) the image of )\ consists of semisimple elements in *G.

Let R(EG) be the set of infinitesimal parameters for G. The component group for \
is

(33) Ax=m0(Zg(N) = Zg(N)/Zg(N)°.

The set of é—conjugacy classes of infinitesimal parameters is denoted by A(G/F).
For any Langlands parameter ¢ : Ly — LG, define the infinitesimal parameter of
¢ by
)\¢ : WF — LG
w = (w,dy),
where d : Wr — SL(2,C) was defined in Section 2.1. This defines
Pla) — R(*G)
¢ — )\¢.
The function ¢ — Ay is surjective but not, in general, injective. For any fixed
A € R(EG), set

(34)

PA("G):={p € P(*G) | Ay = A}
We write ®5(G/F) for the set of Zz())-conjugacy classes of Langlands parameters
with infinitesimal parameter .
With reference to Section 2.7, for any quasi-split G over F', we set

Hpure,/\(G/F) = U Hpure,d)(G/F)7
pePA(FQ)

with the union taken in IT,,e(G/F). Then, after choosing a representative for each
class in @ (YG), we have

Hpure,A(G/F) = |_| Hpure,qb(G/F)-
[le®A(FG)

Now the local Langlands correspondence for pure rational forms of G (cf. Section 2.7)
provides a bijection

(35) HpurE,A(G/F) A {(¢a P) | ¢ € P/\(LG)vP € Irrep(A¢)}/N,
where the equivalence on pairs (¢, p) is defined by Zz(\)-conjugation.

3.2. Vogan varieties. — Fix A € R(“G). Define

(36)  Hx:=Zz(\):={ge G| (g = DAw)(g x 1)~ = Aw), Yw € W}
and

(37)  Kxn:i=Zz(\Ip)):={g€ G| (g DA(w)(g x 1)™* = ANw), Yw € Ir}.

The centraliser K of A\(Ir) in G consists of fixed points in G under a finite group of
semisimple automorphisms of G, so K is a reductive algebraic group. Since H) can
be viewed as the group of fixed points in K under the semisimple automorphism
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Ad(A(Fr)), then K, is also a reductive algebraic group. Neither Hy nor K is
connected, in general.

Following | , (4.4)(e)], define
(38) Va:=Wa(*G) :={z € Lie K, | Ad(\(Fr))z = qra},
called the Vogan variety for A\. Then H) acts on V) by conjugation.

Lemma 3.2.1. — V), is a conical subvariety in the nilpotent cone of Lie K.

Proof. — Set 5 = Lie K. Decompose £y according to the eigenvalues of Ad(A(Fr)):

(39) =P aw).

veC*
Then, using the Lie bracket in ), we have
(40) [, ]:8x(11) X EA(v2) = Ex(v112).

It follows that all elements in V) are ad-nilpotent in g. So it is enough to show that
V> does not intersect the centre 3 of g. Since the adjoint action of A(Wx) on } factors
through a finite quotient of I'p, the Ad(\(Fr))-eigenvalues on 3 are all roots of unity.
In particular, they can not be ¢r, so V) does not intersect 3. This shows that all
elements in V), are nilpotent in §. It is clear from (38) that V) (*G) is closed under
scalar multiplication by C* in E?“p. O

With reference to decomposition of £, = Lie K in the proof of Lemma 3.2.1,
observe that
tx(gr) =Va  and  £,(1) = Lie H.

Proposition 3.2.2. — For each infinitesimal parameter N € R(*G), the Hj-
equivariant function
P("G) — W ("G,

0 1
¢>—>$¢.—d<p(0 0),

where ¢ := ¢°|gr,2,c) : SL(2,C) — G, is surjective. The fibre of P\(fG) — W\(*G)
over any x € VA('G) is a principal homogeneous space for the unipotent radical of
Z, (x). The induced map between the sets of Hx-orbits

o\ (*G) — W\ (*G)/H,,
[¢] = Cy

s a bijection.

Proof. — Fix © € V) = tx(¢r). By Lemma 3.2.1, x is nilpotent. There exists an
slo-triple (z,y,h) in € such that

(41) xeVy=2t(qr) and z € by =E\(1) and y € {%A(qgl);
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see, for example, | , Lemma 2.1]. Let ¢ : SL(2,C) — K be the homomorphism
defined by

0 1 1 0 0 0
and define ¢ : Wp x SL(2,C) — LG by
P(w, 9) = p(g) (dy") Mw).
Then ¢ € P\(*G) and

d(¢°[sL(2,0)) <8 (1)> =dy (8 (1)) =z.

This shows the map Py (*G) — Vi (£YG) is surjective.
Now, suppose that ¢; is also mapped to x under the map Py(!G) — Vi (*G) and
set 1 := ¢7|sr(2,c)- Then ¢ determines an sly-triple (2,1, 21) in £ such that

z1 € by =£\(1) and y1 € E,\(qgl).

The two sly-triples (x,y, z) and (x,y1, 21) are conjugate by an element of Zy, (); see,
for example, the second part of | , Lemma 2.1]. Thus, ¢ and ¢; are conjugate
under Zg, (z). We can also write ¢1 as

$1(w,9) = p1(9)e1(dy, A (w).
It is then clear that ¢ and ¢; are also conjugate under Zp, (). This shows that
the map Py\(*G) — VA(“G) induces a bijection between Hy-orbits and also that the
fibre above any x € V) is in bijection with Zg, (x)/Zm, (¢) for ¢ — x and that
Zu, (x) = Z, (¢)U where U is the unipotent radical of Zg, (z). O

We remark that Proposition 3.2.2 is analogous to | , Proposition 6.17]
for real groups. However, Proposition 3.2.2 might appear to contradict with
[ |[Corollary 4.6]. The apparent discrepancy is explained by the two different
incarnations of the Weil-Deligne group: we use Lp = Wr x SL(2,C) while | |
uses Wi = Wr X G,44(C) and we use pullback along Wr — Ly given by w — (w,d,,)
to define the infinitesimal parameter of a Langlands parameter while | | uses
restriction of a parameter Wi — LG to Wg to define its infinitesimal parameter.
We find Lp preferable to W}, here because it stresses the analogy to the real groups
case. However, there is a cost. In the optic of | ], Vi is exactly a moduli space
for Langlands parameters ¢ : Wy — LG with ¢|y,, = A, while in this article the map
P\(*G) = VA(*G) from Langlands parameters ¢ : Lr — LG with Ay = A to V) is not
a bijection, as we saw in Proposition 3.2.2.

3.3. Parameter varieties. — Recall from Section 3.1 that elements of A(G/F)

are G-conjugacy class of elements of R(XG). We will use the notation [A] € A(G/F)
for the class of A € R(LG); then [)\] is an infinitesimal character in the language of
[ |. Consider the variety

(42) Xy :=X\(*G) =G x g, \(*Q).
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Then [A] = [V] implies X (YG) = X,/ (YG). Set

P ("G)={¢ € P("G) | Ay = Ad(9)\, 3g € G}
It follows immediately from Proposition 3.2.2 that the function
(43) Py (*G) = X\ (fG),

induced from Py('G) — Vi (*G) is é—equivariant, surjective, and the fibre over any
r € X, (*G) is a principal homogeneous space for the unipotent radical of Z al(x).

Let Homyy, (Wr,LG) be the set of homomorphisms that satisfy conditions (R.i)
and (R.ii). Observe that

R(*G) = {\ € Homy, (Wr,G) | A(Fr) € Gy}
where Gy C TG denotes the set of semisimple elements in “G. Now let
Homyy, (Ir,“G) be the set of continuous homomorphisms that commute with the
natural maps Ir — Wp and XG — Wg. As explained in | , Section 10], the set
Homyy, (Wr, LG) naturally carries the structure of (locally finite-type) variety over C
and its components are indexed by é-conjugacy classes of those ¢g € Homyy,, (Ir,%G)
that lie in the image of Homy . (Wr,2G) — Homw, (Ir, G) given by restriction.
We remark that G-orbits in Homyy,. (Wp, XG) are closed subvarieties.
Now consider the (locally finite-type) variety

X(EGQ) = {(\ =) € Homy, (Wr,LG) x LieG | z € VA (*Q)}.
This (locally finite-type) variety comes equipped with morphisms

X(LG> — HOmWF(WF,LG) — HOmWF(IF,LG>
Azx) — A = Mg

The components of X (“G) are again indexed by the é—conjugacy classes of those
¢o € Homyy, (Ir, G) that lie in the image of Homy, (Wr,G) — Homy, (Ir,G).
The fibre of X (*G) — Homy, (Wr, G) above A € R('G) C X (*G) is precisely the
affine variety X, (*G) defined in (42).

Now, with reference to the definition of Ay from (34) and the definition of =4 in
Proposition 3.2.2, consider the map

Pta) —» X(*G)

¢ = (e, :L'¢),
It follows from Proposition 3.2.2 that the image is {(\,z) € X (*G) | A € R(*G)} and
the fibre of P(*G) — X (LG) above any (), z) in its image is a principal homogeneous
space for the unipotent radical of Zg(z), and moreover that P(“*G) — X (*G) induces
a bijection

(44)

a(*q) — x(*@)/q,
[¢] = Ss.
Though the map (44) is neither injective nor surjective, in general, and though X (*G)

is not of finite type over C, in general, we refer to X (“G) as the parameter variety for

G.



ARTHUR PACKETS FOR p-ADIC GROUPS BY WAY OF VANISHING CYCLES 25

We note that X (5G) is stratified into G-orbit varieties, locally closed in X (XG):;
this stratification is not finite, in general, but it is closure-finite. For each G-orbit
S C X(*@G), there is some A € Homyy,, (Wr,LG) such that S C X,(YG). Then S, the
closure of S in X (XG), is also contained in X, (“G). It is essentially for this reason
that this article is concerned with the affine varieties X, (*G), for [\] € A(G/F),
rather than the full parameter variety X (1G).

3.4. Equivariant perverse sheaves. — The definitive reference for perverse
sheaves is | |, and we will use notation from that paper here, but equivariant
perverse sheaves do not appear in | ], so we now briefly describe that category
and some properties that will be important to us. Our treatment is consistent with
[ , Section 5.

Let m : H x V — V be a group action in the category of algebraic varieties.
So, in particular, H is an algebraic group, but need not be connected. Consider the

morphisms
S

mi,Mmz,m3 l/\
HxHxV ——=HxV —— =23V
0

where mo : H x V — V is projection, s : V' — H x V is defined by s(z) = (1,z) and
mi,ma,m3: H X HxV — H xV are defined by

mi(hi, he,z) = (hiha, x)

ma(h, he,z) = (h1, m(ha, x))

ms(h1, he,z) = (he, ).

These are all smooth morphisms. An object in Pery (V) is a pair (A,«) where
A € Per(V) and

(45) a:m*[dim H|A — mj[dim H]A
is an isomorphism in Per(H x V') such that
(46) s*(a) = id 4[dim H]

and such that the following diagram in Per(H x H x V), which makes implicit use of
[ , 1.3.17]commutes:

m3[dim H](x)

m3[dim H]m*[dim H].A ms[dim H]mf[dim H].A

l’f?LOml:'ﬁLOmQ moomsa =mom3l
(47) mi[dim H]m*[dim H].A mj[dim H]m*[dim H].A
J{m,f [dim H]() mj[dim H](oz)i

m[dim H]mg[dim H]A <222 ZM0%M oy x[dim H]mg[dim H]A.

We remark that PH™ m* = m*[dim H] on Per(V) and PHY"™# m* = m}[dim H]

on Per(H x V) for i = 1,2,3; see | , 4.2.4]. This does not require connected
H.
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Morphisms of H-equivariant perverse sheaves (A, «) — (B, ) are morphisms of
perverse sheaves ¢ : A — B for which the diagram

m*[dim H]A — D dim 1) B
(48) al lﬁ
. mg [dim H]($) .
mg[dim H]A mg[dim H|B

commutes. This defines Pery(V'), the category of H-equivariant perverse sheaves on
V.
The category Perg (V) comes equipped with the forgetful functor

Perg (V) — Per(V)

trivial on morphisms and given on objects by (A, «) — A. This is a special case of
a more general construction called equivariant pullback. Let m : H x V — V and
m’ : H x V' — V' be actions. Let v : H — H be a morphism in the category of
algebraic groups and suppose H' acts on V and H acts on V. A morphism f: V' —V
is equivariant (with respect to ) if

H xV/ -y

ol

HxV 25V

commutes. Then for every i € Z there is a functor PH’, f* : Pery (V) — Perg/ (V')
making

1 px

Pers: (V') «—1— Pery (V)

forgetl lforget

Per(V') +— " per(V)
commute; we call this equivariant pullback. The forgetful functor above is just
PHYid3,, where u: 1 — H.
The category Perg (V') also comes equipped with the forgetful functor

Per g (V) — Pergo (V)

where HY is the identity component of H. The category Pergo (V) is easier to study
than Perp(V), since the functor Pergo(V) — Per(V) is faithful, which is generally
not the case for Perg (V) — Per(V) when H is not connected. The following lemma
shows how Pery (V) is related to Pergo (V).

Lemma 83.4.1. — Letm : HxV — V be a group action in the category of algebraic
varieties. Suppose V is smooth and connected. We have a sequence of functors

im forget: P+—P
B By [dim V] Pery (V) . — Pergo (V)

T x

Rep(mo(H))

such that:
(a) for every E € Rep(mo(H)), (Ey[dimV])p = 1™ F[dim V];
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(b) the functor Rep(mo(H)) — Perg(V) is fully faithful and its essential im-
age is the category of perverse local systems L[dim V] € Pery (V) such that
(L[dim V])o = 1¢™m~£[dim V];

(c) the forgetful functor Perg(V) — Pergyo(V) is exact and admits an adjoint
7« : Pergo (V) — Perg (V), both left and right;

(d) every P € Perg (V) is a summand of m.Py.

Proof. — The identity idy : V' — V is equivariant with respect to the inclusion
u: H° — H of the identity component of H. Consider the functor

PHOid}, : Perg (V) — Pergo (V).
The trivial map 0 : V' — 0 is equivariant with respect to the quotient 7y : H — 7o (H).

HxV —V

| |

mo(H) x 0 — 0

Consider the functor
pHiLmH 0* : Per,TO(H)(O) — PerH(V).
Then _ .
(PHAI0%) (PO id}) = PG 00
and we have a sequence of functors
PerWO(H)(O) —— Pergy (V) % Per o (V)

The tensor category Per. () (0) is equivalent to Rep(mo(H)), the category of repre-
sentations of the finite group mo(H). Property (a) now follows from the canonical
isomorphism of functors above.

Since V is smooth, the functor Rep(mo(H)) — Pery(V) is given explicitly by
E — Ey[dim V]; this functor is full and faithful [ , Corollaire 4.2.6.2] from
which we also find the adjoint functors Perg (V) — Rep(mo(H)) and Property (b).
Connectedness of V' plays a role here.

To see Property (c), set V = Hx oV and consider the closed embedding i : V — 1%
given by i(x) = [1, 2] go. By descent, equivariant pullback

PH? i* : Perg (V) — Pergo (V)
is an equivalence. Now consider the morphism
c: VoV
[h, 2] go — h - .
Then ¢ : V — V is an H-equivariant finite etale cover with group mo(H) = H/HP.

In fact, V2V x H /Hy and c is simply the composition of this isomorphism with
projection V' x H/Hy — V. Since c is proper and semismall, the adjoint to pullback

PHO ¢* : Per(V) — Per(V)
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takes perverse sheaves to perverse sheaves,
PHC ¢, : Per(V) — Per(V)
and coincides with ?H° ¢;; see also | , Corollaire 2.2.6]. To see that the adjoint
extends to a functor of equivariant perverse sheaves, define
PHY, ¢, : Perg (V) — Perg (V)
as follows. On objects, PHY c.(A, @) = (A, a) with A = PH’ ¢, A while the isomor-

phism a : PH"™ H x4 — PHIMH s A in Per(H x V) is defined by the following
diagram of isomorphisms.

pHdlmHm*A a pHdlmHmSA
pHdlmH m*(pHO C*.A) pHdlmH mzk)( pHO C*.A)
lsmooth base change smooth base changel

PHO (id g X )« (&)

PHO(idg x¢), PHI™H (7n)* A PHO (id g xe), PHI™H (7ng)* A

It is straightforward to verify that « satisfies (46) and (47) as they apply here and
also that if A — B is a map in Perg (V) then PH’ ¢;(A — B) satisfies condition (48),
so is a map in Per (V). By this definition of PHY; ¢, : Perg (V) — Perg (V), it follows
immediately that the diagram

~ PHY ¢,
Perr (V) — 25 Pery (V)

forgetl lforget

~ c.=PH ¢,
Per(V) = e Per(V)
commutes. Now, we define the adjoint 7, : Pergo(V) — Pery (V) by the following
diagram

Tk

Pergo (V) Perg (V)
equiv.
PHY 4* PHY c.

Perg (V).

This shows Property (c).
Property (d) follows from the Decomposition Theorem applied to ¢: V = V. O

3.5. Equivariant perverse sheaves on parameter varieties. — Our fundamen-
tal object of study is the category Pers(Xy) of G-equivariant perverse sheaves on
X (£@), for fixed [A\] € A(G/F). Consider the closed embedding

V)\ — X)\
T [1,$]H)\.
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By a simple application of descent, the functor obtained by equivariant pullback along
Vi — X,\,
Perg, (Vi) < Pergs (X)),

is an equivalence. Consequently, it may equally be said that our fundamental object
of study is the category Perp, (Vi) of Hx-equivariant perverse sheaves on V.

Now define
(49) X)\::é XHS V.
Then

W — X,
z = L]
induces an equivalence ~
Per@(XA) — Peng (V,\)

Define -

ey Xa— X

(h, @] o = [h, 2] my -
Arguing as in Section 3.4, it follows that there is a sequence of exact functors

E—Ex, [dim X,] (ex)”

Rep(Ay) Pers(Xa) o~ Per@(f()\)
(SO

lequiv lequiv

Perm, (V) Perro (Vi)

enjoying the properties of Lemma 3.4.1.

3.6. Langlands component groups are equivariant fundamental groups. —
Every simple object in Perp, (V)) takes the form ZC(C, £), where C is an Hy-orbit in
Vi and £ is a simple equivariant local system on C. Thus, simple objects in Pergr, (V)
are parametrized by pairs (C, p) where C'is an Hy-orbit in V) and p is an isomorphism
class of irreducible representations of the equivariant fundamental group A¢ of C. To
calculate that group, we may pick a base point x € C' so

(50) Ac = m(C x)po.

We are left with a canonical bijection:

(51) Pergr, (VAP &5 {(C,~) | Hx-orbit C' C Vi, p € Irrep(Ac)}.

/iso
Lemma 3.6.1. — For any Langlands parameter ¢ : Ly — G,
Ac, = Ay,

where Cy is the Hy,-orbit of xy in Vi, ; see Proposition 5.2.2.

Proof. — Recall from Section 2.3 that the component group for a Langlands pa-
rameter ¢ is given byA, = m0(Zz(9)) = Zz(9)/Za(0)°. Since A\g(Wr) C ¢(Lr),
Ay = mo(Z Hy, (¢)). On the other hand, the equivariant fundamental group of Cy
is m (C¢ax¢)Hx¢ = 7TO(ZHAdb (4)). From the proof of Proposition 3.2.2 we see that
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ZH% (xp) = ZH% (¢)U, where U is a connected unipotent group. It follows that

70(Zn,, (29)) = 70(Za, , (DU) = m0o(Zar, , (),
which concludes the proof. O

The following proposition is one of the fundamental ideas in | |. Because our
set up is slightly different, however, we include a proof here.

Proposition 3.6.2. — Suppose G is quasi-split. The local Langlands correspondence
for pure rational forms determines a bijection between the set of isomorphism classes
of simple objects in Perg, (Vi) and those of Hpure x(G/F) as defined in Section 3.1:

Persr, (VA) i 4 Tyure A (G/F).
Proof. — We have already seen (35) that the local Langlands correspondence for pure
rational forms gives a bijection between Il,ye A (G/F) and

{(¢].€) | [¢] € DA("G), € € Trrep(Ay)}

Proposition 3.2.2 gives a canonical bijection between ®,(*G) and the set of Hy-orbits
in V). When C « [¢] under this bijection, Lemma 3.6.1, gives a bijection between
Irrep(Ac) and Irrep(Ay). O

We introduce some convenient notation for use below. For [m,d] € II\(G/F),
let P(m,d) = IC(Cr5,Lr,5) be a simple perverse sheaf in the isomorphism class
determined by [, 0] using Proposition 3.6.2:

Hpure)\(G/F) — PerHA (VA>Simple

180
[ﬂ', 5] — 7)(7'(', (5) = %C(CF,(;, ﬁw,a)
Conversely, for a simple perverse sheaf P = IC(C, L) in Perg, (V3), let xp be the
character of m(Z(G)TF) obtained by pullback along
(52) m(Z(G)'F) = mo(Zg (x))
from the representation of mo(Zz (7)) determined by the choice of a base point x € C
and the equiviariant local system £ on C. Let 6p € Z'(F,G) be a pure rational form
of G representing the class determined by yx» under the Kottwitz isomorphism. Let
mp be an admissible representation of G _(F) such that [rp,dp] matches P under
Proposition 3.6.2: .
Pers, (VA)7mr™® = Tlhuee A (G/F)

P — [7‘(73,573].

4. Reduction to unramified parameters

Let G be an arbitrary connected reductive algebraic group over a p-adic field F'.

4.1. Unramification. — In this section we show that the study of Pers(X,) may
be reduced to the study of Perg, (X,,) for a split connected reductive group G and

an unramified infinitesimal parameter A\, : Wr — TG\. Moreover, we show how
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the tools developed in | | may be brought to bear on Perg (X),,). The group
G that appears in Theorem 4.1.1 is sometimes an endoscopic group for G , but not
in general; nonetheless, the principle of functoriality applies here through a map of
L-groups 7y : 'Gy — LG.

Theorem 4.1.1. — Let A : Wr — LG be an infinitesimal parameter.

(a) There is a connected reductive group Gy, split over F, and an infinitesimal
parameter Apy : Wi — LGy for Gy, trivial on Ir, and an inclusion of L-groups
z PGy — G such that the following diagram commutes

L@Q? 444544% L(;

T

A
Wr — LGy,

where Wg — W is trivial on Ir and Fr — Fr (chosen in Section 2.1).
(b) By equivariant pullback, the inclusion of L-groups ry : PGy — LG defines an
equivalence ~
Peré(XA) — PeréA(X)\m)
where X is defined in Section 3.5, (49).
(c) There is a sequence of exact functors
E—Ex, [dim X (ex)”
oE J Pers(X») 2 Perg, (Xx,)

(ex)«

Rep(Ax)

engjoying the properties of Lemma 3.4.1, where Ay is defined by (33).
(d) There is a connected complex reductive algebraic group My, a co-character
t: Gy, — M)y and an integer n such that

Perg (X1,,) = Perarg (myn),
where my p, is the weight-n space of Ad() acting on my = Lie M.

The proof of Theorem 4.1.1 will be given in Section 4.5.

4.2. Elliptic and hyperbolic semisimple elements in L-groups. — Recall
that a semisimple element = of a complex reductive group is H is called hyperbolic
(resp. elliptic) if for every torus D C H containing x and every rational character
X : D = G, (C) of D, x(z) is a positive real number (resp. x(z) has complex norm
1). An arbitrary semisimple element can be uniquely decomposed as a commuting
product of hyperbolic and elliptic semisimple elements. An element commutes with
x if and only if it commutes with its hyperbolic and elliptic parts separately.

Recall that an element g € LG is semisimple if Int(g) is a semlslmple automorphism
of G. Then g=1f >4 w E LG is semisimple if and only if f'e G is semisimple where
(f xw)N = f/ x w" and w" acts trivially on G.

The hyperbolic and elliptic parts of a semisimple g = f x Fr € G are defined as
follows. Let N be as above, so ( fx Fr) = ' x Fr¥ and Fr" acts trivially on G.
Then f’ € G is semisimple. Let s’ € G be the hyperbolic part of f and let ¢’ € G be
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the elliptic part of f/. Let s be the unique hyperbolic element of G such that sV = .
It is clear that s is independent of N. Set ¢t = s~! f. We call s x 1 the hyperbolic part
of f x Fr and t x Fr the elliptic part of f xw. Then Ad(s) € Aut(g) is the hyperbolic
part of the semisimple automorphism Ad(f x Fr) € Aut(g) and Ad(¢ x Fr) € Aut(g)
is the elliptic part of the semisimple automorphism Ad(f x Fr) € Aut(g). Moreover,
Frg —t=1st, so

(s x 1)(txFr) = (t xFr)(s x1).

Lemma 4.2.1. — Write A(Fr) = fx x Fr; let sy x 1 be the hyperbolic part of A\(Fr)
and let ty x Fr be the elliptic part of N(Fr). Then sy € HY and K is normalized by
fx < Fr and by t) x Fr.

~

Proof. — let I}, be the kernel of p : I'r — Aut(G) restricted to Ir. Then I}, is an
open subgroup of Ir and I is normalized by FrY in Wg, with N as above. Set
I% = \71(1 x I}) C I}.. By continuity of A, I% is an open subgroup of Ir. Then
A(Fr™) normalises A(I%). Since A(Fr™) also normalises A(Ir), we see A(Fr”) acts
on the finite group A(Ir)/A(I%). In particular, replacing N by a larger integer if
necessary, it follows that A(Fr’¥) acts on A\(Ir)/A(I%) trivially.

Recall the notation A(Fr) = fy x Fr and A(Fr") = ' x Fr™. We now show
'€ Zg(MIF)) = K. For any h xw € A(IF),

AEY) (b w) AFY) 7L = hoxow!
for some w’ € I%. Since A(Fr'¥) = f/ 3 Fr™Y = (1 x FrV)(f' x 1), we get
FrV /(b xw) f/ TN = h xww'.

-1

This implies

Frw(f ™ xw=F"N(h xww)FrY = h x Fr N ww'FreV .
Therefore, f'hw(f'~') = h and w = Fr Y ww'Fr". From the first equality, we can
conclude f/(h 3 w)f'~* = h x w. Hence f’ € Zz(A(IF)) = K.

Since some power of [’ will lie in Z5(A(Ir))® = KY, replacing N by a larger
integer if necessary, we may conclude that f’ actually belongs to Zg(A(Ir))" = K3.
In particular, we can take both s’ and ¢’ in K.

Since A(Fr™Y) = A(Fr) ! A\(Fr™¥)A(Fr), we have

Y = (fa 3 Fr) 7L s FrV)(fy % Fr) = ((fr @ Fr)7 f/(fa x Fr)) = V.
Thus, f/ = A(Fr)~!' f’A(Fr). Since A(Fr) normalises Zg(A(Ir))? = K3, we have

f = AF)TLFA(Fr) = (A(Fr) s/ A(Fr)) (A(Fr) 1 A\(Fr)),
where, as above, s’ is the hyperbolic part of f’ and ' is the elliptic part of f’. Since

the decomposition of a semisimple element of G into hyperbolic and elliptic parts is
unique, we have

s = MFr)"'s'A(Fr)  and ¢ = \(Fr) "W A(Fr).

In particular, it now follows that s’ € Z5(\)? = HY. Since s} = &/, it follows that
sx € Z5(\)° = HY, also.
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The Frobenius element Fr normalises I, so A(Fr) = f) % Fr normalises A(Ir) and
hence normalises K as well. Since sy € Hy = Z5(\)° C Z5(A(Ir)) = K3, it follows

now that sy normalises K; likewise, ¢y X Fr normalises K.

4.3. Construction of the unramified parameter. — Define
(53) In=Z5(AIFr)) N Zg(tx x Fr) = Zg, (tx » Fr).

Lemma 4.2.1 shows that Jy is a complex reductive algebraic group. Recall the

33

O

definition of s, and t) from Lemma 4.2.1. It follows from Section 4.2 that s) € Jg

and ¢, normalises Jg.
We now have the following complex reductive groups attached to A € R(!G):

Hy, CJ\CKy\CG.
Let G be the split connected reductive algebraic group over F' so that
(54) LGy = J) x Wg.
Define
(55) ry: PGy = MG by hx1l—hx1 and 1xFr~— ¢\ xFr.

Then 7y : “G\ — G is a homomorphism of L-groups. Using Lemma 4.2.1, we define

an unramified (i.e., trivial on Ir) homomorphism
Aur : We — "Gy

(56)
Fr — sy x Fr.

Lemma 4.3.1. — Let A : Wr — LG be an infinitesimal parameter. Define the

parameter Ap, : Wr — LGy as above. Then

V,\ ZVA and H)\ ZHS.

nr nr

Consequently,
PerHMT (V,\m) = Peng (V)\)

Proof. — Applying (36) to Ay, : Wr — LG gives

Hy,, = ZJQ(/\nr) =29 (s5) = HY.
Applying (37) to A\n : Wr — LG\ gives

K = Z59 Al rp) = I3
Applying (38) to An : Wr — LG gives
Vawe = Van. ("Gr) = {z € Lie Zg, (Auelre) | Ad(Ane(Fr))z = gr 2}

Since é,\ = Jf\) and A7 = 1, and since Fr acts trivially on Jg in G, we have
(57) e = {z € | Ad(sa)x = qp x}.

Then V) = V), because Ad(fy x Fr)a = gz if and only if Ad(ty x Fr)z = = and

Ad(sy)x = qz.

O
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Lemma 4.3.1 tells us that the category Peng(VA) determined by \ : Wp — LG
can always be apprehended as the category for an unramified infinitesimal parameter
Anr : WE — LG\, Note, however, that it is Perg, (V3), not Peng (V) which is needed
to study Arthur packets of admissible representations of pure rational forms of G(F);
fortunately, Lemma 3.4.1 describes the relation between these two categories.

Remark 4.3.2. — Without defining Gj\r itself, let us set LG;\F :=J\ X Wg and define
A We — LGj\r by the composition of A\, and ‘G, — LG:. Then (54) may also

be used to define ry : LG;\F < LG and extends r). Arguing as in the proof of

Lemma 4.3.1, it follows that
V/\:r =V and HAL = Hj,
S0
PerHA; (Vi) = Perp, (V).

We pursue this perspective elsewhere.

4.4. Construction of the cocharacter. — From Section 4.3, recall the definition
of s) € G and the fact that sy lies in the identity component of the subgroup J) C G.
Decompose the Lie algebra jy of Jy according to Ad(s))-eigenvalues:

= @), a@)={z x| Ad(sa) (@) = va}.

veCx
Following | |, define
iLi= Pirlar).
reZ
Lemma 4.4.1. — There is a connected reductive algebraic subgroup My of JY and

a cocharacter v : G,, — My such that
M{=H,,  and my=j},
where my := Lie M and an integer n so that, for every r € Z,
Wy = ia(qr),
where My :={x € m | Ad(c(t))x =t""x, Vt € G }. In particular,

Vi =jalgr) = my .

Proof. — Decompose the Lie algebra jy of Jy according to Ad(s))-eigenvalues:
=P irw).
veC*

Fix a maximal torus S of Jg such that sy € S and denote the set of roots determined
by this choice by R(S, JY). For a € R(S, JY), denote the root space in jy by u,. Then

(58) )= P

a€R(S,JY)
a(sy)=v
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Let (-,-) be the natural pairing between X*(S) and X.(S). First, let us consider all
a € R(S,JY) such that a(sy) are integral powers of q. For these roots we can choose
X € X.(S) ®z Q so that (o, x) = r if a(sx) = ¢" for some integer r. Let n be an
integer such that ny € X, (S), and we set t = (nx)(Cq'/™) € S, where  is a primitive
n-th root of unity. Now for a € R(S, J?) such that a(sy) = ¢", we have

a(t) = a((nx)(¢g"™)) = a(x(Ca"™)" = (¢a"/™)™ = ¢" = als»).
Next, consider those a € R(S, Jg) such that a(sy) are not integral powers of q. We
have two cases: if (a,x) € Z, then «(t) is an integral power of ¢; if (o, x) ¢ Z,
then a(t) € ('Rso for some 0 < | < n. Since sy is hyperbolic, a(sy) € Rsg
for all @ € R(S,JY), so a(sy) # «(t) in either case. Therefore, we can define
My = Zj, (sxt71)%and take ¢ = ny. O

4.5. Proof of Theorem 4.1.1. — The essential facts about the groups K, Hj,
Jx and M) are summarized in the following diagram.

M/(\) =M, —— Jg — J)\::ZKA(t)\ A FI‘) E—d 7T0(Jx)

M =———= H) »—— H) = Zj,(sn) —— mo(H))
From the definitions of G\ (54), Any (56) and ry : LG\ — G (55), we have
(59) A(Anr (Fr)) = 7a(sa x Fr) = (s x 1)(tx x Fr) = fy x Fr = A(Fr).

Now, Theorem 4.1.1 follows from a direct application of Lemmas 3.4.1 and 4.4.1, as
in the diagram below.

(ex)”

Rep(Ay) Per@(XA) E—— PeréA (Xx.,)
CX )%

‘ ‘ Cquivl lequiv

Rep(mo(Hy)) —— Perp, (Vi) _foreet | Pergro (V)

PerMi (m>\7n)

4.6. Further properties of Vogan varieties. — From (58) in the proof of The-
orem 4.1.1 we get a very concrete description of V) as a variety, for any A € R(*G):

Vy =AY, for d=|{a€ R(S,JY) | a(sy) =qr}|
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Proposition 4.6.1. — The space V) is stratified into Hy-orbits, of which there are
finitely many, with a unique open orbit.

Proof. — With Proposition 4.4.1 in hand, this follows immediately from | ,

Proposition 3.5] and | , Section 3.6]. O
A different proof is given in | , Proposition 4.5].
Proposition 4.6.2. — FEvery Hy-orbit in Vy is a conical variety.

Proof. — By Proposition 4.4.1, it suffices to prove that every Mj-orbit C' in my ,, is
a conical variety. Arguing as in the proof of | , Lemma 2.1], for € C, we can
find a homomorphism ¢ : SL(2,C) — M, such that for t € C*

t 0 . 0 1\
<,0<0 t_l)EM/\ and dga<0 0>:c.

Mofi 2=} 5) o

so t?z € C. O

Then

5. Arthur parameters and the conormal bundle

The goal of Section 5 is to show that every Arthur parameter ¢ € Q,(*G) with
infinitesimal parameter A may be apprehended as a regular conormal vector to the
associated stratum at an associated point, that is & € Téw,zw(vk)reg-

In the rest of this section, G is an arbitrary connected reductive linear algebraic
group over the p-adic field F' unless noted otherwise.

5.1. Regular conormal vectors. — For A € R(*G) and every Hy-orbit C C Vj,
let TE(Va)reg C T (V) be the subvariety defined by

(60) Te(Vreg :=Te(V)\ |J Te, (R).
folatel]
Also define
TI?A (V/\)reg = U Tc*‘(VA)rega
C

the union taken over all Hy-orbits C' in V). Then T}f])\(VA)reg is open subvariety of
Ty, (V) and each T¢(Va)reg is a component in Ty (V3 )reg-
We may compose (14) and (34):
(61) Q*tG) — PtG) — R(*G)
’L/J — Qﬁw — )‘d’w'
To simplify notation, we set Ay :=Xy,. We will refer to Ay as the infinitesimal
parameter of 1. Using Proposition 3.2.2, define
Top =Ty, S wa
and let Cy C Vy, be the Hy-orbit of zy, € Vi,
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Proposition 5.1.1. — Let ¢ : Ly x SL(2,C) — LG be an Arthur parameter. Let
Ayt Wp — LG be its infinitesimal parameter. Then 1) determines a regular conormal
vector

€1ZJ € Tc*‘wﬁzw(vk)rega
with the property that the Hx-orbit of (zy,&y) in Téw (V) is open and dense in
Téw(VA)mg. The equivariant fundamental group of this orbit is Ay.

The proof of Proposition 5.1.1 will be given in Section 5.8.

5.2. Cotangent space to the Vogan variety. — Consider
(62) Vy = {x ety | Ad\(Fr))(2) = ¢ ),

which clearly comes equipped with an action of H) just as V) comes equipped with
an action of Hy. Compare V) with V) defined in (38). In fact, the variety 'V has
already appeared: see the proof of Proposition 3.2.2. We note

Vi =t(gr) =irlgp) = mxn,

where ¢ and m,, are defined in Sections 3.2 and 4.4, respectively.
For ¢ : Ly — G, we can define

P)\(LG) — tV,\,
(63) 0 0
¢»—>z¢:d<p<1 0>,

where ¢ :=¢°|s,2,¢) : SL(2,C) — G. This map satisfies all the properties of the map
Py(*G) = VA (YG) in Proposition 3.2.2, from which it follows that there is a canonical
bijection between H-orbits in V and Hy-orbits in *Vy, so that the following diagram
commutes.

Pr(*G)/H} Pr(*G)/H}

| |

V)\/H)\ ;) tV)\/HA

Proposition 5.2.1. — There is an H)-equivariant isomorphism
T*(V)\) ~ V,\ X tV)\,
and consequently,

T*(Va) = ja(gr) ®ir(gr') = man & my _p.

Proof. — As V), is an affine H-space there is a standard H)-equivariant isomorphism
T*(Vy) ~ Vi x V¥, so it suffices to exhibit an Hy-equivariant isomorphism
V/\* = tV,\.

To do this, let Jy be the reductive group defined in (53) and write jy for Lie Jy, as in
Section 4.3. From Proposition 4.4.1, we have

Vi=ialgr) and by =ix(1) and Vi =jr(gp}).
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As J) is reductive, its Lie algebra decomposes into a direct sum of its centre and a
semisimple Lie algebra, jx ~ Z(jx)®[ix,ir]. We choose any non-degenerate symmetric
bilinear form on Z(j,) and extend to a bilinear form on j) using the Cartan-Killing
form, while insisting that the direct sum decomposition above is orthogonal, that
is, the components in the direct sum are pairwise perpendicular. The result is a
non-degenerate, symmetric, Jy-invariant bilinear pairing
(l)],\ Xj,\—>A1.
Now, if ja(v) and jx(v') are two Ad(sy)-weight spaces, then the invariance of the
pairing implies that (jx(v)|jx(¥')) # 0 if and only if v/ = v~!. Since the pairing is
non-degenerate this gives an Z;, (s)) = Hx-equivariant isomorphism
Vi =ixlgr)* Zirlgp') = Vi
A similar argument using the cocharacter ¢ : G, — M) and the graded Lie algebra

my = - @®myo @My, Bmyodmy _p) DMy _2, D
= - 0mu ® (VO @ Vy)dmy 2, D

produces an M} = H{-equivariant isomorphism
* ~ t
(64) V; = m,\,n =My —n = V,\.

This allows us to view T*(V)) as a subspace of my, even with Hy-action, and gives
H)-equivariant isomorphisms

T*(Vx) 2 ix(qr) @ ir(gr') = My, Smy _p,
as desired. O

In the remainder of the paper we identify ‘Vy with V¥, using Proposition 5.2.1.

5.3. Conormal bundle to the Vogan variety. —

Proposition 5.3.1. — Let C C V) be an Hy-orbit in Vy; then
Te(Va) =A{(z,§) € T*(Va) | z € C, [2,£] = 0},

where [, ]| denotes the Lie bracket on j and where we use Proposition 5.2.1 to identify
T*(Vy) 2 ix(qr) ®@ir(gn"). Consequently,

Ty, (Va) = {(2,€) € T*(VA) | [, €] = 0}

Proof. — The map hy — T,(C) given by X — [z, X] is a surjection. So for any
€ € ja(gp'), we have & € Tf (Va) if and only if 0 = (&|[z,X]) = ([£,2]| X ) for
all X € hy. As we saw in the proof of Proposition 5.2.1, the pairing restricts non-
degenerately to h, so this is also equivalent to require [z,&] = 0. O

Corollary 5.3.2. — Tf; (Va) < (-]-)7(0).

Proof. — 1If (z,§) € Vy x VY lies in Ty (Vi) then [z,€] = 0. Choose an slp-triple
(x,y, z) such that y € V¥, and z € h. Then,

(21€) = 5([2,a11€) = (=] [1.€)) =0. 0
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5.4. Orbit duality. — Consider the H)-equivariant isomorphism
T*(Va) = T7(VY)
(z,8) = (& 2),

where we use the form (- |-) to identify the dual to V;* with V). Just as every Hy-orbit
C C V) determines the conormal bundle

TE(VX) = {($,€) € Vy x V/\* | z€C, [.’L',f] = O}a
every Hy-orbit B C V) determines a conormal bundle in 7*(Vy):
Tp(VX) = {(&2) e Vi x W [ €€ B, [§,2] = 0}

(65)

Lemma 5.4.1. — For every Hy-orbit C in Vy there is a unique Hx-orbit C* in VY
so that (65) restricts to an isomorphism

TE(Va) = TE(VY).
The rule C' — C* is a bijection from Hyx-orbits in V) to Hy-orbits in V.

Proof. — This is a well-known result. See | , Corollary 2] for the case when H)
is connected. The result extends easily to the case when H) is not connected. o

The orbit C* is called the dual orbit of C' C V); likewise, the dual orbit of B C V'
is denoted by B*.
Lemma 5.4.2. — If (2,§) € TE(Vy)reg then & € C*, so

TE(Va)reg € {(2,€) € O x C* | [2,¢] = 0}

Proof. — Since (x,£) € TE(VA)reg, then (z,€) is not contained in any other closures
of conormal bundles except for that of C. On the other hand, (§,2) € T (V)
where Be is the H)y -orbit of £ in VY, so TA(Vy) = Tﬁg(V/\*). Hence B = C*, i.e.,
EeCr. O
Proposition 5.4.3. — If (2,£) € TE(Va)reg then (z,§) € C x C* and [x,£] =0 and
(z]€) =0.
Proof. — Combine Lemma 5.3.2 with Lemma 5.4.2. O

We remark that (z, &) € C'x C* implies neither [z,£] = 0 nor (z|&) = 0 in general.
Although transposition in jy is not Hy-equivariant, is does induce another canonical
bijection
C — tC and B — 'B
between Hy-orbits in V) and H-orbits in Vy', and vice versa. Unlike the bijection of
Lemma 5.4.1, this bijection preserves equivariant fundamental groups (50):
Ac =2 Ao and A =  A:p.

For C' C Vy (resp, B C V) we refer to ‘C (resp. 'B) as the transposed orbit of C
(resp. B). Composing orbit transposition with orbit duality defines an involution

(66) C C:=1C"
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on the set of Hy-orbits in V).

5.5. Strongly regular conormal vectors. — We say that (z,&) € TA(Vh) is
strongly regular if its Hx-orbit is open and dense in T4 (V). We write T (V) )sreg for
the strongly regular part of T (Vi )reg. We set

(67) T;I)\ (V/\)sreg = U Tc*‘ (V)\)Sreg-
C

Proposition 5.5.1. —
T]TIA (V/\)sreg g T]fb\ (V)\)reg
and if (x,&) € TE(VA) is strongly reqular then its Hx-orbit is T5 (V) sreg-

Proof. — First we show T5(Va)sreg € T¢(Va)reg. From the definition of T5 (V) )reg
(60) it is clear that it is open and dense in T4 (V)). Fix (x,§) € T4(Vy) and let
O, (z,€) denote the Hy-orbit of (x,§). If (z,§) is not regular, then (z,£) € T¢, (Vi)
for some C; # C with C C Cy, so all of Oy, (7,€) and its closure also does not
intersect T5 (V) )reg. Suppose, for a contradiction, that (z,&) is strongly regular also.
Then the closure of O, (z,€) is T (Va), which certainly does intersect T¢ (Vi )reg-
So, if (z,&) is not regular, then it is not strongly regular.

Now suppose Tam(V,\)Sreg is not empty, then it is enough to show Taz(V,\)sreg

forms a single Zpy, (z)-orbit. Note
Tee(Va)sreg = {€ € Te o (V) | [Lie(Zm, (2)), €] = T¢ . (VA)}
which is open, dense and connected in T¢ ,(Vi). Moreover, Zpy, (x)-orbits in

T&Z(VA)Sreg are open, and hence they are also closed in Taz(VA)Sfeg. By the
connectedness of T¢; (V) )sreg, We can conclude it is a single Zp, (x)-orbit. O

The equivariant fundamental group of T/ (V) )sreg Will be denoted by AT (VA ) ares
Since H) acts transitively on T (V))sreg:

(68) AT (V)oree = T0(Z0, (2,€)) = Zi, (2,€)/ Zm, (,€)°,
for every (z,€) € TE(Va)sreg. Consequently, each (z,€) € T4 (Vi )sreg determines an
equivalence

Locr, (T&(Va)sres) — Rep(Azy (v3)ares)-

5.6. From Arthur parameters to strongly regular conormal vectors. — For
¥ € Q(FQG), define

o :=¥°|sLi2,0)xsn(2,c) ¢ SL(2,C) x SL(2,C) — G

and

~ ~

Y1 :=volsL2,0)x1 : SL(2,C) = G and ¥2:=1olixsr(2,0)  SL(2,C) = G.
Set

0 1 ~ 0 1 ~ 0 0 ~
(69) xy:=di <0 O>€g Yy i=dpo <0 O>€g and &y :=dyo <1 0>€g.
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It follows easily from these definitions that
Ty, Yy € Vi, and &y € VY,

and
(@y,&y) € TG, (Va).

Proposition 5.6.1. — For any ¢ € Q(*G),
(2, &p) € gy | (Vay )sreg-

Proof. — Set A = Ay. Define fy, sx,tx € G as in Section 4.3. Then
sy x1=4¢(1,dp, dry) and tx x Fr =¢(Fr,1,1).
Recall A\, : Wr — Jg from Section 4.3. By Proposition 4.4.1,
Va=Vi. =ir2
Since the image of v : SL(2,C) x SL(2,C) — G lies in JY, we may define
Ynr 1 Wp x SL(2,C) x SL(2,C) — JY

such that its restriction to Wy is trivial and its restriction to SL(2,C) x SL(2,C) is
’L/)O. Let

ty i Gy — J/Q
be the cocharacter obtained by composing

Gm — Wp x SL(2,C) x SL(2,C), 2+ 1x <(Z) 291) « <Z (_)1)

with of ¢y, : Lp x SL(2,C) — J). Then

1/2
to(a®) = Aur(F).

Recall Hy C Jy C Ky C G from Sections 3.2 and 4.3. For the rest of the proof
we set J = Jy. We must show that the orbit OZHX (zw)(«fd,) is open and dense in
T¢., ., (Va), where Cy = Op, (zy). With Lemma 4.6.1 in hand, it is enough to show
the tangent space to the orbit O, (24)(§y) at & is isomorphic to Téw,%(VA); in
other words, it is enough to show

[LieZm, (2y), €] = {€ €2 | [1y,&] =0}

The adjoint action of SL(2,C) x SL(2,C) on j through vy, gives two commuting
representations of SL(2,C), which induce the weight decomposition

(70) in=€P irs
r4+s=n

where r, s € Z. Note Lie(H))) = jo. So it is enough to show
(71) lio N Lie(Zg(xy)), &) = j—2 N Lie(Zg(zy)).
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For this we can consider the following diagram in case r + s = 0.

. ad(zy) .
Jr,s > Jr+2,s

e [

It is easy to see

LHS(71) = €D ad(&y)(ker(ad(zy);..,))

r+s=0
RHS(71) = €D ker(ad(zy)l;,., )
r+s=0

By sly-representation theory, ad(zy) in the diagram are injective for r < 0 and
surjective for 7 > 0. So we only need to consider r > 0 and hence s < 0. In this case,
the two instances of ad(&y) in the diagram above are surjective by sly-representation
theory again.

It is obvious that LHS(71) C RHS(71). For the other direction, let us choose
T € jrs—2 such that [zy,2] = 0. So z is primitive for the action of the first sly,
and it generates an irreducible representation V. Let T be a preimage of x in g, s
and W be the representation of the first sl generated by Z. Then ad({y) induces
a morphism of sly-representations from W to V. By the semisimplicity of W, this
morphism admits a splitting and we can denote the image of z by £. It is clear that
€ €jrs and [zy, ] = 0. This finishes the proof. O

Corollary 5.6.2. — Let 1) : Wg xSL(2,C) x SL(2,C) — LG be an Arthur parameter
with infinitesimal parameter . If Cy C V) is the Hx-orbit of xy, then

Cy=0Cy
where (/71\/, = 'Cy, (66) and where the map ¥+ Wp x SL(2,C) x SL(2,C) — LG is

defined by (w, z,y) := ¢ (w, y, ).

5.7. Arthur component groups are equivariant fundamental groups. — Re-
call the definition of Téw (VA)sreg from Section 5.5 as well as the notation ATé (VA srex

for its equivariant fundamental group. Also recall A, :=mo(Z5(¢)) from Section 2.4.

Proposition 5.7.1. —
Ary, y (Warey = Ay

Proof. — We use the notation from the proof of Proposition 5.6.1 and set &, :=t5,,.
It is clear that Z5(1)) = Zj(¢nr) = Z5(¥1) N Z;(32). By Lemma 4.3.1, we also have

ZaMN(@yp.eo) = Z1(Aar) N Zy(g) N Z5(Ey).
First we would like to compute the right hand side of the above identity. Note

Z.](>\nr) N ZJ(zib) = (ZJ(i/Jl) N Z.](Axlr)) U
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where U is the unipotent radical of the left hand side. Moreover,
Zy(W1) N Z5(Anr) = Z5(1h1) 0 Z;(ty)

and

Lie(U) C P jr.s
r+s=0
>0

in the notation of (70). For u € U, we have

Adw) (&) €&+ D s

r4+s=—2
s<—2

Suppose Ad(lu) stabilises &, for I € Z;(11)NZ;(ty) and u € U. Since Ad(l) preserves
jr,s, we have

& = Ad(lu)(&y) € Ad)(E) + D s

r4s=—2
s<—2

Note &y € jo,—2. It follows &y = Ad(1)(§y). Hence &y = Ad(u)(&y). As a result,

Zy(Oar) N Zy () N Z5(Ep) = (Z1 (1) N Z5(ty) N Z5(Ey)) - (U N Z5(Ey))-
Since U N Z;(&y) is connected, we only need to show

Z(1) N Zs(ty) N Zs(&y) = Z1(¥1) N Z5(P2).
Take any g € Z;(¢1) N Z(ty) N Z;(&y), it suffices to show Ad(g) stabilises y,. Note
[yy, &) = da(In([Fr])),
and
[Ad(9)(y), £u] = [Ad(9)(yy), Ad(9)€y] = Ad(g)(d¢p(In([FY[))) = dypa(In([Fr]))

Since [, &y] is injective on jo 2 and Ad(g)(yy) € jo,2, it follows that Ad(g)(yy) = Y.
This finishes the proof. O

5.8. Proof of Proposition 5.1.1. — Proposition 5.1.1 is now a direct consequence
of Propositions 5.5.1, 5.6.1 and 5.7.1.

5.9. Equivariant Local systems. — We close Section 5 with a practical tool for
understanding local systems on strata C' C Vi, on T (Vi )sreg, and on C* C V. Pick a
base point (z,&) € TE(Va)sreg- Recalling the structure of T (V) )reg from Lemma 5.4.2
and by using that T5(Va)sreg € T¢s(Va)reg by Proposition 5.5.1. The projections

C —— TE(VA)sreg — C*

induce homomorphisms of fundamental groups:

Ac ATE (V) ores Ac-

Zu,(2)/Zn,(2)° «—— Zn,(2,6)/Zn,(2,8)° —— Zu,(§)/Zn,(8)"-



44 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

The horizontal homomorphisms are surjective by an application of | , Lemma
24.6]. This can be used to enumerate all the simple local systems on H-orbits in V),
and T, (VA)sreg and V7.

6. Microlocal vanishing cycles of perverse sheaves

The goal of Section 6 is to introduce the functor appearing in(10) and to establish
some of its properties. We begin by stating the main application of Theorem 6.10.1,
whose proof will occupy the rest of this section.

Corollary 6.0.1. — Let G be a quasi-split connected reductive algebraic group over
a p-adic field F. Let ¥ € Q\(*G) be an Arthur parameter and let A : Wg — LG be its
infinitesimal parameter. Vanishing cycles define an exact functor

NEVw : PerHA (VA) — Rep(Aw)
which induces a function

PerHA (V,\)Simple — Rep(A¢)/iso

/iso
such that the composition

e r(G/F) M

simple NEvy,
Perg, (V1) ple Rep(Ay) /iso

/iso
enjoys the following properties, for every [r,d] € Upyre x\(G/F):

(a) NEvy P(m,0) = 0 unless Cy < Cy, where Cy is defined in Section 5.1, ¢ is the
Langlands parameter for (w,d) and Cy is given by Proposition 3.6.2.
(b) The dimension of the representation NEvy P(m,d) of Ay is
rank (R®¢, P(, 5))% ,
where (2y,&y) € T¢, (VA)sreg is given by Proposition 5.1.1 and R®, is the
vanishing cycles functor determined &, .
(c) If Cy = Cy (equivalently, if ¢y is (A?—conjugate to ¢) then

NEvy, P(m,0) = p;';}(pw,(;)
where p(r sy is the representation of Ay given by Proposition 3.6.2 and where
the map py : Ay — Ay is the canonical group homomorphism of Section 5.9; in
particular,

rank NEv,, P(m, ) = rank py s.

To prove Corollary 6.0.1 we make a study of the vanishing cycles of the equivariant
perverse sheaves on V), with respect to integral models for V) determined by regular
covectors (z,€) € Ty, (VA)reg, especially those coming from Arthur parameters using
Proposition 5.6.1.

In the rest of this section, unless noted otherwise, G is an arbitrary connected
reductive algebraic group over a p-adic field F'.
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6.1. Background on vanishing cycles. — Although we will use | , Exposés
XIII, XIV] freely, we begin by recalling a few essential facts and setting some notation.
Let R:=C[[t]] and K :=C((t)). Set S = Spec(R) and 1 = Spec(K) and s = Spec(C).
Observe that S is a trait with generic fibre 1 and special fibre s.
n LSt

Because S is an equal characteristic trait the morphism s — S admits canonical
section corresponding to C — C[[t]].

Let 77 be a geometric point of S localized at n; thus, 7 is simply a morphism
Spec(K) — n — S, where K is a separable closure of K. Then Gal(ij/n) = 7. Let R

be the integral closure of R in K; note that R has residue field C. Set S = Spec(R).
For any morphism X — S we have the cartesian dlagram

A

ix
X
s

) ———————— :><U

Ly ———F——— X

T

J 7

n
where X = X xg S, Xﬁ =X x g 7 and X, =X X g 5. We remark that X, %+ X,
generally. From | , Exposé XIII| we recall the nearby cycles functor
RUx, : D(X;) — D(X, x5 1);
see | , Section 1.2], especially the remark after | , Coustruction 1.2.4] for

the meaning of the topos X, x 7. In particular, we recall that, for any F, € D(X,),
the object R¥x, F;, in D(X x4 n) is the sheaf
RUx Fy = (ix)" (Jx)+(bx, )" Fy
on Xz equipped with an action of Gal(7j/n) obtained by transport of structure from
the canonical action of Gal(77/n) on (bx, )*F.
The vanishing cycles functor
Rbx : D(X) — D(X; x5 .5)

is the cone of the canonical natural transformation i, 0% — RVx, j% of functors from
D(X) to D(X; x5 .S) and thus appears as the summit in the following distinguished
triangle | , Exposé XIII, (2.1.2.4)] in D(X; %, S), for F € D(X):

R®x F

(73) v~ ™~

by F RUy, j%, F.
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See | , Exposé XIII, Section 1.2], especially | , Exposé XIII, Construction
1.2.4] for the meaning of the topos X, X S.

We will make free use of other properties of RUx, and R®x established in | ,
Exposés XIII, XIV], such as smooth base change [ , Exposé XIII, (2.1.7.1)] and
proper base change [ , Exposé X111, (2.1.7.2)].

6.2. Calculating vanishing cycles. — We denote the ¢-adic constant sheaf by 1.
In this section we calculate the vanishing cycles R®x 1 x of the constant sheaf 1x for
a short list of S-schemes X. While elementary, these calculations will be used in the
proof of Theorem 6.7.5 and will also play a role in the examples appearing in Part II.

In all our applications of vanishing cycles we begin with map of varieties f : U — A!
over C and then let fs : X — S be the base change of f along S — A!; thus, in
particular, X = U x 1 S. Assuming U = Spec(A) is affine for a moment, then the
coordinate ring for X is

Ox(X) = A®cpy C[[t] = A[[H]]/(f - 1),
where A! = Spec(C[t]) and where we identify f with its image in A. Note that the
special fibre of X is
Xs = fﬁl(o);
note also that this may not be reduced. We use the notation
R F :=R®x Fx

where Fx is the pullback of F € D%(U) along X — U. Note that R®;F is a sheaf on
the special fibre X, of X and that X, may not coincide with f~1(0).

Lemma 6.2.1. — If0: U — A' is the map defined on coordinate rings by t — 0,
where Al = Spec(C[t]), then, for every F € D%(U),

RO)F = F

with obuvious monodromy.

Proof. — Tt follows directly from definitions that RUVyF = 0, so R®gF = F is a
consequence of (73). O

Lemma 6.2.2. — Let 2 : A — Al be the map defined on coordinate rings by t — .
Then

R®,.L=0
for every local system L on A'. More generally, if f : U — A' is smooth and Ly is
a local system on U, then

RP ;L = 0.

Proof. — 1Tt follows directly from the definition of RWy, that R¥Ux L = L|g  for
X = Spec(Clz][[t]]/(x — t)). Thus, R®,L = 0, using (73). The second sentence is
now a consequence of the first by smooth base change. See also | , Exposé XIII,
Reformulation 2.1.5]. O
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Lemma 6.2.3. — Let 22 : A — Al be the map defined on coordinate rings by
t — z2. Then

R®,-1 = 1,
with quadratic monodromy. More generally, if f: U — Al is smooth then
RO 21 = 1y.

with quadratic monodromy coming from the cover associated to \/f.

Proof. — We first point out that the second claim follows immediately from the first
by smooth base change.

Let X — S be the base change of z? : A! — A! along S — A!. More explicitly
we have X = Spec(R[z]/(2?> —t)) and X — S is given on coordinate rings by
R — R[z]/(2? — t), where R = C[[t]]. Then

X—X+tUX~ and XtNX =X,

with X* = §: note also that X, = f~1(0) = Spec(C[z]/(z?)) while X, = X4 = s.
Consequently,

Xy = Spec(Klz]/(a® — 1))
= Spec(K[2]/(z — t'/%) & K[a]/(x + /%))
= XFuX,,

with )_(ﬁi = 7}, where the Galois group Gal(7/n) acts by interchanging these two
components.
We will use (73) to compute R®,21:=R®x 1. First, note that

igbxlx =i%lg = lx,.
The action of Gal(7/n) on 1% is trivial. Next, we find RUx1x.
RUx1x = i%(ix)«bx,ix1lx
= i%(x)lx,
i}(j;%)*]l)z; ©ix(Ux)elx
where j)i2 : )_(ﬁi — X is the composition of the component )_(?f — )_(,—7 and the generic
fibre map jg : Xﬁ — X. Since j)i2 : Xﬁi — X is an open immersion and X5 is on the
boundary of X%E in X, we have
x4
Therefore,
RUxlx =1g ®1g,..
Note that the monodromy action on RU x 1 x switches these two summands. Let
RUx1x & ]1;5(5 D ]1;25
be the eigenspace decomposition of R¥x1x according to this action, so Gal(7/n)
acts trivially on 1% while Gal(7j/n) acts on 13 through the quadratic character

Gal(,/n/n) — {£1}. The canonical natural transformation i%b% — R¥x, j%, which
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induces the map at the base of (73), is compatible with monodromy, so
itbx1x — RUx1x
is the isomorphism of 1¢_ onto ]1}3.
Ig, » 1% @1%.
Since R®x 1 x is the cone of this arrow, we have
ROox1x = ]l}(s ,

as claimed. O

Lemma 6.2.4. — Set A2 = Spec(C[z,u],) and A' = Spec(C[t]). Let z%u: A2 — Al
be the map defined by t — 2w on coordinate rings. Then

R®, 2,1 = Ly

with quadratic monodromy, where A}, = Spec(Clul,) and where Ly is the local system
for the quadratic character of the fundamental group of AL = Spec(Clul,). More
generally, if (f,g) : U — A2 is smooth then

RO 2,1 = Ly

where Ly—q is the local system for the quadratic character associated to the cover com-
ing from \/g and quadratic monodromy coming from the cover associated to adjoining

VT

Proof. — As before, the second claim follows from the first by smooth base change.

Consider the map a : A2 — A2 defined on coordinate rings by x — 2% and u — u.
Define b : A2 — A2 on coordinate rings by = ~— z and u — u?. Define ¢ : A2 — A2
by = — 2?u~! and u — u. The following diagram commutes,

A
G
A2 A2 A2
\ lﬂ /
a b
AZ
where d : A2 — A2 is defined by x — xu and u — u?.

Define f = A2 — Al by t — zu where, A! = Spec(C[t]). Then foa = z%u,
fob=au?and foc=ax? also, foboa = z?>u?. By base change along S — Al, we
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get the following commuting diagram of S-schemes

7 ids\
\l/

Over the generic fibre, these maps are all Galois quadratic. However, after base
change along S — S and restriction to special fibres, the maps induced by a and ¢
become isomorphisms, while b and d remain quadratic. Here we use the sequence of
equalities X, s = X, s = X = Spec(C[u],). Observe that X, — S is the pullback of
2?u: A2 — Al along S — Al. Then
(74) R®,2,1 =Rdx, 1.
By proper base change,
as+R®x,1 =R®xa,l.
Since as is an isomorphism, this gives
Rox, 1= Rbya,l.

Let € be the local system on Al :=Spec(C[z],) defined by the non-trivial character
of the covering AL — Al given on coordinate rings by  — 22. Then

al=a,(1R1)=(1K1) @ E K1),
where £f is the extension by zero of £ from Al to A'. Here, and below, we write 1
for the constant sheaf on A and also on Al. By the exactness of R®y,

RPxa,1 =RPx(1X1)HROx(ETRK1).
By Lemma 6.2.2, R®x (1 X 1) = 0. Thus,

R®ya.l = ROy (E7X1).

Our goal, therefore, is to calculate R®x (€7 K 1).
To determine R(IDX(E,'h X 1), first we find b, +as .R®x,1 in two ways. On the one
hand,

bs+ls «RPx, 1 = by Lemma 6.2.3
since @, is an isomorphism

1)@ (1XL) by the decomposition theorem.

I
oSS
& = @l
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On the other hand,

bs,*ds,*7R¢Xd ]l

= bs«RPx, a1 by proper base change
= bs«RPx, (IR1) e (E°K1)) by the decomposition theorem
= bs. (RPx, (1K 1) ® Ry, (PR 1)) by exactness of R®x,
= b5 ROy, (£7X1) by Lemma 6.2.2
= ROxb.(EFX1) by proper base change
= Réx ((E*R1) @ (ETRL)) by the decomposition theorem
= ROx(E'R1) @ ROy (X L) by exactness of R@x.
So,
(75) ROx(EFM1) RO (ETRL) = (1K1) P (1K L).
We now find R®x (€% K £) by computing Cs,«R®x, 1 in two ways. On the one hand,
CsxROx, 1 = €541 by Lemma 6.2.3
= 1 since ¢ is an isomorphism.

On the other hand,

Cs«R®x.1 = R®xc,l by proper base change
= RPx (1X1)& ("X L)) by the decomposition theorem
= RO (ETXL) by Lemma 6.2.2.
So,
(76) ROx(ETX L) = 1.

Combining (74), (75) and (76) it now follows that
RP,2,1 = ROy, 1 =ROx(EFXT) = 1K L.

This completes the proof of Lemma 6.2.4 o
Set AZ¢ . =Spec(Clz1, ..., Ze,u1, ..., Ue|uy.u,) and let AS . be the subvariety

cut out by the equations 1 =--- =z, = 0.

Proposition 6.2.5. — Consider the function

UL Ue

f A% — A = Spec(C[t]) given by Zuzxf —it,
i=1
Then
RP,1 = zL[1— e,
where z : Ailmue — A?ﬁ»»»ue is the closed immersion and where L is the local system
on A¢ for the character of the fundamental group of AS

UL Ue UL Ue

of the quadratic characters of each factor A}, = Spec(Clu;]y,).

given by the product

Proof. — By definition,
RPs1 =Rex1y,
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for .
X = Spec(Clx1, ..., T, U1, ..., Uelus o, [[t]]/(z wiz? — b))
1=1

with the obvious structure map X — S. Set X; = Spec(Clz;, ui]y,[[t]). By
Lemma 6.2.4,

Rox, 1x, = L,
where L; is the local system for the quadratic character of the fundamental group
of X; s = Spec(Clui]y,), for each i = 1,...,e. It follows from the Sebastiani-Thom

isomorphism (see [ | and | |) that
R(I)X[fl]]].x = Z\ (R@Xl[*l]]]-Xl X.. KX Rq)Xe[*l]]]-Xe) y
where z : Z < X, is the closed subvariety Spec(Cluy, ..., U]y, ...u, )- In other words,

ROxLx = 2 (Lx, KR Lg )1l
This concludes the proof of Proposition 6.2.5 O

Corollary 6.2.6. — Let xy : A2 — Al be the map defined on coordinate rings by
t > zy, where A% = Spec(C[z,y]). Then

R®,, 1 = 1,

6.3. Brylinski’s functor Ev. — Let f : T*(V)) — A! be the s-morphism obtained
by restriction from the non-degenerate, symmetric Jy-invariant bilinear form ( | ) of
Section 5.2. Let X\ = T*(V)) x4 S and let fs: X\ — S be base change of f along
S — Al

For any & € VY, define f¢, : Vi — Al by fe (z):= f(z,&). Let fe,5: Xeo = S
be the base change of fe, : Vi — Al along S — Al so X¢, :==V) x1 S. The special
fibre of X¢, — S is denoted by X¢, , and the generic fibre by X¢, ,,; note that

Xegs ={zeVa| (z]&) =0}
We define
R®s, :Dp, (Va) — DZHX(go)(fgol(O) xsS)
by the following diagram,

R<1>f50

D, (V) Dz, (eo) (fe 1 (0) x5 5)

J/forget R<1>x50 T

base change
Dz, (g0 (V2) = D2y, (€0)x.5(Xeo)

where base change refers to pull-back along Xp — V).

In | , Notation 1.14], Brylinski remarks without proof that there is a functor
Ev: D(V) — D(T};(V)reg) With the property
(77) (EV‘F)(LE) = (R(I)fﬁ]:)
for (x,£) € T*(V)reg. Some properties Ev are described in | , Remarque 1.13],
[ , Théoréme 1.9] and | , Proposition 1.15], using results attributed to

T )
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[ , Théoréme 3.2.5]. Sadly, | , Théoréme 3.2.5] does not exist in the
published version of the original notes, and we have not been able to procure the
original notes, so we have been obliged to build Ev ourselves and establish its main
properties here. In this section we describe Ev and put it in a form which will be useful
for calculations. Establishing its main properties will occupy the rest of Section 6.

For any H-orbit B C V¥, consider the locally closed subvariety Vi x B C T*(V})
and let fp : Vi x B — A! be the restriction of f : T*(V)) — Al to V) x B. Let
IB.s : Xp — S be the base change of fp along S — A'. Then the special fibre of X
is the s-scheme

Xps = {(2,€) e Vax B | (2|€) =0},

We write
(78) R®;, : D(Va x B) = D(f5'(0) x5 S),

for the composition of the functor D(Vy x B) — D(Xp) induced by pullback along
Xp — V) x B and the vanishing cycles functor

(79) Rbx, : D(Xg) — D(f5'(0) x5 9).

Now, as an s-scheme, V), x B comes equipped with an Hy-action. Applying base
change along S — s gives an action of Hy x4 .S on (V) x B)g. Because fp is Hj-
invariant, this defines an action of Hy x4 S on {(z,&,t) € (Vi x B)g | f(z,&) = t}.

But this is precisely Xp so Hy X, .S acts on Xp in the category of S-schemes and we
have the exact functor

(80) DHX(V)\ XB) %DHXXSS(XB)'
See | , Section 2| for the equivariant derived category Dy (X). Combining this
with the vanishing cycles functors above defines an exact functor
(81) R®f, : Drryx.s(Va x B) = D, (f5(0) x5 5).
We may now revisit Brylinski’s observation | , Notation 1.14] and give the

main definition for Section 6.

Definition 1. — For any Hy-orbit C' C V), let
(82) EVC : DHA (V)\) — DHA (TC*‘(V)\)reg Xg S)
be the functor defined by the diagram
D, (V) D, (TE(Va)reg X5 5)
(83) l( )®1gs restrictionT
DHA (VA X C*)

Evo

REX o -1
DH,\XSS(XC*) EEEE— DH,\(fC* (0) Xs S),

base change

where:

(i) (- )X1e~: Dy, (Va) = Du, (Va x C*) is the pullback along the projection map
Vi x C* — V,\;
(i) D, (VA x C*)) = Dy, x.s(X¢+) is (80) in the case B = C*;
(iii) R®x . : Daryx.5(Xc+) = D, (f51(0) x5 S) is (79) in the case B = C*; and
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() Dy (f52(0) x5 S) — D, (TE(Va)reg X S) is obtained by pullback along the
inclusion T (Vi )reg < fo- (0), using Proposition 5.4.3.
Since the Lagrangian varieties T¢(V )reg are components of T7;(V )reg, as C runs over
H-orbits in V', we may assemble the functors Eve to define
(84) Ev: DHX(V/\) — DHX(T[T](V)\)reg Xs S)

We refer to this as the microlocal vanishing cycles functor.

Although it plays a role in our calculations in Part II, our notation here will
generally hide the action of inertia.

6.4. Stalks. — We begin our study of the properties of Ev by showing that it is
indeed the functor that Brylinski promises in | , Notation 1.14].

Proposition 6.4.1. — The functor
Ev: DH)\ (VA) — DH)\(T;](V)\)reg Xg S)

is exact and for every F € Dm, (V)) and every (zo,&) € TF(VA)reg, there is a
canonical isomorphism
(BYF) (2.60) = (RPpey F)ag

compatible with the actions of Zg(xo,&) and Gal(7j/n).

Proof. — With reference to diagram (83), we see that Eve is exact since it is defined
as the composition of four exact functors. Since the Lagrangian varieties T¢(V )reg
are components of T} (V),eq, Ev is also exact.

The S-morphism

igg 1 Xey — XB
T = (':6750)

is equivariant for the Zg, (&) x s S-action on X¢, and the Hy x S-action on Xp. By
Lemma 6.4.2, below, this induces an equivalence

igy : Diax,5(XB) = Dz, (60)x.5(Xeo )

Consider the following commuting diagram, for {, € C*:

D, .n(f5+ (1))

(ic*,s)”

(. * )* —
e Dayx.s(Xor) —=s D, (f51(0))

B ;% . > . -k
equiv. |Zg, p equiv. ZZO‘S equiv. | e o

(iﬁo-,s)*

_ (Jeo,5)* _
DZHk(ﬁo)Xsn(fgol(n)) 0*> DZH)\({O)XSS(Xg()) — DZHk(éo)s(fgol(O))'

When combined with base change along S — S, it follows that
RU sen G = Tep,s RUse,-
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We find this at the heart of the following commuting diagram, where (x9,&) € Xc~ 5.

DH,\ (V/\) i DHA (V)\ X C*)
D i, 60y xon(fe (1)) C:mv' Dy xon(fe- (1))
J{R\Ilfgo J{R‘I’fc*
Dz, (e0) (2, (0)) e%uw' D, (f52(0))
D2y, (x0.60) ({ (20, &0)}) Da (TE(Va)sreg)
Thus,
(85) (RUse. (FR1Le#)) (0 = (RYp Fag,

compatible with Zp, (z¢, o)-actions. On the other hand,
(ZXC (FR ncq)( = (FB1e) gy e = (08,0

z0,80

as Zm, (zo,&o)-spaces. Using (73), it follows that

(86) (ROse. (FRILe)) (4 e0) = (RPsey Fao,
compatible with the natural Zy, (z¢, &y)-action. O
Lemma 6.4.2. — For every &y € B

Xp = (H,\ X S) (ZHA(ff))XsS> Xgo

in S-schemes and the closed embedding
igg : Xey — Xp
x = (x,&)
induces an equivalence

igy * Diyx.s(XB) = Dzy (60)x.5(Xeo)-

Proof. — First we must show that (Hy X, .5) x (21, (€0)%+5) X¢, exists in S-schemes.
To do that, it will be helpful to prove: for every § € Al and & € B there is an
H -isomorphism

f51(8) = Hx Xz, (¢0) &, (0)
in s-schemes, where H) x fg_ol(é) = Hx Xz, (&) fgol(é) is an Zp, (& )-torsor in C-
varieties. Since Zp, (§o) is a closed subgroup of Hy, the quotient Hy — Hx/Zm, (&)
exists in C-varieties. Consider the monomorphism

Hy x fE_Ol((S) — (Hx/Zu,(&0)) x T*(Vy)
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given by (h,z) — (hZm, (o), - (x,&)). Note that fg_ol(é) is a closed subvariety of
V. The promised Zp, (§o)-quotient Hy X Zu, (z0) fgol(é) is this morphism restricted
to the image:

Hy x &' (0) = {(hZm, (o), h - (2,€0)) € (Hx/ZH,(€0)) x VA x B | b~ -z € fe 1 (8)}.

Following standard practice, we use the notation (h,z) — [h, :E]ZHA (¢0) for this map.
Now, projection to the second coordinate

Hx Xz, (¢0) fe () = 5 (0)
is given by [h, :I:]ZHA (¢0) — I+ (x,&0), which is the promised isomorphism. This shows

that the Zp, (§o)-torsor Hy x fgol(é) = Hx Xz, (¢) fgol(é) exists in s-schemes and
also that the map

Hx Xz, (¢0) fe () = T*(Va), [he @ 2y, (g0) = 1 (@5 60),

is an Hy-isomorphism onto f5'(6) C T*(Vy).

Applying pull-back along the flat morphism S — s to Zm, (&) — Hyx —
Hy/Zpu, (&) determines the cokernel of Zp, (&) xs S — Hy X S and also shows
that the local trivialization of Hyx — Hx/Zm, (§0) determines a local trivialization
of Hy x5S — (Hx x5 5)/(Zm, (&) xs S). Now we may argue as above to see that
(H)\ X S) X(ZH)\(g[))XSS) XEO — T*(V,\) X S, defined by [hv‘r]ZH)\(&))XSS — h- (:C,fo),
is an isomorphism onto Xpg over S.

The last part of the lemma now follows immediately by equivariant descent, arguing
as in | , Section 2.6.2], for instance. O

6.5. Support. —

Proposition 6.5.1. — Let C C V) be an Hy-orbit. If F € Dy, (V) then Bvg F =0
unless C C supp F.

Proof. — Set F = supp F and note that F' is a union of Hy-orbits. Let ip : F' — V)
be inclusion. Then

F = (iph(ip)*F.
Since i is proper, we may apply Lemma 6.5.2, below, to this case with W = F' and
7 =1ip and go~ = f|Fpxc+. Then ' = ip X ide+ and

9c+(0) = {(z,§) e F x C* | (x|€) = 0}
and
(W X C)rreg = (F' X C*)NTE(V )reg = TGV )reg-
Thus,
EVC]: = EVC(iF>!(iF)*.7
= (ROgq. ((iF)"F B Le+)) T2 (VA e
by Lemma 6.5.2. The support of (ip)*FX 1o« is contained in F' x C*, so the support
of

R®,, . ((ip)* FE 1)

go=
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is contained in g1 (0) N (F x C*) so the support of Evc F is contained in
TE(Va)reg N (E x C™).
Since TE(Va)reg € C' x C*, this is empty unless C' C F. O

Besides its use in Proposition 6.5.1, above, the following result is key to many of
the calculations in Part II.

Lemma 6.5.2. — Suppose m : W — V) is proper with fibres of dimension n.
Suppose Hy acts on W and 7w : W — V) is equivariant. Then

EVC Tﬂg = (7‘(‘;/)[ ((R(I) EKX ]10*)

where ' =7 X idox, 7, is its restriction to special fibres, gox = fox on’, and ! and
(W x C*)r_reg are defined by the cartesian diagrams below.

gox (WXC*).,r,Teg) ’

W W x C 9ot (0) —— (W X C*)r_reg
Wl ‘ W/J, gex W;J J/ﬂ';,
Va 50— Vax C* For(0) <——— TE(VA) reg
fc*l J
S s

Proof. — Suppose € € Dy, (W). Then m€E € Dy, (Vi). Let pox : Vi x C* — V)
be projection. Then, by repeated application of proper base change | , Exposé
X1V, 2.1.7.1],

EVC 7T[5

= (RO 0. pC-ME) T (Vi) e

= (R(I)fc* (W/)!(p/C‘*)*SHTé(V)\)mg
(
(

(TR®y . (P ) E) T8 (Vi) e
= (T (R®gen (E B L)) (W xC*)pore) - O

6.6. Open orbit. —

Lemma 6.6.1. — For every H-orbit C CV and every H-equivariant local system
L on C,

Eve IC(C, L) = (Rby),.. .. (LR 1)) dim C.

TE(V ) reg [
Proof. — By the definition of Eveg given in (83),

EVC IC(C, E) = (R‘I)fé (IC(C, E) X ]10* ))Té(v)reg .

Using Proposition 5.4.3 and proper base change for C < V as in Lemma 6.5.2 gives

(RO (ZC(C, L) R L)) g 1y = (Rq>f|éxc* (£#[dim O] ® ]10*))T*(V) :
c reg
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using the notation £ = ZC(C, L)|s[— dim C]. Since C C V is locally closed, it is
relatively open in its closure. By smooth base change for C' — C,

(R@ﬂc—m (LW 110*)) = (RO, .. (LH1ow))

This proves the lemma. |

TE(V ) res TE(V)res

Proposition 6.6.2. — Let C CV be an H-orbit.
(a) For any (2,€) € T&(V)req,
(EVCIC(C»(z,f) = (R(I)f\c]]-C)m [dlm C]ﬂ

as representations of Zy(x,§).
(b) For any H-equivariant local system L on C,

EVC IC(C, E) = EVC ZC(C) X (£ X ]lC*) |T6(V)7‘eg.
Proof. — By Lemma 6.6.1,

Bve IC(C, L) = (R, . (LR 1c4)) . ) [dim .

(V)reg
Taking the case £ = 1¢ and passing to stalks using Proposition 6.4.1 gives

(Bve IC(C)) (y.¢) = (RPg o 1c), [dim O,

for every (z,€) € T5(V )reg. This proves (a).
To simplify notation slightly, set £ := LK 1¢«. It follows from Lemma 6.6.3, below,
that
REflcrc€ = Elpt 0 @ R oo Toxen

o
To see this, let X = X xg S play the role of X in Lemma 6.6.3, let X5 play the role
of U, so j plays the role of j, take H = 1 and G = €. It now follows from (73) that

Rq)f|0xc* (5) = 5|f\glxc* (0) ® R(I)f|0xc* Loxes,
since
Elpizte. @ = Elpgt e @ Lrg o)
Using Proposition 5.4.3 again and restricting from f|61Xc* (0) to TE(V )reg now gives
(ROf10, e €) IT2(V)ies = ElTe(V)ies ® (ROfi e L) I (V) e

Using Lemma 6.6.1 again, this proves (b).
O

Lemma 6.6.3. — Let j : U — X be an open immersion. Let G and H be local
systems on X trivialized by a finite etale cover of X. F = j*H. Then the canonical
morphism

J«F @G = ju(F ®j*G)
is an isomorphism.

Proof. — The canonical morphism above comes from the unit 1 — j.5* of the
adjunction for the pair (j*, j.) the exactness of j*, and the co-unit j*j, — 1:

J+F©G = G (3 F ® G) = e (75 F ® 57G) = ju(F ® jG).
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To show that this is an isomorphism it is sufficient to show that this induces an
isomorphism on stalks. Note that any sheaf homomorphism obtained from the unit
1 — j.j* is a monomorphism while any sheaf homomorphism obtained from the
co-unit j*j, — 1 is an isomorphism, so the canonical morphism is injective.

Without loss of generality, we may assume X is connected.

First we show that the lemma is true for constant sheaves. Set G = 1'¢ and
H = 1% so F = 1f;. The stalks of the domain of the canonical morphism at x € U
are (j, 172 @1%), = (j:11),®1™ = H*(j~(x), 1")® 1™ = 1™™[0] while the stalks of
the codomain are (j, (17 ® j*1%)), = (j« (17 ® 171)), = H*(j 7 (z), 1"™) = 1"™[0].
The case x ¢ U is trivial.

Now let 7 : X — X be a finite etale cover that trivializes G. Then the canonical
morphism j.F ® G = j.(F ® j*G) induces

(87) (s« F © G) = 7 (F ®j*G).
Note that (87) is injective on stalks. Let jr : U — X be the pullback of j along

and let 7 : U — U be the pullback of 7 along j. Note that j, is an open immersion
and 7; is again a finite etale cover. The local system j*G is trivialized by 7; since

TG = (jom)'G = (w0 jx) G = (4=)"7"G = (jx) 1} = 17,
where m = rank G; likewise F is trivialized by 7;. By the exactness of 7* and proper
base change,

T (jxF ©G) = T F @G = (ju )41} F @ 1Y = (jr)+ 1% @ 17
where n = rank F . Likewise,
T (F ®57G) = ()« (F @ J°G) = (Jir ) (Ix @ jrlp) -

This reduces the general case to the case of constant sheaves, already proved. O

6.7. Purity and Rank on the open orbit. — In this section we show that, for
every H-orbit C C V, the object Evg IC(C) in Dy (TE(V)reg) is cohomologically
concentrated in dimension dim C* — dimV — 1, where it is a rank-1 constructible
sheaf; see Theorem 6.7.5.

Recall f : T*(Vy) — A! from Section 6.3. Having fixed C, in this section we use
the notation Ac:=T&(V) N (C x C*) and set g:= floxc+. We also set e = ec =
dim C' + dim C* — dim V', the codimension of A¢ in C' x C* and refer to this as the
eccentricity of C.

Lemma 6.7.1. — The singular locus of f|loxc+ : C x C* — Al contains Ac.

Proof. — Suppose (,£) € Ac; we must show that dg(, ¢) : T(s,6)(C x C*) — To(A')
is trivial, where g : C' x C* — Al is the restriction of f to C' x C*. By Lemma 5.3.2,
§ € 1 . (V), we have (y,£), = 0 for all y € T,,(C), where (, ), is the pairing on
T (V) x T; (V). Similarly, z € Tg. ((V*), so (z,v), = 0 for any v € T¢(C*), where
(, )¢ is the pairing on T (V") x T¢(V™). Since dg(.¢)(y,v) = (y,§), + (z,v) =0, it
now follows that dg,. ) : T(z.¢)(C x C*) — To(A') is trivial. O
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We now make a study of flexc« — Al at regular points (z,£) € TE(V )reg. Let
7 be the ideal sheaf for the closed subvariety A¢ in C x C*. Using the regularity of
(x,€) € TE(V )reg, we may choose an open affine neighbourhood U of (z,¢) in C' x C*
such that U N A¢ is an open affine neighbourhood of (z,¢) in Ac. The sequence

0— I(U) — Ocxcox (U) — Opq (U N Ac) —0
is exact. Let @CXC*/AC (U) be the completion of O¢yx e+ (U) with respect to the ideal
Z(U); then
(88) Ocxc/ac(U) = One(UNAQ) [z, - 2]
where e is the codimension of A¢ in C' x C*; see for instance, | , Theorem 11.22

and Remark 2]. Recall g:= f|oxc+. We denote the image of g in 6C><C*/AC(U) by
gu. Using multindex notation, gy may be written in the form

gu="> arz',
T
with I = (i1,...,4.) where i; € N; here, ar = a5 € Op, (U N A¢).
Again using the regularity of (z, ), the completion of Oy, at (,&) is

Orc (a,6) = Cllya, - - - yall
where d = dim A¢ and
(89) OCXC*,(I,{) = OAC,(I,E)[[ZD" .,Ze]].
Note that this defines a splitting of the exact sequence

0= Zize) = Ocxe,(z,6) = One,(z,e) = 0.

Let g(m be the image of f|oxo+ in @Cx()*,(z,g)- Then
(90) Jwey = Y ar(y)’
[1]>2

where a;(y) € @Ac,(x,f) is the image of ay under Op, (U N A¢) — 6Ac,(m,§)-

Set |I|:=1i1 + -+ +1i.. By Lemma 5.3.2, floxc+ : C x C* — Al vanishes on A¢ so
ar(y) = 0 for |I| = 0. By Lemma 6.7.1, flcxc+ : C x C* — Al is singular along Ac
so ar(y) = 0 for all |I| = 1. Consequently,

(91) Jwey = Y ar(y)z".

11>2

Lemma 6.7.2. — If (z,€) € TE(V)reg then the rank of the Hessian for the function
flexes : C x C* = S at (x,€) is most dim C + dim C* — dim V.

Proof. — As above, set g:= f|cxco~ and e:= dim C + dim C* —dim V. First, observe
that the Hessian for g at (z,§) is determined by the image g(,¢) of g under the map

Ocxc+(C x C*) — @Cxc*,(rf):
H(9) (2,e) = H(J(z.6))0-
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Recall from (90) that we may write g, ¢) in the form
G(z,6) = Z ar(y)z".
111>2

We now break the Hessian for g, ¢) at 0 into blocks:

. A B
H(g(z,ﬁ))o = (tB A/> 5

where A and A’ are the matrices of partial derivatives

82
A = ar(y)z!
7 By Oy, 152 1)

0.0y

for 1 <i,5 <d, and

82
! ~ I
A = o507, > u®= | oo

[7]>2
for 1 <1i,j < e, and where B is the matrix of mixed partial derivatives
0? . I
Bi = 5y o7, > a2’ ) |

[1]=2

for1<i<dand1l<j<e Now
Aij: Z ( > dI(ﬂ)) ZI| =0
1712 0y 0y; ©0
because 2| = 0 for all |I| > 2, and

o= (54 (324) -

11>2

because gi; o = 0 for all |I| > 2. Therefore,
J

rank H(g,,¢))o = rank A’.

Since
rank A’ < e =dimC 4 dim C* — dim V,
this concludes the proof of Lemma 6.7.2. O

Lemma 6.7.8. — If (z,€) € TE(V)reg then the rank of the Hessian for the function
floxcr : C x C* — Al at (z,€) is least diim C + dim C* — dim V.

Proof. — In this proof we use the analytic site. Consider the covering

HxH — CxCC*
(h, k') = (Ad(h)(z),Ad(R)(£))
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After passing to a neighbourhood of (1,1), pullback through the exponential map
exp : h — H to define

G:hxh — CxC*
(2,2) = (Ad(exp(2))(x), Ad(exp(2))(2)).
Then
rank ’H(g)(m,g) = rank H(g(l75))0 = rank’H(G)(O,O),
where H(G) (0,0 is the Hessian of G at (0,0). Recall that

Ad(exp(z))(x) =T+ [va] + %[zv [Zﬂz]] toeet ni[z, [’277[’2’1"]]] R

in the formal neighbourhood of 0 € b; likewise for Ad(exp(z’)(£). Define Z(z) and
Z'(Z") by

Ad(exp(2))(z) =z + [z,2] + Z(z) and Ad(exp(2'))(&) =&+ [, &+ Z'(2)).
Then

G(z2) = (2][z,&) + ([24]]¢)
H(2(2)]€) + ([ [2,€]) + (2] 2(="))
+([z,2] [ Z2'(2")) + (Z(2) | Z'(2)

Since the second-order part of G(z,2') is (Z(2) | )+ ([z,z] | [¢/,€] )+ (x| Z' (") ), the
Hessian of G at (0,0) takes the form

H(G)(O,O) = (tN M’

where M and M’ are the matrices of partial derivatives
0? 02
- r_ Y 1t
Mij_aziazj(z(z)lg)‘(oyo)a and Mij_ az;&z;(x'Z(z))’(OvO)’
and where N is the matrix of mixed partial derivatives

0? !
Nij = m([z,x] | [2 ’5])‘(070)'

Thus,
rank H(G) 0,0y > rank N.
In fact, the matrix N is the matrix for the bilinear form
hxh — Al
(2,2) = ([za]l[2,€])
Since
([ 2]l [, €]) = ([€, [z, 2]l | 27)

the rank of N is diml[¢, [h, z]].
We now show that dim[¢, [h, z]] is dim C' + dim C* — dim V. First, note that

[b,2] =T:(C)  and  ker[¢, Jlv = T¢- (V)

S0
dim[¢, [h, 2]] = dim T, (C) — dim T¢. (V") = dim C — dim T¢. (V).
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Since (z,€) is regular, Té. (V*)1(C x {€}) = {(1,€) € C x {€} | [y,€] = 0} contains
an open neighbourhood of (z,) in T (V™) = {(y,€) € V x{&} | [y,€] = 0}. Hence
T¢w (V*) € T(C) and
dim 7. (V*) = dimV — dim 7 (C*) = dim V' — dim C*.
Therefore,
dim[¢, [h, z]] = dim C' — (dim V' — dim C¥),
which concludes the proof of Lemma 6.7.3. O

We remark that [¢, [h, 2] is also the image of the map T{, ¢)(C x C*) — b given
by (y,v) — [x,v] + [y, &], so the proof of Lemma 6.7.3 also shows that

Tioe)(Ac) = {(y,¥) € Tio,)(C x C*) | [, v] + [y, €] = 0}
for (z,€) € TE(V )reg-

Lemma 6.7.4. — Recall the definition of @Cxc*/Ac(U) from (88). The open affine
U C C x C* may be chosen so that there is an isomorphism

@CXC*/AC (U) = OAC(Um AC)[[(El, e ,,CCe]],
such that the image of floxc+: C x C* — Al in @CXC*/AC(U) 18
ulz% + -+ ue:ci

forug,...,uc € Oa,(UNA¢). Here, e =dim C 4 dim C* — dim V.

Proof. — We have seen that we may choose U and arrange so that the image of
the function g : C x C* — Al in (/D\CX(;*/AC(U) = Opc (UNAQ)[[21,-- -, 2e]] will
have the form gu = 3 752 arzl. Set A = Oa. (U N Ag)[[22,---,2]] and let m be
the ideal in A generated by za,...,z.. Write g ey = >0 obp2". Then by € m
and by € A*. Make the substitution z; = wy + & to give ¢ = >, o, caw] for
cn € Al[z]]. Importantly, ¢1(x) = by + 2bsx 4+ - -+ so ¢} (z) € A* (formal derivative).
Since we know that c;(x) = 2ba(z) + -+ mod m, we know ¢y (x) has a root  +m
in A/m. By the extension of Hensel’s lemma to formal power series, ¢1(z) = 0 has
a solution in A, call it Ay € A. Now the linear substitution z; +— x1 + hy sends
Oac (UNAg)[[z1,. .., 2ze]] to Oac (U N Ag)[[z1,22. .., 2c]] so that the image of g, ¢)

to takes the form by + box? + b33 + -+ = by + ux?. As an element of A[[z1]], now
9(z,¢) has no linear term in z; and u; € A[[z;]]*. Continuing inductively concludes
the proof of Lemma 6.7.4. O

Theorem 6.7.5. — For every Hy-orbit C C Vy and for all (z,£) € TE(V ) regs
(EVcIC(C))(Lg) 2 Ligo[dimC+1 —ec]

where ec = dimC + dim C* — dimV and L, ¢) the stalk of a local system for a
quadratic character, described in the proof, of an etale meighbourhood of (x,€) in
TE(V ) reg- In particular

rank Eve IC(C) = 1.
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Proof. — By Lemma 6.6.1,

EVCIC(C) = (R(I)f\cxc* ]leC*) [dlmC]

TE(V)res
Let U be an open affine neighbourhood of (z,£) in C' x C* and recall the definition

@Cxc*/Ac(U) from (88). Recall uy,...,u. € Op. (U N A¢) from Lemma 6.7.4. Set
U’ = U,,...u,; this is again an open affine neighbourhood of (z,€) in C' x C*. Let

j:Spec(Ocwc jae (U') = C x C*
be the map induced by Ocxcx(U) = Ocyorjae (U’). Then
(R(I)f|0xc* HCXC*)(I@) =J" (R(I)f|0xc* HCXC*)O
By Lemma 6.7.4, there is an isomorphism
O iae(U") = Oag (U N AS) 21, .-, 2]
where d = dimV and e = dim C + dim C* — dim V, such that the image of f|oxc-

in 6C><C*/Ac (U') is urz? + - - - + u.x?. Note that by our choice of U’, we now have
Uty ..., Ue € Op, (U ' N Ac)*. By smooth base change,

7" (Rl Toxer) o = (R‘buw%+~‘+uew§1)o-
By definition,
ROy 42 4que2l = ROx1x
where
X = Spec(Op. (U N AS)[[H][x1, - - - s 2]/ (wrw} + - - - + ue? — t)).
Write X =Y xg Z with
Y = Spec(Ox (U N Ac)[[t]])
and
Z = Spec(Cla1, .., Lo, Uty vy Ues Juy o, [H]]/ (U123 + -+ + uex? — 1)),
Now, by smooth base change, the Sebastiani-Thom isomorphism, and Lemma 6.2.1,
Rox1x =1y KRP1,.
Using Proposition 6.2.5, it now follows that
(EVCIC(C))(I@ = (RPz1x),[dim C] = Lo[dim C + 1 — €]

where L is the rank-1 local system described in Proposition 6.2.5. This concludes the
proof of Theorem 6.7.5. O

6.8. Perversity. — We now show that when shifted by the appropriate degree, the
functor Eve takes perverse sheaves to perverse sheaves.

Proposition 6.8.1. — Let C C V) be an Hy-orbit. If P € Pery, (V) then
Eve Pldim C* — 1] € Perg, (TE(V ) req)-
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Proof. — From (83) recall that Ev[dim C* — 1] : Dy, (Vi) = Du(TE(V )reg) is defined
by

Ev[dim C* — 1]P = (R®y.. [-1] (P X L= [dim C™))) |75 (v),ep -
Since C* is smooth, 1o~ [dim C*] is perverse, so P X 1o« [dim C*] is a perverse sheaf

on V) x C*; see also | ,4.2.4]. The restriction of PR 1c+[dim C*] from Vy x C*
to the open ( | )71(AL) is also perverse. It follows from | , Proposition 4.4.2]
that R®y,_. [-1](P X Lo« [dim C*]) is perverse; see also | , Théoréme 1.2]. It is

also Hy-equivariant by transport of structure. The functor
R®s..[-1]((+) K 1o [dim C*]) : Dy, (Vo) = D (f5-(0))

takes equivariant perverse sheaves to equivariant perverse sheaves.
By Lemma 6.8.2 for every P € Perg (V) the support of R®y.. (P X 1¢+) is con-
tained in
{(z,§) e Vx| [2,§] = 0}.
Thus, the restriction of the perverse sheaf R® . [—1](P X Lc+[dim C*]) from
{(z,8) e Vx| (2]|€) =0}
to
{(z,8) eV xC" | [2,§] = 0}
is again perverse. Since T (VA )reg is open in {(z,£) € V x C* | [z,£] = 0}, it follows

from | , Section 1.4] that the restriction
EVC P[dlm Cc* — 1] = (R(I)fc* [—1](7) X ]10* [dlm C*])) ng(v)\)reg
is perverse. This proves 6.8.1. O

Lemma 6.8.2. — For every P € Perg(V), the support of R®y.. (P X lLg-) is
contained in {(z,§) € V. x C* | [z,&] = 0}.

Proof. — Since R®y,_. is exact, we may assume P is simple: set P = ZC(Co, Lo),
where Cy C V is an H-orbit and Ly is a simple H-equivariant local system on
Co. By Proposition 6.5.1, the support of R®y.. (P K Lc+) is contained in Cp. Let
T ,CV'O — Cp be a proper morphism with 6‘6 smooth over s such that ZC(Cy, Lo)
appears, up to shift, in W*IC(E*T)). Now, define 7’ :=7 X idg~ : 6’6 x C* — Cy x C*
and g:= fo« o7 : ’cvo x C* — §. To simplify notation somewhat, we set Y = 6‘(/) x C*
for the remainder of this proof. Arguing as in the proof of Lemma 6.5.2 using proper
base change | , Exposé XIV, 2.1.7.1], it follows that

ﬂ;Rq)g]].y = R(I)fc* 7T*]].y.

Then R®y, .. (ZC(Cy, Lo) K Le+) is a summand of this sheaf, up to shift.

It follows from Lemma 6.2.2, that the support of R®,1y is contained in the
singular locus of Y. Thus, to prove the lemma it is sufficient to show that the
singular locus of Y is contained in {(Z,&) € Cy x C* | [7(Z),€&] = 0}. Accordingly,
suppose y = (Z,£) € Y is singular. Since Y is smooth over s, there exists an
open neighbourhood U C Y containing y and a closed embedding U — A™ such
that dg, € Ty;,(A") for an extension ¢ of gly to an open neighbourhood of U in
A"; see [Gai, Theorem 3.1.2|, for instance. Observe that the stalk 77 (A™) of the
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conormal bundle T35 (A™) is precisely the complex vector space of dh, for h € I(U).
Without loss of generality, we may take the embedding U — A™ to be of the form
y — (2,7 (y)), or equivalently (Z,&) — (z,m(Z),&), where & — (z,7(Z)) is an affine
embedding of C. Observe that C* C V* comes with an affine embedding. Now
I(Y) = I(Cy x C*) = I(Co)®I(C*) in the coordinate ring of A™ and the projection of
dgy € T, (A™) onto I(C*) is d(m(Z) |- )e. Thus, d(m(Z)]- )¢ € TZ. (V™). Identifying
the dual of V* with V', as in Section 5.4, gives
T e(VH) ={z eV | [x,£] =0}
Thus, the singular locus of Y is contained in

' ({(2,6) € Co x C° | [a,€] = 0}) = {(&,€) € Co x C" | [w(#),€] = 0}
Thus, the support of R®,1y is contained in this variety. Since
(TiR®yLy ), o = H® (7 (z) x {€},RP,1y),

it now follows that the support of =, R® 1y = RPs ., m 1y is contained in the subset
{(z,§) € Cy x C* | [x,§] = 0}. Since RPs_.(IC(Co, Lo) W 1¢-) is a summand
of R®;,_.m 1y, its support too is contained in {(z,£) € Co x C* | [z,£] = 0}, as

claimed. O
Using Proposition 6.8.1, we now define

(92) PRve = Bve[dim C* — 1) : Perg (V) — Perg (TH(V )reg)-

Also define

(93) PRv : Perg (V) — Perg (Tg (V)ieg)

by

(pEV P)|Té~(v)reg = pEVC P.

6.9. Local systems on the strongly regular conormal bundle. — Recall the
definition of T4 (V )sreg € T (V )reg from Section 5.5.

Proposition 6.9.1. — Suppose TE(V)sreq is non-empty. If P € Perg (V) then the
restriction of PEve P to TE(V )sreq is a local system concentrated in degree dim V.

Proof. — By Proposition 6.8.1, we have that PEvg P is an H-equivariant perverse
sheaf on T4 (V )sreg. From Section 5.5 we see that T5(V )sreg € T (V)reg is open.
Then the restriction of PEvg P to T (V )seg is an H-equivariant perverse sheaf, by
[ , Proposition 4.4.2], and thus a direct sum of simple perverse sheaves. Simple
perverse sheaves on T (V)seg are perverse extensions of simple H-equivariant local
systems on H-orbits in T (V)seg. By Proposition 5.5.1, T5(V)sreg is a single H-
orbit, so the restriction of PEve P to TC*‘(V)Sreg is an H-equivariant local system
on TH(V)sreg in degree dim T (V )greg. Since we assume T (V)greg iS non-empty,
dimTE(V)sreg = AimTE(V)reg. Thus, the restriction of PEve P to TE(V)sreg s
concentrated in degree dim T4 (V )reg = dimTE(V) = dim V. O

Using Proposition 6.9.1, we now have an exact functor
(94) Bwsc = PEve[—dim V]|1s (v),,., : Pera (V) — Locu (T5(V )sreg),
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for each H-orbit C' C V. Putting these together defines
(95) Evs : Perg (V) — Locu (T (V)sres)

so that
EVS,P|TC*;(V)smg = EVSC P
Any attempt to understand the exact functor

(96) Evs : Perg (V) — Locu (T (V)sres)
naturally begins with the local system 7 € Locy (T77(V )sreg) defined by
(97) T|Té~(v)sreg = 72,' = EVSC IC(C) S LOCH (TC*' (V)sreg)'

It follows from Proposition 6.6.2, Part (a) that for every (z,£) € T4 (V)sreg;
To@e) = (RP¢[-1]1c), [ec],

as representations of Zy(x,§), where

(98) ec:=dimC +dimC* —dim V.
By Proposition 6.6.2, Part (b)
(99) EVSC IC(C, E) - 76 ® (E g ]]_C*) |Té(v)sreg7

for every H-equivariant local system £ on C.

By Proposition 5.6.1, every Arthur parameter 1) € Q(*G) determines a base point
(g, Ep) € Tg}w(V)sreg. By Proposition 5.7.1, the equivariant fundamental group
of T¢, (V)sreg is Ay. Thus, the base point (2y,8y) € T¢, (V)seg determines an
equivalence of categories

(100) Locu (T¢., (V)sreg) — Rep(Ay).
Combining (94) and (100) defines an exact functor

(101) Evy : Perg (V) — Rep(Ay).
For instance

(102) Ty := Evy IC(Cy)

is the representation of A, corresponding to 7¢,,, under the equivalence (100), so
Proposition 6.6.2, Part (a) shows how to calculate this representation of A.

More generally, for every stratum C C V', the microlocal fundamental group A‘(}‘ic
of C is the equivariant fundamental group of a generic H-orbit in T (V )reg, Which

may be chosen using | , Lemma 24.3(f)], for example. In this way, every
sufficiently regular (x,§) € TE(V )reg determines an exact functor
(103) Ev(z¢) 1 Peru (V) — Rep(AZ™).

This generalizes (101), since Ay is the microlocal fundamental group of Cy.

6.10. Normalization of Ev. — We normalize Ev by the following definition.

Definition 2. — Let
NEve : DH(V) — DH(TE'(V)TEE;)’
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be the functor defined by
NEve := (Eve ZC(C)) Y @ Eve,
where (Evo ZC(C))" = Hom (Evc Ic(C), ]ng(V)reg)E here and below we use the left

derived tensor product. Likewise define
NEv : DH(V) — DH(T;}(V)reg)

so that
NEVC .7 = (NEV .7) |Té(v)reg'

We refer to NEv as the normalised microlocal vanishing cycles functor.

Supposing T (V)sreg is non-empty, we will mainly be concerned with this functor
after restriction from T¢(V)reg t0 TE(V )sreg:

(104) NEwsc F := (NEve F)
Then
(105) NEwsc = T4 @ BEvsc

where 7¢ is given in (97) and 77 is its dual local system.

TE(V)sreg)

Theorem 6.10.1. — Let A : Wp — G be an infinitesimal parameter. Suppose
TE(V ) sreg 15 non-empty.

(a) The functor NEvsc : Perg, (Vi) — Locu (TE(V ) sreq) is exact.
(b) If P € Perg, (V) then NEvsc P = 0 unless C C supp P.
(¢) If P € Perg, (V) then
rank(NEvsc P) = rank(R®¢P),,
for every (z,§) € TE(V) sreg-
(d) For every Hj-equivariant local system L on C,

NEwsc IC(C, £) = (£ R 1¢+)

Té‘ (Vx) sreg )

i particular,
rank NEvsc ZC(C, £) = rank L.

Proof. — By first part of Proposition 6.4.1, Evg is exact. Since restriction from
TE(V )reg t0 TE(V )areg 1s also exact, so is Evsc. Since NEwsc is obtained by tensoring
Evsc with TCY , NEvs¢ is also exact. NEvsg produces local systems by Proposition 6.9.1.
This proves Part (a). Part (b) is a consequence of Proposition 6.5.1 and the definition
of NEvsc and the fact that rank 7Y = 1 by Theorem 6.7.5. Part (c) follows from
the second part of Proposition 6.4.1, using Theorem 6.7.5. Part (d) follows from
Proposition 6.6.2, Part (b) and the isomorphism 75 ® To = 175 (V)ores» 2GaIN using
Theorem 6.7.5. O

Note that the functor
BEvsc : Perg, (Vi) — Locu (TE(V )sreg)
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satisfies the conditions appearing in Theorem 6.10.1 except the first part of Theo-
rem 6.10.1, Part (d) since, for every H-equivariant local system £ on C,

EVSC E(C, E) = TC ® (E X ]].C*) Té(VA)sreg'

Moreover, the rank-1 local system 7¢ is in general not trivial as a representation of
the equivariant fundamental group AR of TE (VA )sreg-

If v € QA('G) is an Arthur parameter with infinitesimal parameter A, then
Tg}w(V,\)sreg is non-empty by Proposition 5.6.1. In this case we use the equivalence
(100) and replace Evsc , With the functor Evy, the local system 7T, with the repre-

sentation 7y of Ay, and define
(106) NEvy, ::7:2/ ® Bvy .

This is the functor appearing in (10).
Corollary 6.0.1 is simply a rephrasing of Theorem 6.10.1 using Proposition 3.6.2.

7. Arthur packets and ABV-packets

In this section we articulate the conjectures which, taken together, lie at the heart
of the concept of p-adic ABV-packets. In this section, G is a quasi-split connected
reductive linear algebraic group over F. When referring to work of Arthur, we will
further assume G is a split symplectic or special orthogonal group.

7.1. ABV-packets. — We fix an admissible homomorphism A : Wr — LG and
recall the Vogan variety Vi from Section 3. As above, set Hy:=Zz()).
From Proposition 3.6.2 recall that the local Langlands correspondence for pure

rational forms determines a canonical bijection between isomorphism classes of simple
objects in Perg, (V) and Hpure x (G/F):

PerHA (V)\)simple — Hpure,,\(G/F).

/iso
Recall that we use the notation P(m, ) for a simple Hy-equivariant perverse sheaf
on V) matching a representation (m,d) of a pure rational form of G under this
correspondence.

Definition 3. — For any Hy-orbit C in V), the ABV-packet for C' is
(107) IABY (G /F) == {[n,8] € Mpurea(G/F) | Bve P(m,8) # 0}
If C = Cy for a Langlands parameter ¢, we sometimes use the notation

MABY (G/F):=TABY , (G/F).

pure,¢ pure,Cy

7.2. Virtual representations attached to ABV-packets. — From Section 2.11
recall the definition of the virtual representation

Ty = Z (ay, [m,6])y e(d) [, d],
[“vS]EHpureww(G/F)

based on Arthur’s work.
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Definition 4. — Let 1) be an Arthur parameter for G with infinitesimal parameter
X\ : Wr — LG. Consider the virtual representation
g = (=1 Y (—1)dimsupp P(™0) rank By, P(mr, d) e(d) [r, 4],

(.0l €IARY ¢, (G/F)

where Evy, : Perg, (Vi) — Rep(Ay) is defined in (101). Recall from Section 2.11 that
e(d) is the Kottwitz sign attached to the pure rational form § € Z!(F,G).

Let A be the infinitesimal parameter of . Then, using (92), (101), (98) and
Proposition 6.4.1, we have

(_1)dim Cy—dim supp P(7,0) rank EVw 7)(7.[., (5)
= rank (Evy P(m, 5)[dim Cy — dim Cr 5])

= rank (pEva (m,9) [dlm Cy —dimVy — dim C 5])(%’&)
= rank (Evg, P( —1+ dim G}, 4 dim Cy — dim V3 — dim Cx 5])(%7@)
= rank (Evcw —1+ec, —dim C’,T,g])(%@p)
= rank (R®¢, [-1]P(r 5)[ dlmC’,Tﬁg][ecw])%
= rank (Rw—uciﬁ[ecw])m ,
where, with reference to Proposition ;.6.2, we set
L 5 =P(r,0)[— dim Cr 5] = IC(Cr 5, Lr 5)[— dim Cr 5]
So, Definition 4 may also be written in the form
(108) = 3 rank (R% —1)ct 76[%]) e(8) [, 4].
[ o)A ¢ (G/F) o
Definition 5. — Let ¢ be an Arthur parameter for G with infinitesimal parameter

A : Wr — LG. For any s € Zg (1), consider the virtual representation

771'2'5; = (—1)dim Z (—1)dimsuppP(™0) trace, NEvy, P(m,d) e(d) [r,d],

[m SENARY ¢ (G/F)

where as is the image of s in Ay and where NEvy, : Perg, (Vi) — Rep(Ay) is defined
n (106). Also set ngE" r=77$',5¥-

7.3. Main conjecture. — Recall the definition of IT,ure,y (G /F') from Section 2.10.
Recall the definitions of 7y, and 7y, from Section 2.11.

Conjecture 1. — Let G be a quasi-split symplectic or special orthogonal p-adic
group. Let ¢ : Lp x SL(2,C) — G be an Arthur parameter. Then

(a) Pure Arthur packets are ABV-packets:
Mpure,s(G/F) = e s, (G/F).

pure,q&w
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(b) Arthur’s stable distributions are calculated by Ev:
my =N
(¢) Endoscopic transfer of Arthur’s stable distributions are calculated by NEv:
Thp,s = Uﬁ,ﬁéa
for every semisimple s € Zz(1)).
By Proposition 6.4.1, Conjecture 1(a) is equivalent to the claim: for all [r,d] €
Hpure,)\(G/F)v
[7,0] € pure,u(G/F) if and only if (R®¢, P(, 5))%1 # 0.

Assuming Conjecture 1(a), and with reference to (25), Conjecture 1(b) is equivalent
to: for all [, 6] € Hpure,u(G/F),

(ay,[m,0])y = rank (Rq’&p [*1]»55“5[601/,])% ,
which is to say,
(ay, [1,0])y = (—1)3im Cv—dimsupp P(7.0) pani By, P(, §).
Likewise, assuming Conjecture 1(a), Conjecture 1(c), is equivalent to the claim: for
every [m,0] € Hpure, (G/F) and for every semisimple s € Z5 (1)),
(109) (asay, [m,d]),, = (—1)dim v =dim Crs) trace, (NEvy, P(m,d)),

where ay € Ay is defined in Section 2.11 and a, is the image of s in Ay. Thus,
Conjecture 1 promises a new way to calculate the character (as, [, d]) » When  is
an admissible representation of G4(F') for a pure rational form ¢ of G, and when
the complete Langlands parameter for (m,0) is known; this fact is illustrated with
examples in Part II. Conjecture 1 also suggests how to define the character for
Langlands parameters that are not of Arthur type. We also show several examples of
that in Part II.

Assuming Conjecture 1(a), it follows that Conjecture 1(c) implies Conjecture 1(b).
To see this, recall (106) that NEvy, = T,/ ® Evy, so

(110) UDE = (traceagl ’7;,) 7751,57
where
775;\1,3 = (—1)dim Z (—1)dimsupp P(m0) trace, (Evy P(m,0)) e(d) [m,d].
[md]€lpiy e, (G/F)
Taking s = 1, this gives
ngE" = nmE{ = (trace; Ty) 775}",1 = (rank Ty) 775".

Using Theorem 6.7.5, this becomes

NEv Ev
(111) My =10
So, Conjecture 1(c) gives ny.s = 771'2'5; which implies 7y = 771'25’ = 775", whence
Conjecture 1(b).
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Conjecture 1 may be expressed using the pairing of Grothendieck groups
(112) (+,) : Kllpure A (G/F) x KPerg, (V)) = Z
introduced in | , (8.11")(a)] (see also | , Theorem 1.24]) which is defined
on I,ure 2 (G/F) and isomorphism classes of simple objects in Perg, (Vi) by

(.81, P) = {e(P)(—1)dimsuvp<7’>, if P = P(,0)

0, otherwise,
where e(P) is the Kottwitz sign of the group G, for the pure rational form ép of G
determined by P, as in Section 2.7. Conjecture 1(a) and (b) together are equivalent
to:

(113) Ny, P) = (—1)4™ rank Ev,, P,
for all P € KPerp, (V). In its entirely, Conjecture 1 is equivalent to:
(114) (N5, P) = (—1)dimCy traceq, (NEvy, P),

for every semisimple s € Z5 (1)) and for every P € Pery, (Vy).

7.4. Arthur perverse sheaves. — The pairing (112) may be used to attach to ¢
an equivariant perverse sheaf Ay on V), defined up to isomorphism, from which the
virtual representation 775" is easily recovered:

(115) Ay = @ (rank Evy, P) P.
PePery, (\/>\)S/iir;nople
Then '
771'25, = (71)d1mC¢ Z <[7r75]7“41/;> [7’(,5].

[7,6]€pure, A (G/F)
If we assume Conjecture 1(a) for a moment, this gives
Ty = (71)dimcw Z <[7T55]5A¢> [an]'
[m.0]€pure A (G / F)

By Proposition 6.5.1, the summation appearing in the definition of A, (115) can
be taken the over simple P € Perg, (Vi) supported by C_w:

Ay = @ (rank Evy, P) P.

PePery, (Va)72P', supp(P)CCy

/iso

Taking the cases when P = IC(Cy, £), consider the summand pure packet perverse
sheaf

(116) By = P (rank Eve, ZC(Cy, £)) IC(Cy, L)

£€LOCH>\ (Cy )Simple

/iso
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where the sum runs over all simple H-equivariant local systems £ on Cy. By (99),
rank Evy, ZIC(Cy, £) = rank(L), so

By = T (rank £) ZC(Cy, L).

LGLOCHA (Cy )Simple

/iso
The simple perverse sheaves appearing in By, correspond exactly to the irreducible
admissible representations in the pure Langlands packet Ipure,¢, (G/F), where ¢y, is
the Langlands parameter matching v under Proposition 3.2.2.
The perverse sheaf

(117) Cyp = &b (rank Evy, ZC(C, L)) IC(C, L)
IC(C,L)EPery, (Va)5 P, C<Cy

/iso

is called the coronal perverse sheaf for Cy, where the sum is taken over all C' C C_w
with C' # Cy and over all simple Hy-equivariant local systems £ on C. So

(118) .Aw ZBw @Cw.

7.5. A basis for strongly stable virtual representations. — Definition 3 of
HSEXC applies to all strata C' C V), not just those attached to Arthur parameters.
But in Section 7.3, we only made conjectures related to ABV-packets of the form
HSEXCW for some Arthur parameter v with infinitesimal parameter \. However,
Definitions 4 and 5 extend from Arthur parameters ¢ with infinitesimal parameter \

to all strata C' in V) as long as T4 (V )sreg 1S non-empty, as follows.

Definition 6. — Let \ : Wr — LG be an infinitesimal parameter. Let C C V)
be an Hy-orbit such that T¢(V)sreg is non-empty. Suppose s € Zg(x,§) for some
(2,8) € TEH(V )sreg- Set

ngE‘s’ = (—1)dimc Z (—1)dimsuppP(m0) trace, NEvsc P(m,d) e(d) [x, ],
[7,6]€TABY _(G/F)

pure,C
where a, is the image of s in A ¢ = mo(Zpu(r,§)). Likewise define 775‘{5. Set

NEv ._ , NEv Bv._ B
Ne™ *=1Nca and n¢ =0

It is easy to show that the definition of ngﬁg is independent of the choice of (z, &).
Conjecture 2, below, is an adaptation of | , Conjecture 8.15]. It suggests how
to extend the definition of Arthur packets from Langlands parameters of Arthur type
to all Langlands parameters and also how to find the associated stable distributions.

Conjecture 2. — Let G be a quasi-split connected reductive linear algebraic group
over F. For any A € A(*G) (Section 3.1) and any stratum C C Vi, T¢(V) )sreg is non-
empty and the virtual representation 77('\}5’ is strongly stable in the sense of | ,
1.6]. Moreover,

{ngEV H)-orbits C' C V) }
is a basis for the Grothendieck group of strongly stable virtual representations with
infinitesimal character A.
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It should be noted that strongly stable virtual representations of G produce stable
virtual representations, and thus stable distributions, of all the groups G4(F) as ¢
ranges over pure rational forms of G. It should also be noted that in Conjecture 2
we dropped the hypothesis that G is a quasi-split symplectic or special orthogonal
p-adic group, which appeared in Conjecture 1, and replaced it with the hypothesis
that G is any quasi-split connected reductive linear algebraic group over F. The
scope of Conjecture 2 is therefore very broad, as it refers to all pure inner forms of
all quasi-split connected reductive p-adic groups.

In Part II we gather evidence for Conjectures 1 and 2 by verifying them for 38
admissible representations of 12 p-adic groups.

7.6. Remarks on stratified Morse theory and microlocalisation. — In the
discussion after [ , Theorem 24.8|, one finds some words about the relation
between stratified Morse theory, microlocalisation and the vanishing cycles functor;
these words are clarified considerably in [ ]. As our goal in this article was
to establish the properties of NEv needed to make precise definitions and testable
conjectures about (what we call) ABV-packets and their associated distributions, we
did not find it necessary here to discuss the relation between stratified Morse theory,
microlocalisation and vanishing cycles in any serious way. Even for the calculations
in Part II, that is unnecessary. We expect, however, that progress toward proving
the Conjectures in this article and in | ] in full generality would be aided by an
ability to pass between these three perspectives, rigourously.

With this in mind, we offer some words of caution. The definitive reference for

stratified Morse theory is, of course, [ |. Vanishing cycles appear only once
in this book, in a remark in an appendix | , 6.A.2]: “Then, the Morse group
A¢(F) is canonically isomorphic to the vanishing cycles R'®(F), of | |7 In

[ , 6.A.1] we see how to calculate the Morse group, using normal Morse data
according to the formula AL(F) = H'(J, K;F), where the pair (J, K) is the normal
Morse data corresponding to any smooth function f : M — R such that df (p) = &.
In the proof of | , Theorem 24.8] we see that the stalks of Q&i¢(F) are Morse
groups, or more precisely, ngic(}“)z('xyg) = H=ImC(J K F) for (2,€) € TE(V )reg. In
this article we show that the stalks of Evo/(F) are given by vanishing cycles, or more
precisely, (Evg F) ey = (R®F), for (z,§) € T5(V )reg. For this reason, one might
expect that, after invoking | , Exposé XIV, Théoréme 2.8] to pass from the
algebraic description of R® based on | , Exposé XIII] to the analytic version of
R® given in | , Exposé XIV], perhaps Q%¢(F) coincides with Eve F[— dim C].
But that is false, and not just because something has gone awry with the shifts. The
difference between the functor Qg‘ic and the appropriately shifted analytic version
of Ev is easy to miss, because they do produce sheaves with the same support and
rank: ranng]iC(]:)z('Iyg) = rank Evz(;féi)mc(f[ec —1]) for all (z,£) € TE(V)reg and
for all i € Z. However, as spaces with an action of Zy(x,¢), these stalks are not
equal, which means that the sheaves produced by g‘ic and the sheaves produced
by Eve[—1+ ec — dim C] are different as equivariant sheaves. Even using microlocal

Euler characteristics, one cannot see this issue.
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This discrepancy is entirely responsible for introducing the functor NEv in this
article, in Definition 2. To bring Evo and Q‘(’}ic into alignment, we use an idea from
stratified Morse theory. The local system T := BEvsc ZC(C) is designed play the role
of tangential Morse data. Examples in Part II show that the local system 7¢ is not
trivial in general. Recall that NEvs is formed by twisting Evs by the dual of this non-
trivial sheaf: NEwsc :=75 ® Evsc. Since rank 7¢ = 1 by Theorem 6.7.5, the stalks of

NEvsc F satisfy the relation
(119) (EVSC ]:)(Iyg) = (R@g[—l]lc)m[ec] & (NEVSC ]:)(x,g)-

This relation is designed to mirror | , Section 3.7.The Main Theorem], given
colloquially there as

Local Morse data = (Tangential Morse data) x (Normal Morse data).

Schiirmann has shown how to interpret this in the language of vanishing cycles, in
certain contexts; see especially | , Theorem 5.4.1 (5.87)].

We suspect, therefore, that it may be possible to express the stalks of NEwsc F
using normal slices, as we now explain. Suppose G is split, the infinitesimal parameter
A : Wg — LG is unramified and A\(Fr) = s) x Fr, where s, € G is elliptic. Observe
that Section 4, especially Theorem 4.1.1, shows how the general case can be reduced
to this case. With reference to the exponential function for jy, set z:= logsy. Then
z € jx0 = bx. For every x € V) = j 2, there is a unique &, € Vy' = j) _2 such that
(x,&z,2) is an SL(2)-triple in j5. Then x+ker ad &, is a transverse slice to the Jy-orbit
of x in jy | , Section 7.4] and its intersection with V),

Sty =z +{y € VA | [y,&] = 0},

is a transverse slice to the Hy-orbit C of x at x. Suppose £ € TE,I(VA)sreg- Then we
expect
(120) (NBvsc F) () = (RPg|q, [-1](Fls,)) , [~ dim C],
for 7 € Dy, (Vi), in which case (119) becomes

(RBe[1]F), e — dimC]

= (Re¢[-1]1c)s[ec] ® (RPg g, [-1](Flst,)), [= dim C],
or equivalently,
(121) (RBe[-1)F). = (Rbe[-1]1c), ® (g, [~1](Fls.)).

That is exactly what one finds in | , Theorem 5.4.1 (5.87)]. Moreover, all the
examples in Part II conform to expectation (120). We believe, therefore, that NEvs
coincides with Q™ic,

Expectation (120) would also, in principle, allow us to use | , Proposition
6.19] and | , Proposition 7.7.1] to identify rank NEvs with the microlocal Euler
characteristic. However, the proofs of those two results from | | rely in the
general case on | | and the relevant result there makes use of | , Théoréme
3.2.5]. As we remarked in Section 6.3, | , Théoréme 3.2.5] does not exist in the
published version of the original notes, and we have not been able to procure the
original notes, so using this approach would oblige us to use a result for which we
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cannot find a complete proof in the literature. That is another reason why we have
built Ev from scratch and established its main properties by hand in Section 6.

PART II. EXAMPLES

Each example follows essentially the same four-part plan, explained in some detail
in Section 8 and outlined here.

After fixing a connected reductive group G over a p-adic field F' and an infinites-
imal parameter A : Wr — G, we enumerate all admissible representations m of all
pure rational forms of G with infinitesimal parameter \. We partition these admis-
sible representations into L-packets and show how Aubert duality operates on the
representations. Then, for each L-packet of Arthur type, we find the Arthur packet
that contains it. We calculate a twisting character which measures the difference be-
tween Arthur’s parametrization of representations in an Arthur packet with Moeglin’s
parametrization. We find the coefficients in the invariant distributions

(122) 6575 = Z (ssy,m), tracem
m€lly (G(F))

that arise from stable distributions attached to Arthur packets for endoscopic groups
for G(F) in | , Theorem 1.5.1]. We also calculate the virtual representations
Ny,s using Arthur’s work. See Section 8.1 for more detail on this part of the examples.

In the second part of each example, called Vanishing cycles of perverse sheaves,
we set up all the tools needed to calculate (ssy, ) e and its generalisation to pure
rational forms of G, geometrically. We find the stratified variety V) attached to A
and study the category Per Zs(\) (V) of equivariant perverse sheaves on V. We show
how this category decomposes into summand categories, called the cuspidal support
decomposition of Perzé( A)(VA). Then we calculate the functor

(123) EVw : Perzé(,\)(VA) — Rep(Aw)

on simple objects, using properties of vanishing cycles; NEv is defined in Section 6 and
recalled in Section 8.2.6. The results of these calculations — one for each example —
are presented in Sections 9.2.3, 10.2.5, 11.2.5, 12.2.5, 13.2.5 and 14.2.6. Section 8.2
includes an overview of how we made these calculations. We also show how the Fourier
transform interacts with the functor NEv.

In the third part we connect the two sides of this story, as treated above. To begin,
we find Vogan’s bijection between: admissible representations of split p-adic groups
and their pure rational forms with fixed infinitesimal parameter A : Wy — LG, as
recalled in Section 8.1; and simple equivariant perverse sheaves on V), as recalled in
Section 8.2. With this bijection in hand, and the calculation of Ev from Section 8.2,

we easily find the ABV-packets HSEX » and associated virtual representations ngEg’
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By referring back to Section 8.1, we easily see

(124) Np.s = 77!;',,,5/,5
for all Arthur parameters ¢ with infinitesimal parameter A, thus confirming Conjec-
ture 1 in the examples. This implies (12) and also implies

(125) Mpure.y = HASY

pure, ¢y,

for every Arthur parameter with infinitesimal parameter \. We also verify the
Kazhdan-Lusztig conjecture in each example, which allows us to verify Conjecture 2
in our examples. We show how the twisting characters x, from Section 8.1.5 relate to
the twisting local system 7y introduced in Section 6.9 and recalled in Section 8.2.8.
While (125) shows that every Arthur packet is an ABV-packet, the converse is not
true; in this article we find four examples of ABV-packets that are not Arthur packets.
See Section 8.3 for more detail on this part of the examples.

In the fourth part, we show how to calculate endoscopic transfer, geometrically.
Specifically, when G admits an elliptic endoscopic group G’ and an infinitesimal
parameter \ : Wrp — LG such that A = e o X with € : G — L@, we show how
the transfer of stable distributions attached to Arthur parameter for G’ to G may be
apprehended through the restriction of equivariant perverse sheaves from V) to V).
To see this, for each simple P € Perp, (V}), we calculate every term in the identity

126 traceq, NEvy: Ply: = (—1 dim C~dim ¢’ trace,. NEvy, P,
A ¥ s W

where ¢’ € T/ (V' )reg with image ¢ € T5(V )reg, where the semisimple s € G is part
of the endoscopic data of G’, a5 is the image of s in Ay and a) is the image of s in
A;b. See Section 8.4 for more detail on this part of the examples.

Although do not show every calculation in every example, in Section 8 we explain
the ideas needed and then illustrate them as they appear in the examples.

8. Template for the examples

Here we explain the plan for all the examples. We have tried to make the examples
(Sections 9 through 14) as brief as possible, by making repeated reference back to this
section.

In each example we begin by choosing G from the following list of split algebraic
groups over a p-adic field F': in order, we take G to be SL(2), SO(3), PGL(4), SO(5),
SO(5) again, and finally, SO(7). In each case we find Z'(F,G), and thus all pure
rational forms of GG, and relate these to the inner forms of G using the maps

HY(F,G) — HY(F,Gaa) — H'(F, Aut(Q)).

Every pure rational form § € Z!(F, G) determines a rational form G5 of G, often also
called a pure rational form of G. The examples that we consider illustrate the fact
that the maps above are neither injective nor surjective, in general. In each case we
also fix an infinitesimal parameter

A Wr — LG,
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We consider two infinitesimal parameters A for SO(5), but otherwise choose one A for
each group in the list, above.

Having fixed G and X : Wr — LG, we consider the conjectures from Section 7. We
prove these conjectures by brute force calculation in these examples. However, our
real our goal here is to show how to use results from Part I to calculate the stable
distributions in Arthur’s local result | , Theorem 1.5.1] and also how to calculate
the coefficients that appear when these stable distributions are transferred to certain
endoscopic groups. As a consequence, we give complete examples of | , Theorem
1.5.1] and explain how to use geometry to make the calculations.

8.1. Arthur packets. — We enumerate all admissible representations 7 of all pure
rational forms ¢ of G with a shared infinitesimal parameter A\. We show how these
representations fall into L-packets, indexed by Langlands parameters ¢ with infinites-
imal parameter X\. Then if ¢ is of Arthur type, we find corresponding the Arthur
packet. We find the stable distributions attached to these L-packets, and also all the
invariant distributions obtained from these representations by endoscopy.

8.1.1. Parameters. — We find all Langlands parameters ¢ : Lr — “G such that
o(w,dy) = Mw), where d,, € SL(2) is defined by d,, = diag(|w|1/2, |w|_1/2), as in
Section 2.5. As in Section 2.3, we write Py(LG) for these Langlands parameters and
®A(G/F) for the isomorphism classes of these Langlands parameters under Zgz(A)-
conjugation.

Then we find all Arthur parameters v : Lp x SL(2,C) — LG such that
Y(w,dy,dy) = AMw). As in Section 2.4, the set of Arthur parameters that arise in
this way is denoted by Qx(YG). Although the map Qx(YG) — P\(YQ) is injective, it
is not surjective in general.

8.1.2. Admissible representations and their pure L-packets. — Now we can list all
representations (m,d) of all pure rational forms of G, in the sense of | |, with
infinitesimal parameter \. This means that for every pure rational form § € Z!(F, G),
we find all irreducible admissible representations 7 of the rational form Gy attached to
G, such that the Langlands parameter ¢ for 7 lies in Py(“G). These representations
are not tempered in most of the cases considered in this article. When the pure
rational form § is clear from context, we may write 7 for (7, ).

We arrange these admissible representations into L-packets and into pure L-packets.
For this, we must find the component group

Ay =2Zg(0)/Z25(9)",
for each ¢ € P\(“G). According to the pure Langlands correspondence | I,

equivalence classes of irreducible representations of pure rational forms of G with
infinitesimal parameter A are indexed by the set

Ex(FG) = {(d,p) | 6 € PA("G)/Z5(N), p € Tirep(Ay) } -
By abuse of notation, we write 7(¢, p) for an irreducible admissible representation
of G(F) corresponding to a pair (¢, p) above. Each p € Irrep(A,) determines the
class of a pure rational form, denoted by 6, € Z'(F,G), so the L-packet for ¢ and a
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rational form Gy is
Iy (G5(F)) = {[r(¢,p)] | ¢ € PA("G), p € Trrep(Ay), [6,] = [8] € H'(F,G)}.

=
We find these L-packets, for all ¢ € P\(*G) and all § € Z!(F,G), in our examples.
We also find the pure L-packets:

Wpure,6 (G/F) = {[m(¢,p), 3] | & € PA("G), p € Irrep(Ay)},
for all ¢ € P\(*G). To simplify notation slightly, we often write 7(¢, p) for the pair
(w(, ), 6p)-

8.1.3. Multiplicity matriz. — To describe the representations with infinitesimal pa-
rameter A we present the multiplicity myep((9, p), (¢', ') of (¢, p) in the standard
module M (¢, p) so that in the Grothendieck group of admissible representations gen-
erated by Il ure x(G/F) we have

M) =D muep((6,0), (8,0)) 7(d,p),
(¢,p)

where the sum is taken over all ¢ € P\(*G) and all p € Irrep(Ay).

The idea of computing the multiplicities in the standard modules is to compare the
Jacquet modules of the standard modules with those of irreducible representations.
To be more precise, one can always make some guesses of what should be inside the
standard modules by looking at the corresponding inducing representations. Then one
can further argue that they are really there. To see there is nothing else, it is enough to
show that the Jacquet modules of the standard modules have been exhausted by these
representations. We give a sample calculation using this strategy in Section 14.1.3.

8.1.4. Arthur packets. — Recall Q) (YG) from Section 8.1.1. For each v € Q,(fG)
we show how the admissible representations above are grouped into Arthur packets

1L, (G5 (F))

for rational forms § of G. Of course, 1, (G5(F')) contains the L-packet Iy (G5(F));
our interest is in the representations in II,(Gs(F)) that are not contained in
Iy, (Gs(F)); we referred to these as coronal representations in Section 7.4. In fact,
we further recall the adaptation of Arthur packets to pure rational forms and find
the pure Arthur packets
Mpure,s(G/F)

themselves.

Arthur’s main local result for quasisplit classical groups is expressed in terms of a
map

(127)

where Sy, = Z5(¥)/Zg(1)° Z(G)Tr. As we saw in Section 2, this is easily rephrased
in terms of a map

(128) I, (G(F)) — Irrep(Ay),
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where
Ay = Zg)/Zg()°.
We find this map in our examples. In fact, using | , Chapter 9], we find the
conjectured extension
(129) Hpure,y (G/F) — Trrep(Ay)

which includes the non-quasi-split pure rational forms of G, as discussed in Section 2.

8.1.5. Aubert duality. — Aubert involution preserves the infinitesimal parameter \
and so defines an involution on KII)(Gs(F')), for every pure ration form ¢ for G.
For m € II\(Gs(F)) we use the notation 7 for the admissible representation such that
(=1)*™# is the Aubert dual of 7 in KITy(Gs(F)). When restricted to Arthur packets,
Aubert duality defines a bijection

Iy (Gs(F)

™

— My (Gs(F))
T
where ) (w, z,y) := ¢ (w, y, ). We display this bijection in our examples.

Although the component groups A, and A J are isomorphic, a comparison of the
characters (-, ), and (-,7) ; shows that they do not coincide, in general. Accord-
ingly, their ratio defines a character x of Ay such that

(130) (s,7)y = xu(s)(s,m)y,

for s € Zz(v) where, as usual, we use the map Z5(v)) — Ay. In our examples, this
character ., of Ay is given by

M/W M)W
131 = .
( 3 ) X €y 6w ,
where ef/ "' is the character of Ay appearing in | , Theorem 8.9]. As explained
in [Xu, Introduction], the character ef/ W measures the difference between Moeglin’s

parametrization of representations in II, by A, and Arthur’s parametrization of
representations in II, by Ay. We compute the character x, in our examples; it is
non-trivial in Sections 13.1.5 and 14.1.5 only.

8.1.6. Stable distributions and endoscopy. — Armed with (128), we easily find the
coefficients in the stable invariant distribution

(132) @g = Z (sy, ), tracem,
mElly (G(F))

where s, denotes the image of the non-trivial central element in SL(2) in A, Likewise,
for s € Zz(¢)) we compute

(133) 65,5 = Z (ssy, ), traceT.
melly (G(F))
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Arthur’s work shows that O, ¢ is the Langlands-Shelstad transfer of the invariant
distribution

(134) @g,/ = Z (syr,7") . tracen’,
' €Ml (G'(F))

from the endoscopic group G’ attached to s, where v’ : Ly x SL(2) — £G’ factors
through “G’ — LG thus defining ¢’ : L x SL(2) — “G’. In our examples, we illustrate
this fact by choosing a particular s € G and computing ©y.

In order to illuminate Conjecture 1 we use (129) to exhibit the virtual representa-
tions

(135) U > e(0)(sy, [, 6])y [, 3]

[m,0]€pure, v (G/F)

and

(136) Thys = > e(0)(ssy, [m, 0]}, [, 4]
[Wv‘s]enpure,w(G/F)

for s € Zz(¢), as defined in Section 7. Likewise we find

(137) Ty = > e(0)(syr, [, 6']) 0 [, 0]
[x/,8']€TT (G'/F)

pure, 1’

with s and ¢’ as above.

8.2. Vanishing cycles of perverse sheaves. — Having reviewed Arthur packets
and transfer coefficients for the chosen G and A : Wp — LG, we now turn to geometry.
In this section we introduce the geometric tools needed to demonstrate Conjecture 1
and calculate the coefficients (ssy, [, d]) ,» appearing above. This is done by a brute
force calculation of the exact functor

PRv : Perg (V) — Perg (T (V)reg)s
defined in Section 6, on simple objects, following a strategy that we now explain.

8.2.1. Vogan variety. — We find the variety V :=V) attached to the infinitesimal
parameter A : Wr — LG, the action of H := H) := Za(A) on V, and the stratification
of V into H-orbits. If A is not unramified, we use Theorem 4.1.1 to replace the action
Hy\xVy — Vy with Hy, x Vi — Vi, where A, : Wp — £G), is the "unramification"
of A : Wr — LG. We may now assume )\ is unramified and A\(Fr) is elliptic semisimple
in G.

For classical groups, the variety V' admits a description which is quite convenient
for calculations, as we now explain.

First consider the case G = GL(n). The variety V' can be decomposed as a finite
direct product of varieties according to

V= HOm(Eo,El) X Hom(El,Eg) X 'HOm(Erfl,ET),

where each F; is an eigenspace for A(Fr) with eigenvalue A;. We may then denote el-
ements of V', i.e., quiver representations, by v = (vj i4+1):, for v; ;41 € Hom(E;, E;t1).
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Then

H =~ GL(Ep) x GL(E4) x -+ x GL(E,)
acting on Hom(Ey, E1) x Hom(E4, E3) x - - - Hom(E,_1, E;.) by hi-v; j41 = v i1 oh;1
and hl *Vi—1,4 = hi O Vi—1,5 and hi * V5,541 = Uj 541 fOI‘j 75 i,i — 1. The H-orbit of
v € V is fully characterized by the collection of integers

Tij = rank(vj_Lj ©--+0 Ui,i-i—l)-

One derives a natural set of inequalities which describes admissible collections of
ranks. The partial order of adjacency is identical to the partial ordering on the
symbols (7i;)i;-

We next note, that in general, passing between G, its derived group, its adjoint
form or its simply connected form (or effectively any other associated form), has no
impact on the variety V nor on the type of the group H. It does however tend to alter
significantly the center of the group H. Though this will not impact the collection
of orbits of H in V', it will tend to have a significant impact on the equivariant
fundamental groups, and hence the set of equivariant local systems which must be
considered.

Passing from the case when the derived group of G is of type A,, to the classical
forms of B,,, C,, or D,, simply results in an identification of the \; eigenspace of A\(Fr)
with the dual of the A} ! eigenspace. There are essentially two cases to consider: either
E; = E}_,. orno two of Ey, ..., E, are dual. In the later case, V' is isomorphic to one
arising from an inclusion of a subgroup of type A,, and one can freely study the variety
by passing to this subgroup. In the former case, there are essentially four sub-cases
depending on if we are inside an orthogonal or symplectic group and if r is even or odd.
In either case the variety we are studying is the one where v; ;11 = vy._;,_;,_; and
the group acting factors through h; = h!_,. These equations impose further, obvious,
restrictions on the set of admissible collections of ranks/nullities, but otherwise the
collection of strata is still indexed by the set of admissible vectors (r;;);; and the
adjacency relations do not change.

For simplicity of exposition one can describe these varieties which occur when G
is of type B,, as one of

Hom(Ey, E1) x Hom(E;, Fy) x ---Hom(E,_1, Ey) x Sym?(E})
with the group acting being GL(E;) at every factor or
I‘IOIIl(E‘O7 El) X Hom(El, EQ) XKoo HOm(ngl, Ez)

Where the group acts by GL(E;) on every factor except Ey where the group is Sp(Ey).
When G is of type C),, or D,, they are

Hom(Ey, E1) x Hom(E1, o) x ---Hom(Ey_1, E¢) x Alt*(E})
with the group acting being GL(E;) at every factor.
HOID(E(), El) X HOIIl(El, EQ) Xoewe HOm(ngl, Eg),

where the group acts by GL(E;) on every factor except E, where the group is O(Ep).
In all of these cases, ¢ is either r/2 or (r 4+ 1)/2, and the combinatorial data which
describes the strata is still the collection of ranks r; ; for 0 <@ < j < 7.
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8.2.2. Orbit duality. — As we saw in Section 5, the cotangent bundle T*(V) is
equipped with two important functions: the natural pairing (-|-) : T*(V) — Al
which coincides with the restriction of the Killing form on jy; and [+, -] : T*(V) = b
which coincides with the restriction of the Lie bracket on jy. In particular, for every
H-orbit C'in V,
Te(V) ={(z,) e T°(V) | z € C, [,&] = 0}.

In the examples, we present the duality between H-orbits C in V' and H-orbits C*

in V*, defined by the property that they have isomorphic conormal bundles
Te(V) = Tg.(VF)

under T*(V) — T*(V*) given by (x,&) — (& z), where we identify V** with V
using (-|-). In fact, this duality between H-orbits in V' and H-orbits in V* is also
characterized by the following statement:
(138) TE(V)reg CC x C,

where

TE(V)ees =Te(V)\_U_TE V).

In the examples we present all this information by describing the conormal bundle
T;(V) = UTE(Y),

where the union is taken over all H-orbits C' in V' and the union is taken in 7%(V).
We also describe the regular conormal bundle

T (V Jses 7= YTE(V Jres:

From this, one simply restricts the bundle maps T*(V) — V and T*(V) — V* to
TE(V)reg to recover C' and its dual orbit C*.

8.2.3. FEquivariant perverse sheaves. — The next step is to find all simple objects
in the category Pery (V) of H-equivariant perverse sheaves on V. Again, we use
Theorem 4.1.1 to reduce to the case when A is unramified and A\(Fr) is hyperbolic.

It is convenient to begin by enumerating all equivariant local systems £ on all
H-orbits C' in V. This is done by picking a base point x € C' and computing the
equivariant fundamental group

Az = 7T0(ZH(£E)) = 7T1(C, ZC)ZH(I)O.
Since the isomorphism type of this group is independent of the choice of base point,
this group is commonly denoted by Ac. For the groups G that we consider here, the

fundamental group A¢ is always abelian, but this is not true in general. In any case,
the choice of x € C determines an equivalence

Rep(Ac) — Locy (C).

It is now easy to enumerate all simple objects in category Perg (V):

Perpy (V) l® = {IC(C, L) | H-orbit C CV, L € LOCH(V)Simple} .

/iso /iso
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We will need to compute the equivariant perverse sheaves ZC(C, £) themselves, or
rather, their image in the Grothendieck group

Pery (V) — KPerg (V) = KD (V).
For every H-orbit C'in V and every H-equivariant local system £ on V', consider the
shifted standard sheaf
S(Ca ‘C’) =Jcn ‘C[dlm C]v
where jo : C < V) is inclusion. Then, in KPerg, (Vi) we have

IC(C.L)= Y meeol(C', L), (C, L)) S(C', L)
(¢,
and mgeo((C, L), (C, L)) = 1 and mgeo((C', L), (C, L)) = 0 unless C’ < C. We refer
to the matrix mge, as the geometric multiplicity matrix. Set

LE=TC(C,L)[-dimC] and  L%:=8(C,L)[—dimC].
Then, in KPery, (V3),

= Z (71)dimC7dimC’WLgeo((C/’‘C/)7 (C, L)) .
(0/75/)

A purity result of Lusztig shows that £# is cohomologically concentrated in even
degrees, so

Moo (C', L), (C, L)) 1= (—1)ImO=dim (€7, L), (C, L))

/

geo @S the normalised geometric

is a non-negative integer. We refer to the matrix m
multiplicity matrix.

We compute the normalised geometric multiplicity matrix mgeo in each example in
this article. In Sections 9.2.2 and 11.2.2 we use Theorem 4.1.1 to make this calculation.
In Sections 10.2.2, 12.2.2, 13.2.3 and 14.2.3 we give examples of the following strategy.
For each stratum C' C V and each local system £ on C, we construct a proper cover
7 : C — C such that C is smooth and ZC(C, £) appears in m1z[dim C]. We can
explicitly describe the fibres of 7 over each stratum in C' and typically arrange things
so that the cover is semi-small, though this is not essential. We then find all the other
simple perverse sheaves ZC(C’, L), for C" < C, appearing in m1z[dim C], using the
Decomposition Theorem. By doing this for C' and all strata on the boundary of C,
we can describe ZC(C, L). Note that this process is performed inductively on dim C,
as well as on rank(m15)|c.

8.2.4. Cuspidal support decomposition and Fourier transform. — Category Perg (V)
decomposes into a direct sum of full subcategories indexed by cuspidal pairs for G , Oor
more correctly, cuspidal local systems on cuspidal pairs | , Proposition 8.16].
We refer to this as the cuspidal support decomposition of Perg(V):

Pery(V)= € Peru(V)rce,
(L,0,8)
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where the sum is taken over all cuspidal Levi subgroups L of é, and all cuspidal local
systems & on nilpotent orbits O C Lie L, up to (A?—conjugation. In the cases we consider
there is only one (O, &) for every cuspidal Levi L, so we abbreviate Perg (V)1 ¢ to
Perg (V). In each example we partition the simple objects in Perg (V) according to
this decomposition. Simple objects in Pery (V) are characterized by the property
that they appear in the semisimple complex formed by parabolic induction along
Vogan varieties from the cuspidal local system on Lie L NV see | |-

The cuspidal support decomposition of Pery (V') offers insight into the blocks that
appearing within the geometric multiplicity matrix. It is also quite helpful for finding
the proper covers appearing in Section 8.2.3.

We also compute the Fourier transform

Ft: Peryg (V) — Perg (V™)
on all simple objects. This functor is compatible with the cuspidal support decompo-

sition in the sense that Ft restricts to Pery (V) — Perg(V*)L.

8.2.5. Local systems on the regular conormal bundle. — In preparation for the cal-
culation of Ev : Perg(V) — Perg (T (V)reg), we must describe local systems on
H-orbits T (V )sreg and also show how local systems relate to the pullback of local
systems along the bundle maps T (V)sreg — C and TS (V )sreg — C*. For this we pick
a base point (x,§) € T4 (VA )sreg and compute the equivariant fundamental groups
A(Ivf) = WO(ZH(:E’ 5))) =T (Té(v)sreg, (‘Ta 6))ZH(I,§)U'

The isomorphism type of A(,¢) is independent of the choice of base point; it is
precisely the microlocal fundamental group of C, denoted by AZi¢. So the choice
of base point determines an equivalence

Rep(AZ©) — Locy (TE(V )sreg)-

We use this to enumerate the simple objects in Locy (T¢:(V )sreg) and then to describe
the functors

Locy (C) —— Locy (TE(V )sreg) «—— Locy (C*)
obtained by pullback the along the projections
C +—— TE(V)sreg — CF,
by way of the induced homomorphisms of equivariant fundamental groups.
Ap —— Ay — Ae
8.2.6. Vanishing cycles of perverse sheaves. — Here we present the results of apply-
ing the functor
PEy : PerH(V) — PeI’H(TE(V)Sreg)
to simple objects in Pergy (V). Recall from Section 6 that PEv = ®¢ PEver, where
PRver : Perg (V) — Perg (T¢: (V)reg)-

is defined by
PRve(F) = ROy [—1](F B Low ) |1 (1), [dim C7],
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where () : T*(V) — A! appeared in Section 8.2.2. Recall also from Section 6 that
(pEV]:)(Iyg) = (R(I)g[—l]]:)m[dim C*],

for all (z,€) € T (V)reg-

We present the results of our calculations in a table which offers two perspectives
on PEv. Then recall that if ZC(C, L) is simple, then PEver IC(C, L)[—dim V] is a
local system on T¢, (V)weg and this local system is determined by its restriction
BEvsc: IC(C, L) to the H-orbit TF, (V)sreg. Our tables record PEvIC(C, L) in form
@ IC(O',E"), where O :=T4,(V)sreg. To describe each £, we use the base points
(@', &) € TE(V)sreg to view Bvser IC(C, L) as a representation of the equivariant
fundamental group A, ¢y of T¢(V)sreg. The second part of the table records the
characters of the representations Ev(, ¢)ZC(C, L) of Ay ¢y, as C' ranges over all
strata in V' and as ZC(C, £) ranges over all simple objects in Perg (V).

By Proposition 6.5.1 we know that PEver P = 0 unless C’ C supp ZC(C, L), which
is to say, unless C’ < C'. Proposition 6.6.2 shows that in the case C' = C, we get

Bvwsc IC(C, L) = To @ (0" L) 18 (Voo

where p : T4 (V) — C is the restriction of the bundle map 7*(V) — V and where
Tc is the local system defined in Section 6.9. The local systems (p*L)|rx(v),,., Were
described in Section 8.2.5 and they are worked out in the corresponding sections in
each example. The work that remains to calculate PEvZC(C, L), therefore, is the cases
Ever IC(C, L) for C" < C.

To calculate PEver ZIC(C, L) for €7 < C we use Lemma 6.5.2. We describe our
method in some detail here. From Section 8.2.3 we recall a proper map  : C—C
from a smooth variety C chosen so that IC(C, L) appears in m15[dim 5] Using
proper base change and the exactness of Ev, Proposition 6.4.1, we find Ever ZC(C, L)
by computing

(139) (ﬂ'g! R(I)( | Yo(mxidgrs) (]léxC’* )) |Té/(v)reg’

where 77/ is defined in Section 6.5. Since C x C" is smooth and lay o
system, the vanishing cycles

(140) RO | o(rxidern) (Lax o)

is a skyscraper sheaf on the singular locus of (-|-) o (x x ider) on C x C’*. This
singular locus is easy to find using the Jacobian condition for smoothness, because of
the explicit nature of 7 and because we have already found equations for C’* in V*.
The map 7!/ restricts to a proper map from this singular locus onto T (V). In fact, this
map is finite over T, (V)reg; this is a post-hoc consequence of the fact that the fibres
of 7!/ are closed and the stalks of the vanishing cycles functor are concentrated in a
single degree. After restricting (140) to the preimage of T, (V)reg under 7 X ider+, we
use the Decomposition Theorem to explicitly describe (139). While it is typically very
easy to compute the rank of the resulting local system, determining the representation
of the fundamental group that describes the local system is considerably more subtle
as it depends on the local structure of the singularities. We give examples of these
calculations in Sections 10.2.5, 12.2.5, 13.2.5 and 14.2.6.

is a local
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We observe that many of these calculations may be simplified considerably by
a judicious use of the formula (141) from Section 8.2.8 and formula (154) from
Section 8.4.

8.2.7. Normalization of Ev and the twisting local system. — Having calculated PEv :
Perg (V) — Perg (T} (V)reg) in Section 8.2.6, here we calculate the normalization of
Ev, as given in Definition 2. In the process, we make explicit the rank-one local system
T on T} (V)sreg defined in (97) .

8.2.8. Fourier transform and vanishing cycles. — In this section we predict how the
Fourier transform interacts with vanishing cycles, or more precisely, with the functor
Ev and its dual Ev* : Perg (V*) — Perpy (T} (V*)req), where the latter is defined exactly
as above but with V replaced by V*. We believe that there is a local system 7 on
T3 (V)reg such that
a. (TH® PEv) = PEV* Ft,

where a : T*(V') — T*(V*) is the isomorphism a(z, §) = (¢, —x) and where we identify
the dual of V* with V using (-|-). In our examples this local system 7' coincides
with the local system 7 which we introduced in (97). We show this by verifying the
formula

(141) A4 pNEVC = pEVC* Ft,

for all strata C C V, in our examples. The rank-one local system 7T is non-trivial in
Sections 13.2.7 and 14.2.8, only.

8.2.9. Arthur sheaves. — In the examples we close each version of Section 8.2 by
displaying the Arthur sheaves Ac that appeared in Section 7.4, for each stratum
C C V. These equivariant perverse sheaves are defined, up to isomorphism, by

Ao = Z (rank Evg P) P
7;'€PerH(V)S/iir;nople
We also remark that
(142) FtAc = Ac-.
8.3. ABV-packets. — Having calculated the vanishing cycles of perverse sheaves

on Vogan varieties in Section 8.2, it is a simple matter now to find the ABV-packets
for all Langlands parameters with given infinitesimal parameter. In this section we
also see that the Arthur packets described in the examples are indeed ABV-packets.
But the real object of the conjectures from Section 7 are the characters ( - , ) " of Ay
that appear in Arthur’s main local result, and their generalisations to pure rational
forms of G. In this part of each example we show

(s,m),, = trace,, NEve,, P()
for s € Z5(¢) with image as € Ay, and verify Conjecture 1 and Conjecture 2.

8.3.1. Admissible representations versus equivariant perverse sheaves. — As shown
in Proposition 3.2.2 every Langlands parameter ¢ € Py(*G) determines a point
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2y € V and every x € V arises in this way. The function ¢ — x4 is also H-
equivariant, so it induces a bijection between ®,(“G) and the set of H-orbits in V.
We write Cy for the H-orbit of x4. There is a canonical isomorphism of groups

(143) Ay = Ag,,

where Ay = 7T0(Z@(¢)) is the component group appearing in the pure Langlands
correspondence. Consequently, there is a natural bijection between pairs (¢, p), where
p is a representation of Ay, and pairs (Cy, £,,), where £, is the equivariant local system
matching p under the isomorphism above. This, in turn, determines a bijection

Mpure(G/F) = Perp, (Va)7mrt®
(m,6) — P(m,0d)
8.3.2. ABV-packets. — Using this bijection, we determine the ABV-packets for all

Langlands parameters with infinitesimal parameter ), in each example, using the
definition

(145) A8V (G/F):={[r,d] € Upue(G/F) | Eve, P(m,d) # 0}.

pure,¢p

(144)

By restricting our attention to Langlands parameters of Arthur type, we readily verify
that all Arthur packets for all admissible representations with infinitesimal parameter
A are ABV-packets:

(146) ABY  (G/F) = ey (G/F).

pure, ¢y,

Having verified (146) in the examples, we turn to Conjecture 1, which begins with

the canonical isomorphism
Aw =~ 18;0,

where ¢ is an Arthur parameter and where Cy, := Cy,,. Right away, this isomorphism
tells us that the character { - , ) » of Ay appearing in Arthur’s main local result may
be interpreted as an equivariant local system on Téw (V)sreg.- How does the admissible
representation 7 of G(F') determine that local system? That question is answered by
Conjecture 1: for every s € Zz(1) and for every admissible representation 7 of G(F),

(147) (88, M)y = (fl)dmﬂclpfdimC7r trace,, NEvc, P(),

where a, is the image of s € Z5(¢) in Ay and where C; is the stratum in V attached
to the Langlands parameter of . In other words, the equivariant local system on
T¢.,(V)sreg determined by the admissible representation 7 of G(F) is NEve,, P(m).

Having calculated the left-hand side of (147) in Section 8.1 and right-hand side
in Section 8.2, we can prove Conjecture 1 in our examples by simply comparing the
results of those calculations. In fact we confirm more in the examples, by showing
that

(148) Mp,s = s
for every Arthur parameter ¢ with infinitesimal parameter A and for every s € Zz(1).

Here, 771'255’ is defined in Section T7:

(149) s = Z e(6)(—1)4m = trace,, Eve, P(n,d) [m, d).
[7,6]€pure, A (G/F)
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8.3.3. Kazhdan-Lusztig conjecture. — Recall in Section 7.3 that we have defined a
pairing

<- s > : KHpureﬁ,\(G/F) X KPeI‘H)\ (V)\) — Z
such that for any (¢, p), (¢',p’) € Zx(*G)

(m(6,0), P(&, ) = (=1)"™e($, )3(5.,0),(6%,)
where e(¢, p) is the Kottwitz sign of G determined by (¢,p). Kazhdan-Lusztig
conjecture predicts that

(M(¢,p), P(¢',0")) = e(&, 0)d(6.p),(0,p)

for any (¢,p), (¢',p") € Ex(*G). We verify the Kazhdan-Lusztig conjecture in our
examples. This is done by comparing the multiplicity matrix m,ep from Section 8.1.3
with the normalised geometric multiplicity matrix méeo from Section 8.2.3:

/

t _
Myep = Migeo-

As a consequence, we can verify Conjecture 2 in our examples following the argu-
ment below. Let Kcllpure x(G/F)5 be the subspace of strongly stable virtual repre-
sentations in Kcllpure A (G/F) := Kllpure x(G/F) @z C. It has a natural basis

N = > dim(p)e(¢, p) M (4, p)
p:(9,p)EEX(LG)
parametrized by ¢ € Py\(*G)/H,. After identifying KcIlpure A (G/F) with
K@Peer (V)\)* = HomZ(KPeer (V)\>, (C),

through the pairing above, we would like to characterize KcIlpurex(G/F)™ in
KcPerg, (Va)*. By the Kazhdan-Lusztig conjecture,

(g, P) = XICOZ (P) = Z (_1)dimc¢mg80(8(c¢aEp)ap)a
p:(¢,p)EEA(FG)
for any P € KPerg, (Vy). Therefore, KcIlpure x(G/F)*t is spanned by XICO:() for

¢ € P\(YG)/Hy in KcPery, (Vy)*. On the other hand, by Ginzburg, Kashiwara and
Dubson | 1 ], we know that for any ¢ € Py(*G) and P € KPery, (V3),

\EE(P) = rankEve, (P) = 3 elCi, Co X% (P,
@'€Px(*G)/Hx

where ¢(Cy,Cy) satisfies the following properties: ¢(Cyg,Cy) = (—1)4imC. and
c(Cy,Cy) # 0 only if Cy O Cy. The coeflicients ¢(Cy, Cy) are related to the local
Euler obstructions defined by MacPherson. In particular, it measures the singularity
of the closure of Cy at its boundary stratum Cy. As a consequence, we see the set
of x¢#!°() for ¢ € P\(*G)/H) forms another basis for KIlpure,»(G/F)¥. Finally, it is
easy to see that for any ¢ € P\(*G) and P € KPery, (V)

R P) = (~1) O (P).

So the set of ng'i’ for ¢ € P\(*G)/H, also forms a basis for KIlyue (G /F)&. This
proves Conjecture 2.
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8.3.4. Aubert duality and Fourier transform. — In order to compare Aubert du-
ality with the Fourier transform, we equip V with the symmetric bilinear form
(r,y) — —(z|'y), where ! refers to transposition in jy, and we use this to de-
fine an isomorphism V — V*. We use the notation C:=tC*. Letd : H — H
be the isomorphism of algebraic groups given by ¥(h) = *h~!, in which ¢ refers to
transposition in Jy. Then V — V* is equivariant for the usual action of H on V
and the twist by ¢ of the usual action of H on V*. Now, equivariant pullback de-
fines an equivalence of categories Perg(V*) — Pery (V). When pre-composed with
the Fourier transform Ft : Pery (V) — Pery(V*), this defines a functor denoted by
A Perg (V) — Perg (V). Our examples show

(150) P(#,8) = P(x,0).
Using the equivalence Perg (V*) — Perg (V) described above, (141) may be re-written
in form

(151) PNEvP = PEv P,
Taking traces, and recalling PNEv = 7V ® PEv, this implies
trace, (NEVC 73) = traces; To trace, (NEvg P)

for every a € A%, Taking P = P(r) and C = Cy and using (150) and (152), we
recover (130).

8.3.5. Normalisation. — Recall the character x, of Ay given by (130). Recall from

Section that our examples suggest that this character coincides with eg[/ Wef/ w (131).

Now recall the local system 7 on T} (V*)reg appearing in Sections 8.2.6. In this article
we see in our examples that

(152) trace Ty = Xy,

where 7y is the restriction of the local system T on T};(V )sreg introduced in Sec-
tion 6.9. Recall also that this local system 7 appeared in our study of the Fourier
transform, specifically, (141). It seems remarkable to us that the characters x,
MW MW
v
8.3.6. ABV-packets that are not pure Arthur packets. — While all pure Arthur pack-
ets are ABV-packets in these examples, it is not true that all ABV-packets are pure
Arthur packets. In Sections 12.3.7 and 14.3.6 we discuss examples of ABV-packets
that are not pure Arthur packets and yet enjoy many of the properties we expect from
Arthur packets.

, trace T|¢, and trace 7"|¢,, all coincide in our examples.

8.4. Endoscopy and equivariant restriction of perverse sheaves. — One of
the ingredients in the proof of Conjecture 1 in | | for unipotent representations
of odd orthogonal groups, is the following theorem. Let G’ be an endoscopic group
for G though which A : Wr — LG factors, thus defining N : Wr — Ly’ Set
V' = V. Let C' be an H'-orbit in V’; pick (2/,£') € T& (V' )reg and let C be the
H-orbit in V' of the image of 2’ under V' < V. Suppose that the conormal map
TE (V') = TE(V) restricts to TE (VY veg — TE(V )reg. Let (x,€) € TEH(V )reg be its
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image of (2/,¢") € T¢ (V')reg under that map. Then, for every P € Perg(V),
(153) (=14 trace, (NEV Plv7) ey = (1) traceq, (NEVP) (¢
where a; is the image of s under Z5(x,§) — A(y¢) and aj is the image of s under
Za,(.’l]l,é-I) — A(z’,f’)'

In the examples in this article, we calculate both sides of (153), independently, in
order to illustrate how the functor of vanishing cycles Ev interacts with the equivariant
restriction functor Dy (V) — Dg/(V’). As explained in | |, it is (154) that
allows us to conclude that ngE;’ is the endoscopic transfer of a strongly stable virtual
representation on G.

Although we don’t show the calculations here, the same arguments used to prove
(153) also show

(154) (—1)ccr—dimc” traceq/ (EV/P|V,)(I/ = (—1)%c~4mC trace,, (EvP)

§7) (z,€)

under the same hypotheses.

8.4.1. Endoscopic Vogan varieties. — After recalling the endoscopic groups G’ and
the infinitesimal parameters X' : Wr — LG’ such that A = eo )\ from Section 8.1.6, we
describe V' := V), and its stratification into orbits under the action by H':=Zg, (X\').
In all cases, G = G? x GM so N = (AP XD)). Except for Section 9, we have
arranged the sequence of examples so that by the time we get to X' : Wp — LG’,
both A1) : Wr — LG(l) and \® : Wp — LG(2) have already been studied. Since
H =H® x HY and V = V@ x VU we use the equivalence

Per 2 (V@) x Peryy (VD) —2 Peryy (V)

to answer all questions about Perp (V') using earlier work.

The H'-invariant function (- | - ) : T*(V’) — Al is simply the sum of the functions
(VW) — A and T*(V®) — A while [-, -] : T*(V') — b is likewise built from
the functions T*(V(D) — ) and T*(V?)) — bhy. Consequently, the conormal
bundle is

T (V') = The (V) x T (V),
so Perg: (T} (V' )reg) can be completely described using earlier work.

8.4.2. Vanishing cycles. — It follows from the Thom-Sebastiani Theorem, | ]
and | |, that

= (zc<c<2>,c<2>) xw(cﬂ),c(l))) - (EVIC(C(2),£(2))) b (EvIC(C(l),E(l))) .
Thus, the functor
Ev' : Perg (V") — Perg (T (V )reg)
may also be deduced from earlier work.

8.4.3. Restriction. — The equivariant restriction functor

DH(V) — DH/ (V/)

(155) F oo Flv
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does not take perverse sheaves to perverse sheaves. Since we wish to illustrate (154),
we compute (155) in each example, after passing to Grothendieck groups.

8.4.4. Restriction and vanishing cycles. — We have now assembled all the pieces
needed to illustrate (154). We begin by identifying all (z',&’) € T}, (V/)reg such that
the image of (2/,¢’) in T7;(V) is regular. This gives us an opportunity to revisit the
question of finding all Arthur parameters ¢ : Ly x SL(2) — G with infinitesimal
parameter A that factor through € : LG — LG to define Arthur parameters ¢ :
Lr x SL(2) — G with infinitesimal parameter \'. Finally, for such (2’,&’) we pick
a simple perverse sheaf P € Pery (V) and compute both sides of (154), where s is
determined by the elliptic endoscopic group G'.

9. SL(2) 4-packet of quadratic unipotent representations

Set G = SL(2) over F; so G= PGL(2,C) and XG = PGL(2,C) x Wr. Suppose q
is odd.

The function H'(F,G) — H(F,G,a) is injective but not surjective; indeed,
H(F,G) is trivial but H'(F,G%,) = po. In other words, SL(2) has no pure rational
forms but it does have an inner rational form.

Let w € F be a uniformizer and let u € F' be a non-square unit integer. Let F/F
be the biquadratic extension F = F(y/@, /u). Then Gal(E/F) = {1,0, 7,07} where

o(v/u) = —y/u and 7(y/w) = —y/@. Define ¢ : Gal(E/F) — PGL(2) by

'_>01 d >—>10
a1 o an =y 1)

Let A : Wr — EG be the infinitesimal parameter defined by the composition Lp —
Wp — T'r — Gal(E/F) followed by ¢ : Gal(E/F) — G, thus,

AMw) = (01 (1)) w e G, if wlg = o,

and

AMw) = ((1) 01) w € a, if wg=r.

9.1. Arthur packets. —

9.1.1. Parameters. — There is only one Langlands parameter with infinitesimal
parameter A chosen above: ¢(w,x) = A(w). This Langlands parameter is of Arthur
type: (w,z,y) = Aw).

9.1.2. L-packets. — With ¢ as above, we have

ze0={(o 1)-(% 5)-( %) (o)}

Let Ay = po X o be the isomorphism determined by

<_01 (1)) —(=1,+1)  and <(1) _01> = (1, —1).
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Using this isomorphism, the characters of A, will be denoted by (++), (+—), (—+)
and (——). The L-packet I14(G(F)) is the unique cardinality-4 L-packet for SL(2, F'):

Hd)(G(F)) = {ﬁ((ﬁa ++)7 7T(¢, +7)5 7T(¢, 7+)7 7T(¢, 77)}

This L-packet, which is described in | , Section 11], may be obtained by re-
stricting a supercuspidal representation of GL(2, F') given in | , Theorem 4.6] to
SL(2, F). Alternately, these depth-zero supercuspidal representations are produced by
compact induction from a maximal parahoric (there are two, up to G(F')-conjugation),
from (the inflation of) the two cuspidal irreducible representations appearing in the
only non-singleton Deligne-Lusztig representation of SL(2,F,). The characters of
these representations are described in | , Section 15].

Since G has no pure inner forms, the pure packet for the Langlands parameter ¢

is an L-packet:
Mpure, o (G/F) = Ly (G(F)).

9.1.3. Arthur packets. — The L-packet II;(G(F)) is an Arthur packet:
Mpure,(G/F) = Mpure, (G/ F).

9.1.4. Aubert duality. — Aubert involution fixes all the representations in this ex-
ample.

9.1.5. Stable distributions and endoscopy. — Since 1) is trivial on SL(2) in its do-
main, it follows that sy, = 1, so the stable invariant distribution (132) attached to ¢
is
©, = tracew(¢, ++) + trace (¢, +—) + trace w(¢, —+) + trace (¢, ——).

For any s € Zz (1) (the 4-group Zz(¢) appearing in Section 9.1.2) the coefficients of
©, s appearing in (133) are simply
(156) (s,m(¢, £%))y, = (££)(s).

Besides G itself, three endoscopic groups are relevant to ¢: the unramified torus
U(1) split over F(y/u), and the two ramified tori split over F(y/@), and F(y/uw).
More precisely, in the case of the unramified torus, take s € G to be

=0 5)

and set
i ( 0 1)
-1 0/)°
Note that
s =¢¥°(w), if wg=r7
and
n = ¢°(w), if w|lgp=o.

Let G’ be the endoscopic group U(1) split over F(y/u) with: G = Z(s)°; action of
Wp on G’ determined by m(Zz(s)) = Gal(F(y/u)/F); and € : *G' — G given by
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—

G =2Zz(s) C G and
g(1 x w) :=nw, if wlgp=o.

Then the Arthur parameter v : Lr x SL(2) — G factors through € : G’ — G to
define ' : Ly x SL(2) — £G’, so

Y (w) =sxweld, if wlp=r.

The representation of G'(F) with Arthur parameter ¢’ is the quadratic character
attached to the extension F'(1/u)/F by class field theory. Then the endoscopic transfer
of the quadratic character from G'(F) to G(F) is

Oy, = tracem(¢,++) — tracen (¢, +—) + tracew(¢p, —+) — trace (¢, ——).

The set-up is similar for the ramified tori, as we now explain. Take

(0 1 tivel 0 1
s=|_1 o) respectively, L

and, in the same order, set

(0 1 tivel 1 0
n=\{; o) respectively, R

s =P°(w), if w|g =0, respectively, w|g =oT,

Then

and
n = ¢°(w), if w|g =07, respectively, w|lg =T.
Let G’ be the endoscopic group U(1) split over F(y/@), respectively, F(y/uw) with:
G = Z@(s)o; action of Wr on G’ determined by
m0(Zg(s)) = Gal(F(vw)/F), respectively, m(Z5(s)) = Gal(F(vuw)/F);
and ¢ : 'G' — LG given by G = Zg(s)? C G and
(1 ¥ w):=nw, if w|g =07, respectively, w|g =7.
Then the Arthur parameter 1 : Lr x SL(2) — £G factors through ¢ : G’ — LG to
define ¢ : Ly x SL(2) — LG, so
Y(w) =sxweld, if w|g =0, respectively, w|g = oT.

The representation of G'(F) with Arthur parameter v’ is the quadratic character
attached to the extension F(y/w)/F, respectively, F(y/uw)/F, by class field theory.
Then the endoscopic transfer of the quadratic character from G'(F') to G(F) is Oy s
which, in order, is

Oy,s = tracew(¢, ++) + trace n(¢p, +—) — trace (¢, —+) — trace (¢, ——),
respectively,

Oy s = tracew(¢, ++) — tracen(¢p, +—) — trace (¢, —+) + trace w(¢, ——).

Together with the stable distribution O, these three ©, ; form a basis for the
vector space spanned by the characters of representations with infinitesimal parameter
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A. These four distributions are expressed in terms of the Fourier transform of regular
semisimple orbital integrals, and their endoscopic transfer, in | , Section 6.2].

9.1.6. Jacquet-Langlands. — The L-packet that this example treats also appears in
[ , Section 4, page 215], alongside the L-packet for the inner form corresponding
to a non-trivial cocycle in Z!(F,Gaq), which determines the compact form of G,
mentioned at the beginning of this section and now denoted by G,. The same
Langlands parameter ¢ as above, when viewed as a Langlands parameter for Gy,
produces a singleton L-packet. In this case Sy sc = Z5 (v), which is the subgroup of

~

Gsc = SL(2) isomorphic to Qs given by

10 0 i i 0 0 1
e (v
¥ise = -1 0 0 —i —i 0 0 -1

o) ) @Y 0

The compact form G, of G = SL(2) carries exactly one admissible representation with
infinitesimal parameter A, and it corresponds to the unique irreducible 2-dimensional
representation of this group. We denote this representation by 7 (¢, 2). Although the
theory presented in Part I does include inner rational forms that are not pure, in
Section 9.2.7 we will show how to adapt the geometric picture so that it does include

(¢, 2).

9.2. Vanishing cycles of perverse sheaves. —

9.2.1. Vogan variety and orbit duality. — Recall the groups Hy, Jy and K, from
Section 4.3. In the example at hand, these are given by

S (A G N R e

and K\ = Ng (f) In particular, Gy = 1 and A\, : Wr — £G is trivial so Vi, = 0
and 1;1,\nr =1.

9.2.2. Fquivariant perverse sheaves. — With reference to Theorem 4.1.1 we have

*

Rep(Ay) —X 4 Peryy, (Vi) 7= Perp, (0)

Rep(ua X u2) Per ., x s (0) Per1(0).

In particular, there are four simple objects in Perg, (Vi) corresponding to the four
simple Hy-equiviariant local systems on V) = {0}, or equivalently, to the four char-
acters of Ay:

Perss (V)52 = {(++)v, (+-)v, (v, (——)v}.
9.2.3. Vanishing cycles of perverse sheaves. — We wish to describe the functor
Ev : Perg, (V) — Perp, (T;;,A (VA)reg)-
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We have already seen that Perp, (V) = Rep(Ax). In this case we have Ty (V))reg =
{(0,0)}, so Perp, (T, (Va)reg) = Rep(Ay). With these equivalences,
Ev : Rep(A)) — Rep(Ay)
is the identity functor:
(157) traces Evy (££)y = (££)(s)
for every s € Z5(v).
9.2.4. Normalization of Ev and the twisting local system. — Since Ev is trivial in

this example, so is T and NEv; accordingly, the material of Section 8.2.7 is trivial in
this example.

9.2.5. Fourier transform and vanishing cycles. — Since BEv, NEv and Ft are trivial in
this example, the material of Section 8.2.8 is trivial.

9.2.6. Arthur sheaves. — Since V = {0} is a single stratum, there is only one stable
perverse sheaf to consider:

Acy = (++H)v @ (+=)v ® (=+)v & (——)v.

Of course, this is just the regular representation of Ay.
9.2.7. Jacquet-Langlands. — We now show how to extend the geometric picture to
include the admissible representation (¢, 2) of the inner rational form G, of G.

Replace the group action Hy x V) — V) with the group action Hj ¢ x V) — V),
where

Hy = Z@SC ()\),

and where H) 4 acts on V) through H) s — H), induced by the universal cover
CAY'SC — G. The analysis of Section 3.4 shows that

PerH}\,sc (V)\) = Rep(A/\,sc)7

where Az sc:=mo(Hxsc). Of course, Ay gc is just the group Sy ¢ appearing above.
Now A) s has five irreducible representations up to equivalence: four one-dimensional
representations obtained by pullback from the four characters of Ay we have already
seen, and one two dimensional representation, denoted by E. Thus, the category
Rep(Ax sc) has exactly five simple objects up to isomorphism, and thence Perg, . (Vy)
has exactly five simple objects up to isomorphism:

Peri?;i’ie(‘/,\)/iso ={Ev,(++H)v, (+=)v, (=H)v, (= )v }.

The rest of the story now carries through. For instance, the diagram of functors from
Section 9.2.2 becomes the following diagram:

Rep(Axsc) ——3 Perp, . (V3) ﬁ:i Pergr (V3)

|
Rep(Qs) Perg, (0) Per1(0).
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Also, the functor vanishing cycles, Ev, is again the identity functor Rep(Axsc) —
Rep(Ax s ), and the Arthur sheaf is again just the regular representation of Ay .
Thus, simply replacing category Perg, (V) with Perg,  (V)) extends the theory from
pure inner twists of GG to inner twists of G, allowing us to see the Jacquet-Langlands
correspondence from the geometric perspective of Part I.

9.3. ABV-packets. —

9.3.1. Admissible representations versus equivariant perverse sheaves. — The fol-
lowing table displays Vogan’s bijection between Perg, (Vk)j‘irs';p]e and Ipure x(G/F),
as discussed in Section 8.3.1.

PerHA (V)\)Siirsli)ple Hpure,)\(G/F)
(++)V 7T(¢, ++)
(‘i’*)V 7T(¢, +7)
(*+)V 7T(¢, 7+)
(__)V ﬂ-(qﬁa __)

9.3.2. ABV-packets. — Using the bijection from Section 9.3.1 and the trivial functor
of Ev from Section 9.2.3, it follows directly from definition (145) that

IIy(G(F)) = e s, (G/F).

With reference to (149) and (157), in th;s e;:;lple we find: if s =1 then

M = (¢ ++) — (¢ +—) + (¢, —+) — 7(, ——);

if s=(§2) then
M = w(d ) =7 (Y, ) +m(d —+) — (b —);

if s=(29¢) then
ME = (g, ++) + 7(6,+-) = 7(¢,—+) = 7(¢,—-);

and if s = (}) then
My = (¢ ++) —7m(d,+—) = 7(d, —+) + (¢, ——).

Comparing ngE‘S’ above with 7, s as calculated in Section 9.1.5, we see that
trace ngE‘S’ = Oy,s,
in all four cases, thus confirming Conjecture 1 in this example.
9.3.3. Kazhdan-Lusztig conjecture. — The material of Section 8.3.3 is trivial in this

example.

9.4. Endoscopy and equivariant restriction of perverse sheaves. — In Sec-
tion 9.1.5 we saw that the Arthur parameter v factors though three elliptic endoscopic
groups, G’. For each of these G/, the infinitesimal parameter A : Wp — G factors
through € : “G’ — G to define X : Wr — LG,

9.4.1. Endoscopic Vogan variety. — For each G’ above, H':=Zz()') is the sub-
group of H generated by s in H’; see Section 9.1.5 for s. Thus, Pery: (V') = Rep(H')
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has two simple objects, now denoted by (4)y and (—)y.. Now, Vogan’s bijection for
N Wp — G s given by the following table.
Pers (V)i | Mpure, (G'/F)

(+)V’ H ﬂ-(qﬁla"")

(=)vr (', +)
Then 7(¢', +) = n(¢’, —) is the quadratic character of G'(F) = NL?}/F(I) determined
by ¢'.
9.4.2. Vanishing cycles. — Arguing as in Section 9.2.3, we see that

NEV' : Rep(Ayx) — Rep(Ay/)

is trivial.
9.4.3. Restriction. — The restriction functor Pery (V) — Perg: (V') is just restric-
tion Rep(H) — Rep(H’) to the subgroup generated by s.

9.4.4. Restriction and vanishing cycles. — We see (154) almost trivially: the left-
hand side of (154) is
traceq, NEvy (££)v = (££)(s)
while the right-hand side of (154) is
(—1)dimC=dimC” trace,, (Bvly (E£)v|v/) = (—1)°70(££)(s).
Arguing as in | |, it follows from (154) that ngE‘S’ is the Langlands-Shelstad

lift of ng',z". These lifts are found by considering each case in turn: in order, take s € G

to be
1 0 0 1 0 1
s = (O _1> , <_1 0) , and then <1 0> ;

in the same order, the quadratic extension E'/F is

E'/F = F(vu)/F, F(v®)/F, and then F(vuw),/F.

10. SO(3) unipotent representations, regular parameter

Set G = SO(3) split over F, so G = SL(2,C) and LG = SL(2,C) x Wp. In this
case,
HY(F,G) = HY(F,Gaq) = H'(F, Aut(Q)) = Z/27,
so there are two isomorphism classes of rational forms of G, each pure. We will use
the notation G for the non-quasisplit form of SO(3) given by the quadratic form

—ew 0 0
0 e 0
0 0 @

Let A\: Wp — G be the parameter defined by

|w|1/2 0
A = .
(w) < 0 | ~V/2
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Although this simple example exhibits some interesting geometric phenomena, the
Arthur packets in this example are singletons, so there is no interesting endoscopy
here. Nevertheless, this example will be important later when we consider other
groups for which SO(3) is an endoscopic group.

10.1. Arthur packets. —

10.1.1. Parameters. — Up to Zz())-conjugacy, there are two Langlands parameters
¢ : Lrp — G with infinitesimal parameter \; they are given by

do(w, z) = AMw) = va(dw) and d1(w, ) = va(x),

where vy @ SL(2,C) — SL(2,C) is the identity function, thus an irreducible 2-
dimensional representation of SL(2,C). So,

PA(*G)/Zg(\) = {¢o, ¢1}-
Both ¢y and ¢, are of Arthur type: define

Yo(w, z,y) :=va2(y) and 1(w, z,y) = va(x).
Then
QN"G)/Z5(N) = {to, 1}
Observer that v is tempered but g is not. Also observe that the Arthur parameters
1o and 1 are Aubert dual to each other.

10.1.2. L-packets. — The component groups for the parameters ¢ € Py(*G) are

Agy =m0(Z5(60) =m(T) =1 and Ay, = mo(Zg()) = m0(Z(C)) = po.
Denoting the two characters of ps by + and —, the L-packets for these Langlands
parameters are:

g (G(F)) = Am(go)}, g (G(F)) = {m(d1,+)},

gy (G1(F)) = 0, g, (G1(F)) = A{m(d1, )}
Here we can view these representations as that of GL(2, F') (resp. multiplicative group
of the quaternion algebra D) with trivial central character for G(F') = GL(2, F)/F*
(resp. G1(F) = D*/F*). Then 7(¢o) (resp. m(¢1,+)) is given by the trivial
(resp. Steinberg) representation of GL(2, F) and 7w(¢1,—) is given by the trivial

representation of D*.

To see how characters p of A, determine pure inner forms of G, pullback p along

~

m0(Z(G)) — mo(Zz(¢)) and then use the Kottwitz isomorphism: the trivial character

~

of Ay, (resp. Ay, ) determines the trivial character of mo(Z(G)) and therefore the split
pure inner form of G; the non-trivial character — of A4, determines the non-trivial
character of mo(Zz) and therefore the non-trivial pure inner form of G. Therefore,
the pure L-packets are:

Mool /F) = (00} Tomein(G/F) = { 7000 ).
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10.1.3. Multiplicities in standard modules. —
|| 7T(¢0) 7T(¢1,—|—) | ﬂ-(qﬁ a_)

1

M (o) 1 1 0
M(p1,+) 0 1 0
M(¢1,—) 0 0 1

10.1.4. Arthur packets. — The component groups Ay, and Ay, are both Z(G). The
Arthur packets for ¢ € Q(*G) are

Iy (G(F)) = {m(¢0)}, Iy, (G(F)) = {m(¢1,+)},
My (GL(F)) = A7(é1,—)} Hy (Gi(F)) = A{m(¢1, )}
so the pure Arthur packets are
[W((bo),()] [ﬂ(¢1,+),0]
IT ure, o F = ) II ure, 1 F = .
prssn(G/F) = b Mo G/ ) [r(é1, ). 1
10.1.5. Aubert duality. — Aubert duality for G(F') and G;(F) is given by the fol-
lowing table.
T || s
m(¢o) | m(¢1,+)
7T(¢17_) W((bl’_)
The twisting character xy, of Ay, is trivial; likewise, the twisting character ., of
Ay, .

10.1.6. Stable distributions and endoscopy. — The characters ( - ,7T>w appearing in

the invariant distributions 9578 (133) are given by the first two rows of the following

table. The last row gives the analogous characters for @gls.

m || < ' a7r>1p0 < ' 77Ta>1/;1
m(¢o) + 0
m(¢1,+) 0 +
W((bla _) - -
Using the notation s = diag(s1,s1) € Ay = Z(é)7 we now have
Ggo,s = tracem(¢o), GZJ’S = —sytracen(d1, —),
951,3 = tracem(¢p1,+), O, . = sitracem(dr,—).
Therefore, in this example, the virtual representations 1y s (32) are:
Mhpo,s = 7T(¢0) +517T(¢177)7
My, = 7T(¢1, +) - 8171'(@517 _)-

Since Ay = Z (@), the only endoscopic group relevant to these parameters is G
itself.
10.2. Vanishing cycles of perverse sheaves. —

10.2.1. Vogan wariety and orbit duality. — Since X : Wr — G is unramified and
A(Fr) is elliptic and G is split, we have Ay, = \.
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The Vogan variety for A

is

_ 0 y -~ ~ Al

with Hy := Zz(\)-action

t 0
0 t!

so V) is stratified into Hy-orbits

(@) e

The dual Vogan variety V' is given by

) (o 8)-

. 0 0\ - N
V)\ = { (y/ 0) S g | yl - Ala

0N . (0 0y _ (0 0
t_l . yl 0 t_2yl 0/’

with Hy-action

(0

so V' is stratified into Hy-orbits

Cé::{(g 8)} and C;::{(;, 8)63 | y’#()}

The H)-invariant function [-, -] : T*(Vy) — by is given by
0y (1 0
(v 8)mors %)
From this, dual orbits are easily found.

C,=Cy dim=1 Cy=Ct

I I

~

Co=C, dim=0  C;=C}

10.2.2. FEquivariant perverse sheaves. — On the closed stratum Cj there is one
simple local system 1¢, and its perverse extension ZC(1¢, ) is the rank-one skyscraper
sheaf at Cp. The open stratum C,, carries two simple local systems: 1¢, and the non-
trivial £¢, corresponding, respectively, to the trivial and non-trivial characters of
the equivariant fundamental group of Cy. Therefore, the irreducible shifted standard

sheaves on V are:

8(]100) = jco!lco[o]’
S(le,) = Jje,lc,[l], and  S(&c,) = Jje,Ec,ll]-

There are three simple objects in Perg, (V) = Perg, (A!) up to isomorphism:

Perg, (V)

simple
/iso

= {E(]-Co)v IC(]]-Cy)v IC(ECy)} :
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The perverse extension of 1c, is the constant sheaf 1y, [1] = ZC(1¢,) while the
perverse extension ZC(£¢,) of Ec, is the standard sheaf obtained by extension by
zero from Ec, [1].
P | Plee  Pla

E(]]-Co) ]]-Co [O] 0

IC(1c,) || Leo[l] 1c,[1]

Z-C'(gcy) 0 gcy[l]
The first two row of this table are clear since Cy and C_y are smooth. To see the third
row, let 7 : V' — V be the proper double cover given by y — y? and note that

m(Ly[1]) = IC(1e,) ® IC(Eq, ),

by the Decomposition Theorem. Since both of 7. (1y[1])|¢c, and ZC(1¢, )|c, are rank
one, it follows that 7C(Ec,)|c, = 0.

Thus, the geometric multiplicity matrix is
| 8(1c,) S(lg,) | S(ée,)

IC(1¢,) 1 0 0
IC(1¢,) -1 1 0
I(Z(gcy) 0 0 1

and the normalised geometric multiplicity matrix is
H ]]'hCU ]]'hcu 521/

i1 oo

151 1o

o 0|1

10.2. 3 Cuspidal support decomposition and Fourier transform. — Up to conjuga-
tion, G = SL(2,C) admits exactly two cuspidal Levi subgroups: G itself and
T = GL(1). Thus,

PerHA (V)\) = PerHA (V)\) D PerHA (V,\)

Simple objects in these two subcategories are listed below.

PerHA (V,\ );mple Peer (V,\ )Séi\mi:)e

]]-Co H

The Fourier transform is given on snnply obJects by.
Ft : Peer (V)\) — PerHA (V/\*)

IC(1e,) = IC(lcg) =IC(Lcy)
IC(le,) = IC(Lgy) =IC(1cy)
IL(Ec,) + IC(Ecy) =TC(Ect)
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TaBLE 10.2.1. PEv : Perp, (Va) — Perm, (Tf;, (Va)reg) on simple objects,
for A : Wrp — "G given at the beginning of Section 10.

Pery (V) —%  Perg(Tj(V)res)
IC(]lCo) = IC(]loo)
IC(]lcy) — IC(]loy)
IC(Ecy) — E(foy) @IC(E@O)
10.2.4. FEquiwvariant local systems on the reqular conormal bundle. — The regular

conormal bundle 77 (VA)reg decomposes into two H) orbits

T (Va)reg = T80 (Vidveg || T2, (Va)re
given by

e ={ () 8) 1050 b maone={() 4) 1 20 )

We remark that
TC*‘U (V)\)reg = Téo (V)\)Sreg =Cpy X Cg and Téy (V)\)reg = Téy (V)\)sreg = Cy X CZ

These components are Hy-orbits, so every H-equivariant perverse sheaf on 777 (V) req
is a standard sheaf shifted to degree 1. The equivariant fundamental groups are both
given by

Agic = 7"-I(TC*'(‘/)\)a (:Cag))ZHA (z,6)° = WO(ZHA (‘r’E)) = Z(é) = {il}

Let 1o, be the constant local system on T(’Sw (VA )sreg and let Eo,, be the non-trivial
H-equivariant local system on T(’Sw (VA)sreg- Then

IC(lo,) = S(lo,) and IC(Eo,) = S(Eo,)-
In summary, )
Locs (T8, (V)seeg) e~ = {104, €00}
and )
Locs (T&, (V)srea) i = {10,, €0, } -

10.2.5. Vanishing cycles of perverse sheaves. — The functor PEv : Pery(V) —
Perg (T4 (V)reg) is given on simple objects in Table 10.2.1. The lower part uses the
identification of local systems on the regular conormal with representations of the
corresponding equivariant fundamental groups, so each Evsgc P is given as a character
of Amic,
We now explain the computations behind Tables 10.2.1 and 10.2.2.
(a) Using Lemma 6.2.1 we find

pEch IC(]lcy) = ]loy [1] pEch IC(Ecy> = Soy[l]
pEchIC(]lco) = 0 pEVCOIC(]lCO> ]loo[()].

It only remains, therefore, to determine PEvc, ZC(1¢,) and PEvg, ZIC(Ec, ).
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TaBLE 10.2.2. Bvs : Perp, (Vi) — Locu, (T4, (Va)reg) on simple objects,
for A : Wrp — "G given at the beginning of Section 10.

P || EVSC0 P EVSCy P

IC(1¢,) + 0
IC(]lcy) 0 +
C(Ec,) - -

Since ZC(1¢, ) = 1y [1], we have
Bve, Ic(ﬂcy) = R‘I’yy’(lv[l] X 103)|T5(V)reg-

As Ty W1 = Ly xc; is a local system and the function (y,y’) + yy’ is smooth
on V x Cj, it follows Lemma 6.2.2 that

EVC0 IC(]lcy) =0.

Note that C§ specifically excludes the locus y’ = 0, which is where the singu-
larities would be.

We now consider the case of ZC(£¢, ), using the proper double cover w: V — V/,
already used in Section 10.2.2. Recall that

T (1v[l]) = ZC(1¢,) ® IC(Ec, ).
Since Ev is exact by Proposition 6.4.1,
Eve, me(Ly [1]) = Bve, ZC(1¢, ) ® Eve, IC(Ec,)-
We have just seen that Evg, ZC(1¢,) = 0, so
Eve, IC(Ec,) = Bvg, me(Ty [1]).
By Lemma 6.5.2,
Bvcy m (v [1]) = m (R®yey (1 (1) 751 ) -
Since 7 is an isomorphism on T (V) r-reg;
Bvo, me (v [1]) = RPy2y (T s (D)7 (v)ee
Now,
R® 2y (Lyxc;[1]) = m Legxeg [1],
where 7/ : C5 — Cp is the double cover y’ — y'2. Note that
m Loy [1] = mlo,[1].
By the Decomposition Theorem,
1o, [1] = Loy (1] & Eo, (1],

where £p, is the non-trivial equivariant local system on Op introduced in Sec-
tion 10.2.4, which is the associated to the double cover arising from taking /3’
over Oy. Therefore,

pEVCO I(Z(Scy) = 5@0[1].
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This completes the calculation of PEv : Perg (V) — Perg (T™*(V )ieg) on simple objects,
as displayed in Table 10.2.1.

10.2.6. Normalization of Ev and the twisting local system. — From Table 10.2.1 we
see that the twisting local system 7T is trivial in this case, so PNEv = PEv.

10.2.7. Fourier transform and vanishing cycles. — Having computed the values of
the functor PEv : Pergy (V) — Perg (T} (V)eg) on simple objects, we also know the
values of PEv* : Perg(V*) — Perg (T} (V*)reg). We use this and the coincidence of
PEv with PNEv, in the table below.

Pery(V) 2% Pery(Th(V)ieg) %5  Pery(Th(V)g) < Perg(V*)
IC(]ICU) — E(]loo) — IC(]loa) < IC(]lCJ)
IC(]lcy) —> %(]loy) — IC(]lo;) < IC(]lc;)

I(Z(gcy) —> IC(Eoy)@IC(EOO) — IC((S‘(Q;)@IC(E@S) i Z-C'(gcg)

Since the map from the first to the fourth column is the Fourier transform, this verifies
(141).

10.2.8. Arthur sheaves. —

Arthur sheaf || packet sheaves coronal sheaves
Ac, H 7C( ]lco) C(Ec,)
Ac, c,) ®IC(Ec,)

10.3. ABV-packets. —

10.3.1. Admissible representations versus equivariant perverse sheaves. — Vogan’s
bijection for A\ : Wr — LG chosen at the beginning of Section 10 is given by the
following table:

PerHA (V)\)siiz;ple Hpure,)\(G/F)
ZC(1c,) (m(¢0),0)
((le (ﬂ.((bl)’ 0)

)
c(Ee,) (m(¢1,—), 1)
The base points for H-orbits in T} (V )yeg determined by the Arthur parameters g

and v, are:

0 0 0 1
(‘Two’gwo) = (1 0) € TC*‘U(V/\)reg’ (‘Twu&l)l) = (0 0) € Téy(VA)reg'

10.3.2. ABV-packets. — Using the bijection of Section 10.3.1, the vanishing cycles
calculations of Section 10.2.5, and the definition of ABV-packets from Section 7.1, we
find ABV-packets for G for representations with infinitesimal parameter A : Wr — LG
from Section 10.1.1:
0] [m(¢1,+), 0]
OABY  (/F) = [m(¢0), . 2BV (G/F) = » ) )

pure.so (G/ F) (g1, ), 1] [ Mo (G/F) (1, ). 1]
We see that all pure Arthur packets are ABV-packets simply by comparing this with
Section 10.1.4. In this example, all the strata in V are of Arthur type, so all ABV-
packets are Arthur packets.
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10.3.3. Stable invariant distributions and their endoscopic transfer. — We recalled
in Section 10.1.6 the coefficient appearing in the invariant distributions 7y s attached
to 1 € Qx(*G) and s € Zz(¢). Using Section 10.2.5, compare (ssy, [, 0]), with
trace Evy, P(m,)(ssy). This proves (147) and therefore establishes Conjecture 1, in
this case:

Mhp,s = Ugifa
for ¥ € QA(*G) and s € Zz(v).
Also recall from Section 10.1.6 that the only endoscopic group relevant to ¥y and

1/)1 is G.

10.3.4. Kazhdan-Lusztig conjecture. — Using the bijection of Section 10.3.1 we may
compare the multiplicity matrix from Section 10.1.3 with the normalised geometric
multiplicity matrix from Section 10.2.2:

1 1]0 100
Mep=| 0 110 |, mio=(11]0
0 0]1 0 0]1

I
geo?

representations with infinitesimal parameter A : Wr — “G given in Section 10.1.1.

Since 'myep = m this confirms the Kazhdan-Lusztig conjecture as it applies to

10.3.5. Aubert duality and Fourier transform. — By using Vogan’s bijection from
Section 10.3.1 to compare Aubert duality from Section 10.1.5 with the Fourier trans-
form from Section 10.2.3 one redily verifies (150).

10.3.6. Normalisation. — A comparison of the twisting characters x, of Ay from
Section 10.1.5 with the restriction Ty to T¢ (V)reg of the local system 7y from
Section 10.2.7 verifies (152).

10.4. Endoscopy and equivariant restriction of perverse sheaves. — The
material of Section 8.4 is trivial in this example, since Zz(¢) = Z(G).

11. PGL(4) shallow representations

This example illustrates the utility of Theorem 4.1.1 and the significance of the
decomposition of A(Fr) into hyperbolic and elliptic parts. Here, the calculation of the
Arthur packets for certain non-tempered representations of PGL(4) is reduced to the
calculation of certain unipotent representations of SL(2). This example also demon-
strates a case when H1(F,G.q) — H!(F, Aut(Q)) is surjective but not injective.

Set G = PGL(4) over F and suppose ¢ is odd. So, G = SL(4) and XG = SL(4) x Wp.
In this case, HY(F,G) = H(F,Gaq) = Irrep(us), so there are four isomorphism
classes of inner forms of GG, each one pure. However, G has only three forms, up to
isomorphism: the split group G itself, an anisotropic form G1, and a non-quasi-split
form G5 with a proper minimal Levi. In fact, the outer automorphism of G induces
an action of order 2 on H!(F,G), and the orbits of this action correspond exactly
to the image of H1(F,G) in H(F, Aut(G)). The map H(F,Gaq) — H(F, Aut(G))
from isomorphism classes of inner form of G to isomorphism classes of forms of G is
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given by: 0 — G, 1 — G, 2 — G2 and 3 — (G, where the notation refers to an
identification of Irrep(uy) with Z/47Z.

Let E be the Galois closure of the ramified extension F'(“*/w). Then E is
the compositum of an unramified quadratic extension of F' and the totally ramified
extension F( *%/w); now Gal(E/F) is the dihedral group with generators o, 7, where
o has order 2 and 7 has order ¢+ 1 and 070 = 7! = 79. Consider the representation
0: Gal(E/F) — SL(2,C) defined by

0 1 ¢ 0
m(_l O), TH(O C)

where ¢ € C' is a fixed primitive ¢ + 1-th root of unity. Let p : Wr — SL(2,C) be the
composition of Wr — I'r — Gal(E/F) with g. Define A : Wp — LG = SL(4) x Wp
by

Aw) 1= plw) © va(dy)
Thus, if w|g = o then

0 0 w20
0 0 0 |w/™Y?
Mw) =
(w) ] 0 0 0
0 w|™Y% 0 0
while if w|g = 7 then
¢ 0 O 0
10 ¢ © 0
)\(’LU) - 0 0 C—l 0
00 o0 ¢!
11.1. Arthur packets. —
11.1.1. Parameters. — There are two Langlands parameters with infinitesimal pa-
rameter A\, each of Arthur type:
(ﬁo(’w,l') = p(w)®y2(dw)7 ¢1(w,$> = p(w)®V2($)
Yo(w,z,y) = plw) @va(y), Yi(w,z,y) = plw) @va(z).

Note that ¥y and 1, are Aubert dual.

11.1.2. L-packets. — There are 5 admissible representations of the three forms G,
G1 and G4, with infinitesimal parameter A. In order to list them, we start with the
component groups of ¢ € Py(LG). First, note that

s1 0 0 0
0 s 0 0 N

Zg(\) = 0 0 s 0 | s1sp =41 » = GL(1) X po,
0 0 0 s

under the isomorphism s — (s1, $182). Then

Agy = T0(Z5(60)) = Mo Z5(N) = 2 and Ay, = mo(Z5(1)) = mo(Z(G)) = pa.
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Following our convention, we write + and — for the trivial and non-trivial characters
of o, respectively; the characters of uy will be labeled by +1, —1, +¢ and —i. The
admissible representations for the Langlands parameters ¢g and ¢; fall into L-packets
for the three forms of G (up to isomorphism) as follows:

g (G(F)) = Am(go,+)} g (G(F)) = {m(¢r,+1)}

g (Go(F)) = 0 g, (Gi(F)) = A{m(¢r,+i)}

= A{n(¢1,—0)}

g (G2(F)) = A{m(¢o,—)} g, (Go(F)) = {m(d1,—1)}.

However, IT,ure x(G/F) consists of 6 representations of 4 pure rational forms of G:
Hpure,dm (G/F) = { [W(d)Ov +)7 0]5 [W(d)o, 7)5 2] } )
and
Hpure,qbl (G/F) = { [ﬂ.((blz +1)5 0]5 [ﬂ-(¢1; +Z)5 1]5 [ﬂ-(qﬁla _1)7 2]7 [ﬂ.((bla _i)a 3] } .
In other words, when passing from the four equivalence classes of pure rational
forms [§] € HY(F,G) to the three isomorphism classes of forms of G, two repre-

sentations collapse to one, namely, [7(¢1,4+4),1] and [7(¢1, —%), 3] map to the same
admissible representation of G (F').

11.1.3. Multiplicities in standard modules. —

| m(go,+) w(do,—) w(¢1,+1) m(p1,—1) | m(¢1,+i) (g1, —i)
M(¢o, +1) 1 0 1 0 0 0
M (¢o,—1) 0 1 0 1 0 0
M (¢1,+1) 0 0 1 0 0 0
M(¢1,—1) 0 0 0 1 0 0
M (o1, +1) 0 0 0 0 1 0
M (¢1, —i) 0 0 0 0 0 1

11.1.4. Arthur packets. — The component groups Ay, and Ay, are both Z(@),
canonically. Arthur packets for rational forms G, G; and G2 of G are

Iy, (G(F)) = {m(¢o,+)} Iy, (G(F)) = A{m(¢1,+1)}
My (GL(F)) = Am(or,+i)} Iy, (Gu(F)) = {m(d1,+i)}
= {m(¢r, )} = {r(¢r, =)}
My (G2(F)) = {m(¢o, =)} Iy (G2(F)) = {m(¢r,—1)}
The pure Arthur packets for 1y and v are
HPUY61¢0 (G/F) = { [ﬂ'(qﬁo, +)5 0]’ [ﬂ-(qﬁoa _)a 2]7 [ﬂ.((bla +Z)a 1]; [W(¢1; _i)a 3] } 3

and

Hpure,dn (G/F) = { [W(¢17+1)50]5 [W(¢1,+i),1], [ﬁ(¢1;71)72]7 [W((bl;*i)ag] } .
For later reference, we break these pure Arthur packets apart into packet and coronal
representations:
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pure Arthur pure L-packet coronal

packets representations representations

Hpureﬂbo (G/F) [ﬂ-(qﬁOa +)a ] [ﬂ-(qﬁoa ) 2] [ﬂ-((bl’ +i)7 1]7 [ﬂ.((bia _i)a 3]
Mpure,py (G/F) || [7(b1,+1),0], [x(¢1,+i),1]
[F(Qﬁla_i)a ] [ (¢17_1)a ]

11.1.5. Aubert duality. — Aubert duality for admissible representations of G(F)
with infinitesimal parameter A is given by the following table.

7r | ft
7T(¢Oa+) 7T(¢13+1)
7T(¢13+1) 7T(¢0,+)

Aubert duality for Gy (F) = G3(F) is given by the following table.

T || T
7T(¢15 +Z) = ﬂ-(¢15 71) || 7T(¢17 +7’) = 7T(¢15 71)
Aubert duality for G3(F) is given by the following table.

T || T
(g0, —) || m(¢1,—1)
m(¢1,—1) || 7(o,—)

The twisting characters X, and xy, are trivial.

11.1.6. Stable distributions and endoscopy. — The coefficients (asay, (m,6)),, ap-
pearing in the invariant distributions ny s (32) are given by the following list, in
which s € Ay = Z(G) = pa.

Mo = Thpo,1 = [ﬂ-(qﬁOv +)7 0] + [ﬂ-(qﬁOa _)a 2] + [ (¢17 +i)7 ] [ (¢1a )7 3]
Mpo,—1 = [ﬂ-(qﬁOv +)7 0] + [ﬂ-(qﬁOa _)a 2] - [ﬂ-((blv +l)7 ] [ (¢1’ _1)7 3]
Mpo,i = [W(¢07+)70] - [W(¢0a7)a2] +Z[ (¢1a+l)a1] [ (¢1a71)a3]
Tpo,—i = [W(¢07+)70] - [W(¢0a7)a2] 71[ (¢1a Z)al] [ (¢1a7i)a3]
and
Mpy = Thpr 1 = [W((bla +1)a0] - [ﬂ-(qﬁla _2)7 1] + [ (¢1a _1)7 ] - [ (¢17 )7 ]
Mpr,—1 = [W((bla +1)a0] - [ﬂ-(qﬁla _2)7 1] - [ (¢1a 1)7 ] + [ (¢17 )7 ]
Mpri = [W((bl’ +1)a O] + [W(d)la 71)7 1] + Z[ (¢17 1)a ] + [ (¢1a Z)a ]
Myr,—i = [7(d1,41),0] + [w(¢1, =), 1] — i[m (1, —1), 2] — i[m (1, —i), 3.

Since Ay, = Z (G) and Ay, =72 (@), the only endoscopic groups relevant to these
Arthur parameters are G = G, G; and Gs.

11.2. Vanishing cycles of perverse sheaves. —
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11.2.1. Vogan variety and orbit duality. — The Vogan variety V) and its dual Vy
may both be deduced from the conormal bundle

0y 0 0
s _ )|y 0 0 0 '’
0 0 ¢ 0
on which H :=Zz(\) = GL(1) x vy acts by

s 0 0 O 0y 0 0 0 51551y 0 0
0 s 0 0 y 0 0 0 57 ' sy 0 0 0
0 0 s 0 0 0 0 yl|— 0 0 0 5185 1y
0 0 0 s2 0 0 ¢ 0 0 0 sflsgy/ 0

Recall that s;s9 = £1, so s 551 = :I:s% From this we see the stratification of V into
H-orbits and the duality on those orbits is exactly as in Section 10.2.1.

We now use Theorem 4.1.1 to replace A : Wy — LG with an unramified infinitesimal
parameter Ay, : Wr — LG, of a split group G such that A, (Fr) is hyperbolic. The
hyperbolic part of A\(Fr) is sy x 1 with
q1/2 0 0

0 ¢2 o0

0 0 q1/2

0 0 0 ¢
while the elliptic part of A\(Fr) is ¢y x Fr with

53 = pl1) ® va(Fr) =

o O O

|
—
~
)

0 010
0001
t)\—p(FI")@l/Q(l)— 100 0
01 0 0
Then
a b 0 0
d 0 0 b
Ini=Zg(Nip,52) = (C) 0 a b |det<(cl d)il =~ SL(2) X pa
0 0 ¢ d
under the isomorphism diag(h, h) — (h',det h) where h' = h if deth =1 and b’ = ih

if det h = —1. Therefore, G, = PGL(2) and \,, : Wr — G, is given by

Anr = _ .
(w) < 0 ] 1/2

Hy,, =Zg, (Anr) = {(é tE)l) | t# 0} >~ GL(1)

_ 0 y ~ Al
{3 8) 1) =

and
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b 2) (o0 6 W)

This brings us back to Section 10.2.1. We will freely use notation from there, below.
The Hy-action on V)__ is given by

(t,+1) : (8 g) = (8 iﬁy).

From this we see that every H-orbit in V)__ coincides with a H)

with H)_ -action

nr

orbit in V), .

nr nr

11.2.2. FEquivariant perverse sheaves on Vogan variety. — With reference to Theo-
rem 4.1.1 we have

Rep(Ay) ——— Pery, (Va) T Pery, (Va,,)

Rep(ui2) Pergr(1)x s (A) Pergra(A')

The image of the trivial representation + of us under the functor Rep(A)) —
Perg, (V) is the trivial local system on V, denoted here by (+)y to emphasise its
genesis; image of the non-trivial irreducible representation — of ps under the functor
Rep(Ay) — Perg, (V) will likewise be denoted by (—)yv .

To find the simple objects in Perg(V), we begin with the equivariant perverse
sheaves on H-orbits in V.

Cy: The equivariant fundamental group of Cy is Ac, = mo(H) = ua. Let us write
]lJCC0 and 1, for the local systems corresponding to the trivial and non-trivial
representations of Ac,, respectively. Note that, under the forgetful functor
Loci (Co) — Locyr,, (Cp), these both map to 1¢,, the constant sheaf on Cp.

Cy: The equivariant fundamental group of C, is A¢, = Z (é) ~ puy. Let us write ]lJCCy
and ]1(_)y for the equivariant local systems on C, that correspond to the trivial
+1 and order-2 characters —1 of Ac,, respectively; these both map to 1¢,
under Locy(Cy) — Locy,, (Cy). We write Séfy and E¢, for the equivariant local
systems on Cy, that correspond to the order-4 characters +¢ and —i, respectively,
of Ac,; these both map to £c, under Locy (Cy) — Locg,, (Cy).

Therefore, the six simple objects in Pergy (V') are given by:

simple E(]]-Jro)v IC(]]-er)v IC(Ser)
Perss (V)5 :{ E(]lgo), Iculgy), IC(sgy) }

On simple objects, the functor Rep(Ay) — Perg, (V) is given by

Rep(Ay) — Pery, (V)
(v = IC(]lZ,y)
(v ()
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while the functor Perg, (V') — Perg, (Vi) is given by

Pery, (V) — Peerm(VAm)
(1) ~ IC(le,)
(1,

Perm,,,. (Va..)

IC(lg,) — IC(1¢,) @ IC(1
L(Ee,) = IC(EL)@IC(E

— Peer (V)

— Perp, (V) is given by

Yy

)
o) = IC(le,)IC(ES) = IC(Ec,)
)

and the functor Perg, (Vi

‘.

)

From this we find the stalks of the simple objects in Perg (V).

P || P|Co P|C+1
e(1t,) | 12, 10] 0
C(1g,) || 1, [0] 0
(g, ) | 151 18, 1)
(g, ) || 16,1 15,1
(&L, ) 0 &, 1]

IC(Ec,,) 0 &, [1]

This gives us the normalised geometric multiplicity matrix:

L (ag)f (Ag)f (5)F (Ig)" [ (E4)F (€

f

Q|

(1} )F 1 0 0 0 0 0
Co

(15 )F 0 1 0 0 0 0
Co

(15,)* 1 0 1 0 0 0

(1g,)* 0 1 0 1 0 0

(&)} 0 0 0 0 1 0

(&) 0 0 0 0 0 1

111

11.2.3. Cuspidal support decomposition and Fourier transform. — The cuspidal sup-
port decomposition respects the functors appearing in Theorem 4.1.1, so the results
here follow from Section 10.2.3. Specifically, we have

Peer (V)\) = Peer (V)\)f (&%) PerHA (V,\)é,

where the simple objects in these summand categories are given here.

Per (A)F78Y | Perm (20"
C(15,)
i)
(14, C(ES,)
*(1g,) e,
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Since the diagram
Rep(Ay) —— Perp, (Vi) ﬁ:; Per,  (Va.)
lid lFt l&
Rep(Ay) —— Perg, (V) %% Perm, (V/\*m)

commutes, the Fourier transform is given on simple objects as follows.

Ft: Perg, (Vi) — Perg, (V)

C(f,) = TC(LS) =TC(1)
(le,) = IC(lg) =IC(lg,)
(15,) = IC(1E,) =TC(1E,)
L(lg,) — IZC(lc.) =IC(1)
10(EL,) = TC(EL) =TC(EL)
0(E;,) = T(E) =T0(E)

11.2.4. Fquivariant perverse sheaves on the reqular conormal bundle. — Recall that
H) orbits coincide with Hy_ -orbits. The following diagram commutes:

Rep(Ay) ——— Pery, (C*) 7———— Pery, (C*)

T

| ! * |

Rep(Ax) —— Perp, (T&(Va)sreg) T Pera, (T (Va,, Jores)

*

| I * I

Rep(Ay) ——— Perg, (C) Z—————— Pery, (C)

T

We now describe the fundamental groups and associated equivariant local systems
on the strongly regular conormal bundle T7;(V)ses . For the computation of the
functor Ev : Perg(V) — Perg(T}(V)reg) in Section 11.2.5 we will need to know
the effect of pullback along the bundle map T} (V)iee — V, so we also give that
information below.

Cy: We choose a base point for T(*}O(V)Sreg:

(20,80) = <(1) 8) :

Then A(zy,e,) = Z(G) = pa and the bundle maps induce the following homo-
morphisms of fundamental groups:

~Y 'd ~Y
H2 = AxU A(fvo’ﬁo) : AEO = H4.

Now label local systems on T (V)sreg according to the following chart, which
lists the corresponding characters of A(,, ¢,) using the convention for characters
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of p4 from Section 11.1.2.
Loch (Tg,(V)sre) : 16, 1o, €6, o,
Rep(A(ongo)) D +1 -1 +1 —1
Pullback of equivariant local systems along the bundle map 7¢, (V)sreg — Co is

given on simple objects by:
Locu(Co) — Locua(TE (V)sreg)

£ e 13
C() :(EO
&b,

: We choose a base point for Téy(V)sreg:

(#1,&1) = <8 (1)> :

Then A, ¢y = Z(G) = pg and the bundle maps induce the following homo-
morphisms of fundamental groups:

Ha = Axl — A(xl,fl) — A§1 = 2.

Now label local systems on Tg}y(V)Sreg according to the following chart, which
lists the corresponding characters of A(,, ¢,) using the convention for characters
of p4 from Section 11.1.2.
Locy (Te,(Vsieg) : 1o, lo, &6, Eo,

Rep(A(Iqul)) D+l -1 +1 —1
Pullback of equivariant local systems along the bundle map T¢, (V)sreg = Cy s
given on simple objects by:

LOCH (Cy) — LOCH (Té% (V)sreg)

+

]ljcty — ]lfy

Ecy — Soy.
11.2.5. Vanishing cycles of perverse sheaves. — Table 11.2.1 gives the functor Ev :
Perg (V) — Perg(Tf;(V)reg) on simple objects. These calculations follow from Ta-
ble 10.2.1.
11.2.6. Normalization of Ev and the twisting local system. — From Table 11.2.1 we
see that the twisting local system 7T is trivial in this case, so PNEv = PEv.
11.2.7. Vanishing cycles and Fourier transform. — Comparing the table below with

Ft : Perg (V) — Peryg(V*) from Section 11.2.3 verifies (141) in this example.

Per(V) % Perg (T, (V)ieg) 5 Peru(Th, (Vi) £ Perg(V*)
°0E) ~  AE) o~ X1E) o« I0(E)
IC(1E) c(15,) = 7C(15.) ~  IC(1E,)
T(EL) - I(ES)BICEL) — TES)OT0ES,) «  TOEL)
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: Perp, (Va) — Perm, (T4, (Va)reg) on simple objects,

for A : Wrp — "G given at the beginning of Section 11.

Pery (V) I
eIs)
ZC(]IEO) —
Ls) =
c(1s,)
ES) =
ICEL)

<

Pery (T},

<
D’
S
]
®
<

o

<

Ql G+§\G+A

TaBLE 11.2.2. Bvs : Perm, (Vi) — Locu, (Tf, (Va)reg) on simple objects,
for A : Wr — LG given at the beginning of Section 11.

P || Bsc, P Bwsc, P
(1) +1 0
c(1g,) —1 0
7c(15,) 0 +1
c(1g,) 0 ~1
c(EL,) +i +i
(e ) || i —i

11.2.8. Arthur sheaves. —
Arthur sheaf || packet sheaves

coronal sheaves

Ac, IC &) @IC(1g,) @
Ac, )@IC( )

11.3. ABV-packets. —

IC(EL,) @ IC(E,)

(€)@ IC(EG,)

11.3.1. Admissible representations versus perverse sheaves. —

PerHA (V)\ )Slmple

150

pure A (G/F)

|=|=
Ql
(=)

<

ﬂ-(¢07 +)7 0)

™

<

ze(
e(1g
ze(
(
(
(

8 88 8
™ =
IQ+§}IQ+

<
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11.3.2. ABV-packets. —

ABV-packets

H pure L-packet representations ‘

coronal representations

115

HABV

pure,qﬁo(G/F) : [ﬁ(¢07+)70]7 [W(¢077)72]

[W((blv +i)7 1]7 [W((bla 71‘)’ 3]

HABV

[m(¢1,-1),2]

pure,p1 (G/F) : [ﬂ(¢1, +1)’ 0]’ [ﬂ-(qﬁla +Z)a 1]
2 ) [W(d)la 71‘)’ 3]

11.3.3. Stable distributions and endoscopic transfer. —

e =men = [m(po,+),00+
e = [m(¢o,+),0] + [r(do,
My = [m(do,+),0] = [x(do, —
Mo i = [m(¢o,+),0] — [n(
My =1 [m(¢1,1),0] — [7(¢1,
e = [n($1,1),0] — [m(¢1,
& = [m(¢1,1),0] + [r(¢1,
e = [m(é1,1),0] + [r(¢1,

Comparing with Section 11.1.6 proves (148).

|+ [(o1, +0), 1] + [7(¢1, —4), 3]
| = [m(1, +1), 1] — [m(¢1, —4), 3]
| +ilm (1, +i), 1] — i[r(¢1, —7), 3]
| —ilm(1, +i), 1] + i[r(¢1, —7), 3]
+ [m(¢1, —1),2] = [7(1, —1), 3]
= [m(p1, —1),2] + [7(1, —1), 3]
+i[m(p1, —1),2] + i[m (1, —1), 3]
—i[m(¢1, —1),2] —i[m(¢1, —i), 3]

11.3.4. Kazhdan-Lusztig conjecture. — From Section 11.1.3 we find the multiplicity

matrix:

101 0 0 0
01 0100
m 001 000

P10 001 0 0}
000010
0 00 001

and from Section 11.2.2 we find the normalised geometric multiplicity matrix

10 00 00
01 00 0O
, |1 01 0 0 O
Megeo =10 1 0 1 0 0
0000 1O
0 0 00 01

: t
Since m/,

P

= m’geo, this proves the Kazhdan-Lusztig conjecture in this case.
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Notice that

101 0 00
010100
001000_518@10
000100_001 0 1
0 0001FPO0
0 00 0 01

and compare with Section 10.3.4.

11.3.5. Aubert duality and Fourier transform. — To verify (150), use Vogan’s bi-
jection from Section 11.3.1 to compare Aubert duality from Section 11.1.5 with the
Fourier transform from Section 11.2.3

To verify (152), observe that the twisting characters xy of Ay from Section 11.1.5
are trivial, as are the local systems 7y from Section 11.2.7.

11.4. Endoscopy and equivariant restriction of perverse sheaves. — The
material of Section 8.4 is trivial in this example, since Z5(¢) = Z(G).

12. SO(5) unipotent representations, regular parameter

In this example, of the four Langlands parameters with infinitesimal parameter A
below, only two are of Arthur type. Accordingly, we find two ABV-packet that are
not Arthur packets.

Let G = SO(5), so G = Sp(4) and “G = G x Wg. As in the cases above,

HY(F,G) = H'(F,Gaa) = H'(F, Aut(G)) = Z/2Z,

so there are two isomorphism classes of rational forms of GG, each pure. We will use the
notation G = G and G, for the non-quasisplit form of SO(5) given by the quadratic
form

0 0 0 0 1
0 —eww 0 0 0
0 0 € 0 0
0 0 0 @ 0
1 0 0 0 0
Let \: Wrp — G be the unramified homomorphism
w*? 0 0 0
0 w0 0
AFr) =
(EY) 0 0 |w™Y? 0
0 0 0 w3

Here and below we use the symplectic form (x,y) = xJy with matrix J given by
Jij = (—1)765_; ; to determine a representation of G = Sp(4).

Although this example exhibits some interesting geometric phenomena, there is
still no interesting endoscopy here. Nevertheless, this example will be important later
when we consider other groups for which SO(5) is an endoscopic group.



ARTHUR PACKETS FOR p-ADIC GROUPS BY WAY OF VANISHING CYCLES 117

12.1. Arthur packets. —

12.1.1. Parameters. — Up to Zg(A)-conjugation, there are four Langlands param-
eters with infinitesimal parameter A:
¢o(w, ) = wa(dw) = AMw),
|lwlz11  |w|z11 0 0
2 B |wlzar  |w|xaa 0 0
Grilwa) = vde) @) = [ U2 ‘ .
0 0 |’LU| T11 |’LU|_1$12
w2 0 o 0
b(w,z) = W) em@)=| o [T0TEE ]
0 T21 T2 0
0 0 0 ||w™?"

Qﬁg(u},.’l]) = V4($)a
where vy : SL(2) — Sp(4) is the irreducible 4-dimensional representation of SL(2). Of

the four Langlands parameters ¢g, ¢1, ¢2 and ¢3, only ¢g and ¢3 are of Arthur type;
define

T/JO(WaZan) = V4(y)5 and w3(wazay) = 1/4(50).
12.1.2. L-packets. — The component groups Ay, and Ay, are trivial, while the
component groups Ay, and Ag, each have order two, being canonically isomorphic to
Z(@G). Therefore, the representations in play in this example are:

H¢o (G(F)) = {ﬂ.((bo)}’ H¢0 (Gl (F)) = (Z)’
Iy (G(F)) = {7(o1)}, g, (GL(F)) = 0,
Iy, (G(F)) = {m(d2,+)}, Iy, (G1(F)) = A{m(d2,—)},
Iy, (G(F)) = {m(¢s,+)}, My, (G1(F)) = {7(ds,—)}-

Of the four admissible representations of G(F') with infinitesimal parameter A, only
7(¢s3,+) is tempered — this is the Steinberg representation. The representation m(¢;)
(resp. m(¢2,4)) is denoted by L(1( Starz)) (resp. L(v*/2¢,( Stsos))) with ¢ =1 in
[ |. When arranged into pure packets we get

Mpure,g0 (G/F) {[m(0), 0]}
pure,g, (G/F) = {[w(¢1),0]}
PUT9¢2(G/F) = {[ (¢2a )aO] [ﬂ-(qﬁ%_)al]}
pure,ps (G/F) = {[m(ds,+),0], [m(¢s,—), 1]}
12.1.3. Multiplicities in standard modules. — The standard module M (¢;1) (resp.
M (¢2,4)) is denoted by v/ Star,a) 1 (resp. v%/2( x Stgo(s)) with ¢ = 1in | |-
The following table may be deduced from [ , Proposition 3.3].
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H m(¢o) m(P1) w(g2,+) w(gs, + ‘W (¢2,—) mlgs,—)
1 0 0

1
1 0
1 0
1 0
0 1
0 0

S O o O O
O OO O = =
o oo = O
= = O O

12.1.4. Arthur packets. — The Arthur packets for these representations are

Iy (G(F)) = {m(¢0)}, Iy (G1(F)) = {m(d2,—)}
Iy, (G(F)) = {m(¢3,+)}, My, (G1(F)) = {m(¢s,—)}-
When arranged into pure packets, we get
Upure,o (G/F) = {[m(¢o ], [r(¢2,—), ]}7
HPUTeaws(G/F) = {[ (¢3a 0]’ [ (¢3a a ]}

12.1.5. Aubert duality. — Aubert duality for G(F) and G1(F) are given by the
following table.

T || %
(o) | m(¢s,+)
m(p1) | 7(g2,+)
(g2, +) || 7(¢1)
7T(¢3’+) 7T(¢0)
(g2, —) || m(d3, —)
m(¢3,—) || T(d2,—)

The twisting characters x., and ¥y, are trivial.

12.1.6. Stable distributions and endoscopic transfer. — For s € Z((A;) 2 pg, the
virtual representations 7y, and 7y, s are given by

Mo, = [W(¢0),O] + [W((b?v*)vl]
Mpo,—1 = [ﬂ-((bo)a 0] - [ﬂ-((b% _)’ 1]
and
Thyz, 1 = [W(¢37+)70] - [ﬁ(d)?n*)’l]
Mpz,—1 = [W(¢3’+)’0] + [ﬂ-(qﬁ?n_)al]'

There are no endoscopic groups relevant to ¥g or 13 other than G.

12.2. Vanishing cycles of perverse sheaves. —
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12.2.1. Vogan variety and orbit duality. — Now

ty, 0 O 0
o 0 ta O 0 t1 #0
H=2gN =310 o ;b0 | ty #0
0 0 0 ¢t
The Vogan varieties V and V* are given by
0w 0 O 0 0 0 O
_ 0 0 = O . v 0 0 0 ;o
V=010 00wl == V=90 » o of! “*
0 0 0 O 0 0 « 0
The action of H on T*(V) is given by
th 0 0 0 0 u 0 0 0 tity M 0 0
0 ta O O] (v 0 = 0 . ty tou/ 0 t2x 0
00 t" o[ |0 2 0 w 0 ty % 0 tity'u
0 0 0 ¢t 0 0 « 0 0 0 7 ! 0
The conormal bundle is
0 0 O
N ~ v 0 x O uu' =0
Ta, (V) = 0 27 0 wu | ' =0
0 0 « 0
Now V is stratified into the following H-orbits:
0 0 0O 0 0 O
o 0 0 0O o 0 0 =z O u#0
Co = 0000’03'_000u|:r7£0’
0 0 0O 0 0 0 O
and
0 w 0 O 00 0 O
0 0 0 O 0 0 =z O
Ci=9lo oo u| !l “70 ¢ &=3100 0 of ! *70
0 0 0 O 00 0 O
The dual orbits in V* are
0 0 0 O 0 0 0O
. v 0 0 0 "£0 . 0 0 0O
Co = 0 2 0 0 | £0 (° Cua 0 0 0O ’
0 0 « 0 0 0 0O
and
0 0 0O 0 0 0 O
. 0 0 0O , . v 0 0 0 ,
C=lo & o of I ¥70 ¢ G=qlo 0 0 of | V7O
0 0 0 O 0 0 « 0
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The following diagram gives the closure relations for these orbits.

C, =G, C,=C, dim=1 C*=Ct Cx=Ct
Co = Cus dim =0 cr, = Cb
12.2.2. FEquivariant perverse sheaves. — The equivariant fundamental groups for C

and C, are trivial, so they each carry only one equivariant local system, denoted by
1¢, and 1¢,, respectively. The equivariant fundamental groups for C, and C,,; have
order two, so they each carry two equivariant local systems, denoted by 1¢,, Lc,,
]lcw and ECW. Thus,

Perp (V)50 = {IC(1¢, ), ZC(1c, ), ZC(1c,), ZC(1c,,), ZC(Lc,), TC(Lc,, )}

/iso

The following table describes these perverse sheaves on H-orbits in V.

P H Pley, Plc. Ple.  Ple..
IC(1ey) 1¢,10] 0 0 0
IL(1e,) || e (1] 1e,[1] 0 0
IC(1e,) || Le[l] 0 1, (1] 0
IC(1c,,) || 1 (2] 1c,[2] 1c,[2] 1c,.[2]
L(Le,) 0 Le,[1] 0
C(Le,.,) 0 0 Lel2] Le.[2]

We now explain how to make these calculations.

(a)

(b)

For the first four rows in the table above, those that deal with ZC(1¢), it is
sufficient to observe that the closure C' of each strata C' is smooth, hence the
sheaf 15[dim(C)] is perverse.

For the remaining two rows, those that deal with ZC(L¢), we observe that the
closure C of the strata C admits a finite equivarient double cover 7 : C—C
by taking \/z. Because C is smooth, the sheaf 15[dim(C)] is perverse. The
decomposition theorem for finite maps of perverse sheaves now yields that
m(15[dim(C)]) = IC(1&) ® IC(Ls). Proper base change, the decomposition
theorem for finite étale maps, and our earlier computations for ZC(1g) then
allows us to readily compute the stalks of ZC(Lg).

From this, we easily find the normalised geometric multiplicity matrix is as follows.
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| 2%, uf, wE wb g h
15 |1 0o o o |0 0
1t 1 0 0|0 0
1L 1 0 1 0 [0 0
15 |1 11 1|0 0
o 0o 0o 0 |1 0
ck o 0o 0o o0 |1 1
12.2.3. Cuspidal support decomposition and Fourier transform. — Up to conjuga-

tion,Aé = Sp(4) admits exactly two cuspidal Levi subgroups: M = Sp(2) x GL(1)
and T = GL(1) x GL(1).
Perg, (Vi) = Pery, (Vi) @ PerHA(V,\)ﬂ.
Simple objects in these two subcategories are listed below.
Perg (V)4 || Perg (V) yy
IC(1c,)

C(1e,)
IL(le,) || ZC(Lc,)
C(le,,) || ZC(Lc,.)

The Fourier transform is given as follows.

Ft: Perg(V) — Perg(V*)
IC(lg,) = IC(lgg) =IC(1ce,)
IL(le,) = IC(lcx)=IC(1ce)
IC(1e,) +— IC(Llex) :%(]lcz)
C(1le,,) +— IC(lex,)=IC(1¢y)
IC(Le,) + IC(Lcy)=IC(Ler,)
I(Z(Ecm) — IC(ACCZ) ZIC(,CC;)

12.2.4. FEquiwariant local systems on the regular conormal bundle. — The regular
conormal bundle to the H-action on V' decomposes into H-orbits

TI?(V)reg = Tg‘o (V)wg U Téu (V)reg U Tg‘m (V)wg U Téum (V)regv

where each T¢5(V )reg is given below. In each case, the microlocal fundamental group
ABic is canonically identified with Z(G) = {£1}.

Cy: Regular conormal bundle:

0 0 0 O
N v 0 0 0 u #0 "
TCO (V)reg = 0 2 0 0 | z! i 0 = Co x Cy
0 0 o 0
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Base point:
0 0 0 O
1 0 0 0 "
(.1‘0, 50) = 01 0 0 € TCO (V)reg
00 1 0

Fundamental groups:
id
1= Aro < A(woﬁo) AEO = {il}

Local systems:

Locy (Téo (V)Sreg) 1o, Lo,
Rep(A(Io,fo)) : + —
Pullback along the bundle map 7, (V)sreg = Co:

Locu(Co) —  Locu (T, (V)sreg)

]100 — ]1(90
Lo,
Cy: Regular conormal bundle:
0 w 0 O
. - 0 0 0 O u#0 .
TCu (V)reg - 0 2 0 wu | xz # 0 - C’u X Cu
0 0 0 O
Base point:
01 00
0 00O .
(x1,61) = 010 1]F¢ TE, (V)reg
0 00O

Fundamental groups:
id
l=A; ¢ A@, o) — Ae, = {£1}

Local systems:

LOCH(Téu(V)Sreg): lo, Lo,
Rep(A(Elfl)) : + —

Pullback along the bundle map 7, (V)sreg = Cu:

Locy(Cu) — Locu(TE, (V)sreg)
lcu — lou

C,: Regular conormal bundle:

0 0 0 O
N v 0 x 0 u #0 .
TCm (V)reg = 0O 0 0 0 | T ;éo = CZ X Cac
0 0 « 0
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Base point:

(72,82) = € T, (V)reg

o O = O
O O OO
—_ o = O
o O OO

Fundamental groups:
id
{£1} = Au, —— Ayy) — Ae =1

Local systems:

Locy (Tém (V)Sreg) 1o, Lo,
Rep(A(mz@)) : + —
Pullback along the bundle map T, (V)sreg = Ca:

Locy(Cz) — Locu(TE, (V)sreg)
]103c — lom
Lc = ﬁOgc

x

Cuz: Regular conormal bundle:

0 0 0
" - 0 0 z O u#0 «
T'Cmc (V)wg - 0 0 0 u | T # 0 = Cyz X Cum
0 0 0 O
Base point:
01 00
0010 "
('T3’§3) = 00 0 1 € TCMc (V)reg
0 0 0O
Fundamental groups:
id
{il} = Azs — A($3>£3) Af:s =
Local systems:
LOCH(TéuI(V)sreg) o lo,, Lo,
Rep(Awseg) :  + =
Pullback along the bundle map T¢, (V)sreg = Cug:
Locy(Cyuz) — Locy (Téwc (V)sreg)
lc,, e lo,,
Lo, = Lo,
12.2.5. Vanishing cycles of perverse sheaves. — We summarize the values of the

functor Bv : Perg (V) — Perg(T7;(V )reg) on simple objects in Table 12.2.1 We now
explain how to make these calculations.

(a) To compute Eve, ZC(1¢, ) we look at the vanishing cycles
Eve, ZC(Le, ) = R®uo (g, k)

T, (Vves [1]-
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(b)
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TaBLE 12.2.1. PBEv : Perg, (Vi) — Perm, (T, (VA)reg) on simple objects,
for A : Wrp — "G given at the beginning of Section 12.

Pery (V) —%  Perg (T (V)reg)
Z’C(lco) = (]loo)
C(lg,) L(1o,)
IL(le,) = IC(1o,)
C(1e,,) + C(1o,,)
IL(Le,) = IC(Lo,)®IC(Lo,)
L (Le,,) = IZ(Lo,,) DIC(Lo,)

TaBLE 12.2.2. Bws : Perm, (Vi) — Locu, (Tf, (Va)reg) on simple objects,
for X\ : Wr — LG given at the beginning of Section 12.

P | Bsc, P Bwc, P BEwc, P Bwsc,, P
IC(1¢,) + 0 0 0
C(1e,) 0 + 0 0
IC(1¢,) 0 0 + 0
C(1e,,) 0 0 0 +
IC(Le,) 0 - 0
IC(Le,,) 0 - 0 -

The singular locus of z2’ is = 2’ = 0 but this is not part of T (V)reg,
so Evg, IC(1¢,) = 0. All the non-diagonal entries in the first four rows work
similarly.

To compute the last two rows of the tables above consider the map 7 : C'— '
which comes from taking a square root of z. Rather than directly applying Ev
to IC(Lcr) we apply it to m(1ls) and exploit the fact that we have already
computed Ev for the ZC sheaves of constant local systems. For example, in the
case of Evg, (m(1s ) we will compute:

(7T! R(I)m2z/(]].5, X ]ICS))TEEO (V)res *

The singular locus is precisely z = 0 (noting that 2’ is not actually zero on the
variety under consideration). The local structure of the singularity is that it is
a smooth family (in the variable u') over the singularity of 222’ over A x Gy,
It follows from Lemma 6.2.4 that the vanishing cycles on such a singularity is
the sheaf supported on # = 0 associated to the non-trivial double cover v/z’.
Finally, by observing that the map 7 is an isomorphism on the support of R®,
we conclude that:
pEVCO(Tr'(]lC ) = IC(‘COO)

The other entries are computed sumlarly
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12.2.6. Normalization of Fv and the twisting local system. — From Table 12.2.1 we
see that the twisting local system 7 is trivial in this case, so PNEv = PEv.

12.2.7. Fourier transform and vanishing cycles. — Compare the table below with
the Fourier transform from Section 12.2.3 to confirm (141) in this example.
Perm, (V3) —2%  Peru(Thy, (Vi)reg) = Perur(Tiy, (Vidres) € Perm, (VYY)
IC(1le,) + IC(1o,) — IC(1oy) = IC(1cy)
IC(1e,) — IC(1p,) — IC(ILOE) - IC(ILC;)
IC(le,) = IC(1p,) — IC(1o:) — IC(lcx)
IC(1g,,) C(1p,,) — IC(lo:.) — IC(lex,)
IC(Le,) = IC(Lo,) ®IC(Lo,) +— IC(Loz)BIC(Lo;) <+ IC(Lcg)
(Le,,) = IC(Lo,,)PIC(Lo,) w IC(Lo: )DIC(Lo:) <«  IC(Lc:)
12.2.8. Arthur sheaves. —
Arthur || pure L-packet coronal
sheaf || sheaves perverse sheaves
Ac, || Z(1c,) & IC(Le,)
Ac, || Z(1c,) ® C(Le,,)
Ac, || Z(1c,) & IC(Lc,)
Ac,. || ZC(1¢,,) ® IC(Le,,)

12.3. ABV-packets. —

12.3.1. Admissible representations versus equivariant perverse sheaves. —

Perr, (VA)2P' || Mpure n (G/F)
IC(]lco) (W((bo),O)
C(1e,) (m(¢1),0)
L(1e,) (m(p2,+),0)
L(1e,.) (7(¢3,4),0)
IL(Le,) (m(p2,—),1)
C(Le,,) (m(¢3,—),1)

The Arthur parameters 1 and 13 correspond uniquely to the base points (zg, &)
and (x3,&) from Section 12.2.4 under the map Qx(*G) — T (V)yeq given by Propo-
sition 5.1.1.

12.3.2. ABV-packets. — Using Section 12.2.5 and the bijection of Section 12.3.1, we
simply read off the ABV-packets:

ABV (G/F) = {[m(¢0),0], [m(¢2,—), 1]}
MASY (G/F) = {[r(¢1),0], [(gs,—), 1]}
§£g¢2<G/F> = {[r(¢,4),0], [r(¢,—), 1]}
ABY o (G/F) = {[m($s,4),0], [r(¢s,—),1]}.



126 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

Using Section 12.1.4, we see

Hpure,wo(G/F) = H%E%;%(G/F)
Hpure,ws (G/F) = Hpure,d)g (G/F)’

thus verifying that Arthur packets are ABV-packets for admissible representations
with infinitesimal parameter A : Wp — G given at the beginning of Section 12.

~

12.3.3. Stable distributions and endoscopy. — For s € Z(G) = pg, the virtual rep-

resentations ngEg’ of (149) are given by

774'\:5/1 = [ﬂ.((bO)’ 0] + [ﬂ-((b% _)a 1]
nee = [m(¢0),0] = [m(h2, —), 1]
Men = [m(¢1),0] = [r(¢3, ), 1]
M1 [(¢1), 0] + [w(3, =), 1]
774'\:5,/1 = [W(¢2’+)’0] + [F(¢2a_)a1]
Moo -1 = [m(¢2,4),0] — [r(¢2, ), 1]
7725,’1 = [m(¢3,+),0] — [7(3, —), 1]
772;'5,/—1 = [W(¢3’+)’0] + [ﬂ-(qﬁ?n_)al]'

Comparing with Section 12.1.6, this proves (148) in this example.

12.3.4. Kazhdan-Lusztig conjecture. — Using the bijection of Section 12.3.1 we com-
pare the normalised geometric multiplicity matrix from Section 12.2.2 with the mul-
tiplicity matrix from Section 12.1.3:

1 11 1]0 0 100 000
010 1]0 0 110000
oo 1 1100 , 101 0]0o0
Mrep =1 0 0 0 1|0 0 |>  Maeo 1 11 1|0 0
0 00 0]1 1 000 O0[]1 0
000001 00001 1

’geo, this confirms the Kazhdan-Lusztig conjecture as it applies to

representations with infinitesimal parameter X : Wp — G given at the beginning of
Section 12.

Since 'Myep = m

12.3.5. Aubert duality and Fourier transform. — To verify (150), use Vogan’s bi-
jection from Section 12.3.1 to compare Aubert duality from Section 12.1.5 with the
Fourier transform from Section 12.2.3.

12.3.6. Normalisation. — To verify (152), observe that the twisting characters x.
of Ay from Section 12.1.5 are trivial, as are the local systems 7 from Section 12.2.7.

12.3.7. ABV-packets that are not pure Arthur packets. — The closed stratum Cj
and the open stratum C3 are of Arthur type, while C; and C5 are not of Arthur type.
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Thus, there are two ABV-packets that are not Arthur packets in this example:

ISV 4 (G/F) = {[7(¢1),0], [r(¢s,-),1]}
IRV, (G/F) = {62, +),0, [r(¢2,—), 11}
From these we extract four stable distributions,
0f = tracem(¢1) @gll = tracem(¢s, —)
@gz = tracem(¢2,+) @g; = —tracem(¢a, —).

We will see more interesting examples of ABV-packets that are not pure Arthur
packets in Section 14.3.6.

12.4. Endoscopy and equivariant restriction of perverse sheaves. — The
material from Section 8.4 is trivial in this case.

13. SO(5) unipotent representations, singular parameter

In this example we encounter an L-packet of representations of SO(5, F') that is
lifted from an L-packet of representations of SO(3, F') x SO(3, F'). In Section 13.4 will
see how this lifting may be understood through equivariant restriction of perverse
sheaves on Vogan varieties, and their vanishing cycles.

Let G = SO(5). Then H(F,G) = Z/27Z. Let G; be the non-split form of G,
as in Section 12. We consider admissible representations of G(F) and G1(F') with
infinitesimal parameter A : Wr — LG given by

w*? 0 0 0
0 |w o0 0
AMw) =
(w) 0 0 |w/ Y2 0
0 0 0 |w/ Y2
13.1. Arthur packets. —
13.1.1. Parameters. — There are three Langlands parameters with infinitesimal pa-
rameter A, up to Zg(A)-conjugacy, each of Arthur type. Set
Yo(w,z,y) = va(y) O ra(y),
¢2(wa$,y) = VQ(‘T)@VQ(?J))
Vs(w,z,y) = 1a(z) O re(z),

and observe that 1y and 3 are Aubert dual while 15 is self dual. Let ¢g, ¢2 and ¢3
be the associated Langlands parameters; thus,

po(w,z) = va(dw) & v2(dw),
po(w,z) = wa(x) ®ra(dy),
d3(w,x) = wa(z) ®re(z).

13.1.2. L-packets. — The pure component groups for these three Langlands param-
eters are

Ad)o =1, A¢2 = {il}a Ad)z = {:l:l}
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Thus, there are five admissible representations of two pure forms of SO(5) in play in
this example. When arranged into L-packets, these representations are:

Hd’o(G(F)) = {ﬂ.((bo)}’ H¢0(G1(F)) = (Z)’

g, (G(F)) = {m(¢2, )}, g, (G1(F)) = A{m(¢2,—)}

Iy, (G(F)) = {m(¢s,+),7(¢3, )}, g, (GL(F)) = 0.
Of these five admissible representations, only 7(¢s3,+) and w(¢3,—) are tempered,;
these two representations are denoted by 75 and 71, respectively, in | ]. The

admissible representation 7 (¢ ) is denoted by L(v'/2¢, v1/2¢, 1) with ¢ = 1in | |
and (g2, +) is denoted by L(v'/2(, ( Stso(s)) with ¢ = 1.

13.1.3. Multiplicities in standard modules. — The standard module M (¢g) is in-
duced from the Levi subgroup GL(1, F') x GL(1, F) x SO(1, F) of SO(5, F); it is

denoted by v1/2¢ x v'/2¢ x 1 with ¢ = 1in | |. The standard module M (¢2, +)
is induced from the Levi subgroup GL(1, F) x SO(3, F) of SO(5, F'); it is denoted by
V1/2¢ % (Stgos) with ¢ = 1in | |. The standard module M (¢3,+) coincides
with the tempered representation 7(¢s,£). The 4 x 4 block in the following table
may be deduced from | , Proposition 3.3].
|| W((bo) F(¢25+) 7T(¢3a+) 7T(¢3a_) | ﬂ(¢2,—)
M (o) 1 1 1 1 0
M(pa,+) || 0 1 1 0 0
M (o3, +) 0 0 1 0 0
M(ps,—) || 0 0 0 1 0
M, ) || 0 0 0 0 1

13.1.4. Arthur packets. — The component groups for the Arthur parameters in this
example are
Ay, = {£1}, Ay, = {1} x {£1}, Ay, = {£1}.
We may represent elements of each Ay as cosets with representatives taken from
T[2]. The map T[2] — Ay, is s — s152; the map T[2] — Ay, is s — (51, 52); the map
T[2] — Ay, is s — s159.
The Arthur packets for Arthur parameters with infinitesimal parameter \ are:

o (G(F)) = {7(¢0), (2, +)}, Iy (G (F) = 0,
Iy, (G(F)) = {m(d2,+), 7(d3,—)}, Iy, (G1(F)) = {m(¢2, )},
Iy (G(F)) = {m(ds,+), 7(d3,—)}, My, (G1(F) = 0.

We arrange these representations into pure Arthur packets in the table below.

pure Arthur pure L-packet coronal
packets representations representations
Hpureﬂbo (G/F) [W(gﬁo), 0] [71-((;525 +)7 0]
Hpureﬂbz (G/F) [ﬂ-((bQ’ +)5 0]) [ﬂ-((an _)a 1] [ﬂ-(qﬁl’n _)a 0]
Hpureﬂbs (G/F) [W(¢3a +)a 0]’ [W(¢3a _)a 0]
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13.1.5. Aubert duality. — Aubert duality for G(F) and G1(F) are given by the
following table.

T || T
7T(¢0) m(P3,+)
m(d2,+) || 7(¢3, )
m(¢3,+) || 7(¢o,+)
m(¢3,—) || (P2, +)
(¢2’_) 7T(¢2’_)

The twisting characters x, and x, are trivial. The twisting character x, of Ay,

is X, (8) = 152 = det(s). This is the first non-trivial twisting character to appear in
this article.

13.1.6. Stable distributions and endoscopic transfer. — The stable distributions
@g = Z (s, m),, traceT
m€lly (G(F))

attached the Arthur parameters are:

@gﬁ = tracen(¢o) + trace w(p2, +)

0§ = tracem(¢z,+)— trace (g3, —)
0f, = tracem(¢s,+)+ tracem(¢s, +).
The distributions
®G75 = Z (ssy, ), trace,

mElly (Gs(F))
where s € Zz(1)), are obtained by transfer from endoscopic groups. The coefficients
above are given by
(ssy, 7T>1/; = (sy, 7T>1p<sa 7T>'¢)
where (sy, ) ,, appear above while (s, ) . 18 given by the tables below.

We now give <~7r>w as a character of Ay, using the isomorphisms from Sec-
tion 13.1.4.

m || < ’ ’7T>¢0 < ) ’7T>¢2 < ) ’7T>1b3
m(¢o) + 0 0
(g2, +) - ++ 0
m(d3, +) 0 0 +
m(¢3,—) 0 —= -

The values of this character on the image of s = diag(s1, 52,585,587 ") € f[Q] in Ay
are given by.

i || <S’7T>¢0 <S’7T>w2 <5’7T>w3

7(¢o) 1 0 0
7T(¢2, ) S152 1 0
(s, + ) 0 0 1

(g3, — 0 5182 5152
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For instance, if we take s = diag(1,—1,—1,1) € T[2] then

GZO’S trace w(¢g) — trace (g2, +),
67@2’5 trace m(¢2, +)+ trace (g3, —),
SR trace (g3, +) — trace (g3, —).

In this case, the elliptic endoscopic group G’ for G determined by s is the group
G’ = SO(3) x SO(3), split over F.

13.2. Vanishing cycles of perverse sheaves. — We now assemble the geometric
tools needed to calculate the Arthur packets, stable distributions and endoscopic
transfer described above.

13.2.1. Vogan variety and its conormal bundle. —

z x
V= e I V= |2y 2
z x
* Yy —=z €, Y,z
T (V) = AT | a2 C Sp(4)
=z
The cotangent bundle T*(V') comes equipped with an action of
al b1
7 _ C1 d1
H:=Z5(\) = o 5 | €5p@)
Co d2
We will write hy = (' ') and hg = (2 }2). Then hy = hy det hy", by the choice of

symplectic form J in Section 12. In particular, H & GL(2). The action of H on V,
V* and T*(V) is given by

(7 ® N AT
y —z "y —2)
Z/ / Z/ / _
h.(x/ _yz/ = ha{ _yz,) ht,
The H-invariant function (-|-):7*(Vy) — Al is the quadratic form
z
y —z
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The Hj-invariant function [, -] : T*(Vy) — by is given by
z 2z +xx’ 2y —xd
Yy —z . yz' —za' yy + 22
2y 22 +yy  x —zy
7 -7 zx' —yz  xx’ + 22
The conormal bundle is
z 22 +xx’ =0
. (U y -z 22 +yy =
TH(V) - ! y/ | Zl'/fyz/*o
=z 2 — 2y’ =0

0 0
Oy = 0 0
z Yy
Cy — r —z | ry+22=0
- (z,y,2) # (0,0,0)
z oy
Cs = S | ay+22#0
while the orbits of the action of H on V* are:
Ci = | 2’y +27#0
C* B | w/y/ + Z/2 =0
2 @',y 2") # (0,0,0)

0 0
0 0

The following diagram gives the dimensions of the H-orbits C' and the dual orbits
C*, we well as the eccentricities ec = dim C + dim C* — dim V' and closure relations
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for the H-orbits C' in V:
03 dim 03 =3 €cy = 0 Cf)k

I |

Cg dlIIl CQ =2 €cy, = 1 C;

I |

Co dim CO =0 €cy = 0 Cg
Orbit (5 is the first stratum in this article with non-zero eccentricity.

13.2.2. FEquivariant local systems. —

Cy: Regular conormal bundle above the closed H-orbit Cy C V:

‘ 0 0
. 0 0
TCU (V)reg = Z/ y, | x/y/ _ z/2 7& 0
72
Base point:
0 0
0 0 *
(IEO, 50) = 0 1 € TCO (V)wg
1 0
Fundamental groups:
T[2]

ls’—)sl S2

id ~
1= AIO — A(Eoyio) —_— Ago = {:tl}

Local systems:

Locy (Téo (V)sreg) © Lo, Lo,
Rep(Awoc) :  + =
Pullback along the bundle map Téo (V)sreg = Co:

LOCH(CO) — LOCH (Téo (V)sreg)

]lcU — ]1(90
Lo,
Cs: Regular conormal bundle above Cy C V:
z
. _ y —z xy+22=0
TE(V)reg = 2z | oy = Iy a2
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Base point:
0 1
0 0 *
(:er 52) = 0 1 € TCQ (V)reg
0 0
Fundamental groups:
2]
= lsr—)(sl,.w)
{il} = Aa:z o) A(zz,&) oz Afz = {il}

Local systems:

LOCH(TéQ(V)Sreg): lo, Lo, Fo, Eo,
Rep(A(xz-,&)): ++ = =+ 4=

Pullback along the bundle map TéQ (V)sreg — Coa:
Locy(C2) — LocH(TSQ(V)Sreg)

]102 — ]1(92
Lo,
.7'-02 — ]'—(92
Eo,
C3: Regular conormal bundle above C3 C V:
z
* Yy —z
T, (Vieg = 70 | ay+22#0
00
Base point:
0 1
1 0 N
(.I'3, 63) = 0 0 € TCg (V)reg
0 0
Fundamental groups:
T2

SlsQHSl

~ id
{:l:l} = Arg — A(I37€3) Emd A§3 =1

Local systems:

LOCH(TE«S (V)Sreg) 1o, Lo,
Rep(A(Is-,Ez)) : + —

133
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Pullback along the bundle map 7, (V)sreg — Ci:
Locy(Cs) — LocH(T(’}S(V)Sreg)

]103 — ]1(93
ﬁcs — £(93
13.2.3. FEquivariant perverse sheaves. — The following table is helpful to understand
the simple objects in Perg (V).
P || 7)lco Plcz P|Cs
IC(1e,) || 1y (0] 0 0
Z’C(]lcz) ]100 [2] ]102 [2] 0
E(]]-Cz) ]]-Co [3] ]]-Cz [3] ]]-Cz [3]
E(‘ECS) ]]-Co [1] 0 [’CS [3]
IC(Fey) 0 Fe, (2] 0

We now explain how we made these calculations:

(a) The first and third row of these tables are computed using the observation that
when C' is smooth, the sheaf 1=[dim(C)] is perverse.

(b) For the second row, the relevant cover 551) is the blowup of the nilcone at the
origin. We readily find using the decomposition theorem for semi-small maps
that

"\ (Lg [2]) = ZC(1e,) & TC(1ay).

Proper base change and exactness allows us to deduce the fibres of ZC(1¢,)
using what we already know about ZC(1¢, ).

(c) For the fourth row, we consider the double cover which arises from taking the
square root of the determinant. Although this is singular at the origin, blowing
up resolves this singularity. An alternate model for this blowup is the cover:

Cs = {(la:0],(2,y,2)) €P' x V| a®x + 2abz — b’y = 0}

with the obvious map 73 to V' = C3. The decomposition theorem for semi-small
maps yields

7T3!(153 [3]) = IC(‘CCJ) @IC(HCJ)
Proper base change and exactness again allows us to deduce the entries for
IC(Ley), the key observation being that the map is 2 : 1 over C3, an isomorphism
over Cy and the fibre over Cy is PL.

(d) Finally the fifth row is computed by considering the “symmetric squares” cover
of the nilcone given by 7r§2) : (a,b) = (a?,—b% ab). This map is 2 : 1 over Cy and
an isomorphism over Cj; we readily confirm using the decomposition theorem
for finite maps that

w2, (15[2]) = IC(Fe,) ® IC(1e, ).

Computing the entries in the table is now immediate using our understanding
of the fibres and what we already know about ZC(1¢,).
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TaABLE 13.2.1. PBEv : Perg, (Vi) — Perm, (T, (VA)reg) on simple objects,
for A : Wrp — "G given at the beginning of Section 13.

Peer (V)\) — PerH(T}}A (V/\)reg)
IC(]lCo) = IC(]loo)

IC(]lCQ) = IC(‘CO2) @IC(EOU)
IC(HCJ) = Ic(los)

IC(‘Ccz.) = IC(‘COS) @E(]]-('b)
E(‘FC&) = IC(5(92)

From this, we easily find the normalised geometric multiplicity matrix.

H ]]'hCU ]]'hcb ]]'hcvg ﬁth fgz

et o o oo
1 1 0 0o
Il 1 1 0|0
Ll r 0o 0o 10
Feollo o 0o o |1
13.2.4. C’uspigl\al support decomposition and Fourier transform. — Cuspidal Levi

subgroups for G were given in Section 12.2.3, so the cuspidal support decomposition
of Perg, (V) takes the same form here:
PerHA (V)\) = PerHA (V,\),f (&) PerHA (V/\)ﬂ

However, simple objects in these two subcategories are quite different in this case:

PerH(V)T || PerH(V)M

Z’C(lco)

E(]]-CQ) IC(‘FCZ)

E(]]‘CS )

IC(Les)
Here we record the functor Ft : Pery (V) — Pery(V*) on simple objects, and the
composition of that functor with the equivalence Perp(V*) — Perg (V') described in
Section 8.3.4; the composition is the functor ” : Perg (V) — Pergy (V) also discussed
in Section 8.3.4.

Pery (V) — Pery(V*) —s Pery(V)
E(]lco) — E(]lcg) — E(]lc3)
IC(le,) v IC(Ley) = IC(Lcy)
IC(le,) = IC(lez) =  IC(lg,)
IC(ACCJ) — IC(]lcg) — IC(]lCQ)
IC(]:CQ) — IC(}—C;) — IC(]:CQ)

Note that the Fourier transform respects the cuspidal support decomposition.
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TaBLE 13.2.2. Bvws : Pery, (Vi) — Locu, (Tf, (Va)reg) on simple objects,
for A : Wrp — "G given at the beginning of Section 13.

P || EVSC0 P EVSC2 P EVSC3 P
C(1¢,) + 0 0
C(1e,) - - 0
C(1¢,) 0 0 +
IC(Ley) 0 +-+ -
IC(Fe,) 0 +- 0

13.2.5. Vanishing cycles. — Table 13.2.1 presents the calculation of Ev on simple
objects. We explain all the calculation here.
All the entries in row 1 and column 3 are are a direct consequence of Lemma 6.2.1.
We show how to compute column 2.

(a) We compute PEve, ZC(1¢,). By Lemma 6.6.1,
pEVC2 IC(]lC2) = Rq)xm/+yy’+2ZZ’ (]]‘CZXC;)

Consider the affine open subvariety U, of Cy x C5 given by the equations

T, (Vves 3]-

zy’ # 0; then
=T xy+22=0
U = 7 7 y —< z/y/ + Z/2 — 0
z
2 igzl xy’ #0

Then U, has coordinate ring

~

(C[:L'a ya Za xla ya/ Z/]zy’/(xy + 225 xlyl + 2/2) — C[‘T’ Z, ylﬂ Z/]zy’-
Write foyr @ Ugy — Al for the restriction of f to Ugy. Then fg, is given on
coordinate rings by

2 22
ts —o— —y 222 = —— (2 — x2)2.
y/ x ZEyl

Using Section 6.2, especially Lemma 6.2.4, it follows that R®y, ., (]lUmy,) is the
sheaf on

fxiyl’ (0) = Spec((C[:c, 2, yla ZI]I’y//(Zy/ - :CZI))
associated to the double cover Spec(Clz, z, v/, 2/, 8luy [/ (2y' — x2', 8> + 21)).

With reference to Section 13.2.1, the restriction of [, ] : T*(Vy) — b to Uy
is given by
x xz’ 1
— x  —z Lz -2z —zy

xy’ ‘ —zy -1




(b)
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and so the equation zy' — zz’ = 0 implies this product is zero. It follows that
the support of R®y_,(1y, ,) is contained in 7§, (V)reg N Uzy . We may find the
entire sheaf R®y . (1c,xcy) by also considering the affine open Uzry cut out
2

by the condition x’y # 0. In this case we symmetrically obtain the local system
on zz' — yz' = 0 associated to the double cover given by s? 4+ 2’y = 0. We
may then glue these local systems together to see that PEve, ZC(1¢,)[—3] is the
non-trivial local system on T¢,, (V)reg trivialized by the double cover

Spec(C[a?, b, ab, > 07, d'V,ab, ad ,ba, b)) = T, (V)reg

(subvariety of A9 with all of the implied relations) given on the coordinate rings
by

a2,y —b2, 2z ab, 2 d’ Y o b7, e db.
This is the diagonal quotient of the product of the symmetric squares.

It remains to see how to describe this local system in the language of Sec-
tion 13.2.2. To do this, observe that (z2,&2) € U,y and return to the descrip-
tion of the local system R®y,_, (]lUIy/> given above and observe that the covering
group of Spec(Clz, 2,v/, 2/, 8]y [/ (2y' — 22, 8% + xy')) over f;yl, (0) is 8 +— s, or
equivalently, (z,y") — (£, +y’). It follows that PEvc, ZC(1¢,) = Lo, [3] where
Lo, is the local system which corresponds to the character (——) of A, ¢,).
Note that PEve, ZC(1¢,) # 1o, [3].

Here we compute PEve, IC(F¢,) using the affine covering Uy UUy,, = Co x C5
from Section 13.2.5, (a). Observe that

pEVCQIC(]:CQ) = R(I)f|02><céf (]:Cz X 10;)[3]

since IC(Fe,) = }“gz [2]. Consider the cover Uy, = Spec(Cla,b,y’,2]ay) of
Uy = Spec(Clz, 2,y 2']4y) given on coordinate rings by z + a?, z — ab and
the cover Uy, = Spec(Cla, b, 2, 2'Jp) of Uy, = Spec(Cly, z, 2", 2']4ry) given
on coordinate rings by y — —b?, z — ab. Together, this defines a double cover
T C‘g x C5 — Cyx C3; the local system F, X ]105 is associated to the quadratic
character of the covering group (a, b) — (£a, £b). Then

1 1
— b r 2 /2:7_1) /I /2.
(fo7r)|UIy, —a2y’ (aby' —a*z") y’( y' —az')

By Lemma 6.2.4,
R(b—i(by’—aZ,)Z (]lU

xy’

)

is the local system associated to the cover s2 4+ 3 = 0 over the zero locus
of by’ — az’ and the quadratic character of the covering group s ~ =s, or
equivalently, (a,b) — (£a, £b). By proper base change,

(7T|Uzy/ )*R@fi(bylfazl)Z(]legl) = R(pf‘UIy/ (ﬂ-|0Iy/ )*]]'Uzy/)

This shows that Eve, ZC(F2)[—3] is not the pullback Fo, of Fa to T, (V)reg,
but rather the twist of that by the local system above, which is o, .
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(c) Recall the cover 73 : Cs — Cj from Section 13.2.3 (c). To compute Eve, IC(Le, )
we consider

R® fo (s xia) (L w op )-
Localize C3 = V at 2y’ # 0 to define V,,s. Localize the fibre (m3 x id) ™ (Vyy/)
away from the exceptional divisor to define V,,, with coordinate ring

C[da z,Y, =z, Zlv ylv Z/]my//(xy =+ ’22 - d2’ zlyl + 2/2) = (C[d, €, z, yl7 Z/]I’y/

: Viyr = V. Then

1
fo Wiy/ = —x—yl(zz’ —zy —dy')(z2 — 2y + dy')

and the cover Wiy/

The functions (zz’ — zy’ —dy') and (x2' — 2y’ + dy’) being smooth on V., and
xy’ being non-zero, it follows from Corollary 6.2.6 that

R(I)fowiy, (]1\7“/ )

is the constant sheaf on the intersection of their zero loci, which is precisely
O3 N Vg, . Using proper base change, and noting that proper pushforward is an
isomorphism on the regular conormal vectors, it follows that

EVC2 IC(ECJ) = ]loZ [3]

This concludes the computation of column 2 in Table 13.2.1.
We have now explained every entry in Table 13.2.1 except for the following case.

(d) To compute Eve, ZC(1¢, ), consider
R®uuryyr 222 (Lam o)
with
6‘2(1) ={(la:0),(z,y,2)) EP' xC3 | —ax+bz=0, az+by=0}.
The Jacobian condition for smoothness tells us that this is singular precisely
when z =y =z =0 and
—a’z’ 4 2ab2’ + %y = 0.
The restriction of 5'51) x C§ — Cax C§ to the singular locus gives the non-trivial
double cover of Cj. From this we conclude

EVC0 Wél) !1551) [2] = I(Z(Eoo) D IC(]loo).

As we already know that ZC(1¢, ) is the source of the second term, we conclude
that
Eve, IC(]102) = IC(‘COO)

13.2.6. Normalization of Fv and the twisting local system. — From Table 13.2.1 we
find the first interesting case of the local system 7 on T7;(V )eeg described in general
in Section 6.9, and defined on T (V )sreg by (97):

’TC = EVSCIC(C).
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TaBLE 13.2.3. PNEv : Pery, (VA) — Perm, (T, (Va)reg) on simple objects,
for A : Wp — "G given at the beginning of Section 13.

PerHA (V)\) — PerH(T}}A (V/\)reg)
IC(]lCo) = IC(]loo)

IC(le,) = IC(lo,) ®IC(Lo,)
IC(HCJ) = IC(HOJ)

IC(‘Ccz.) = E(‘Cos) 69%(‘602)
E(‘Fcz) = E(‘FO2)

TaBLE 13.2.4. NBs : Perp, (Va) — Locw, (T77, (Va)reg) on simple objects,
for A : Wrp — "G given at the beginning of Section 13.

P || NBwsy, P NBEwsy, P NEwsy, P
C(1¢,) + 0 0
IC(]lc2) — —++ 0
IC(1¢,) 0 0 +
IC(Lcs) 0 - -
IC(Fc,) 0 —+ 0

From Table 13.2.1 we see that
T =14, &Ly, &1,
or, in other notation,
| o 2 s
T+ — +
We use T in Table 13.2.3 to calculate PNEv : Perpy, (Vi) — Perp, (Tj;, (V)reg) in two
forms; compare with Table 13.2.1 .

13.2.7. Fourier transform and vanishing cycles. — We may now verify (141) by
comparing the functors below with the Fourier transform appearing in Section 13.2.4.

Perir,(Va) —5  Perpr(Ti, (Va)reg) 5 Perg(Th, (Vidreg) ¢ Perg, (VYY)

IC(le,) = IC(1o,) — IC(1o;) «~ IC(1gy)
IC(1ey) —  IC(le,) ®IC(Lo,) +— IC(]l(g;) @IC(ﬁo;;) i IC(ﬁcg)
IC(le,) = IC(1o,) = IC(1oz) « IC(lcy)
IC(CCS) — ]C(ﬁos) EBZC<[,02> = IC(ﬁo;) @IC(ﬁo;) < IC(]lc;)
IC(Fe,) = IC(Fo,) > IC(Foy) «~  IC(Fey)
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13.2.8. Arthur sheaves. —

Arthur || packet coronal
sheaf sheaves sheaves
ACO IC(]]‘CU) D E(]]-Cb)
Ac, || ZC(Le,) ®IC(Fe,) ® IC(Ley)
'Acs IC(HCJ)@IC(]:CJ)

13.3. ABV-packets. —

13.3.1. Admissible representations versus equivariant perverse sheaves. —

Persr, (VA)S2P' || Mpure n (G/F)
ZC(1¢y) [r(¢0), 0]
C(1e,) [m(¢2,+),0]
C(1e,) [m(¢3,+),0]
IC(Ley) [m(¢3,—),0]
IC(J:Cz) [ﬂ-(qﬁQ’_)’l]
13.3.2. ABV-packets. —
ABV-packets | packet representatlons | coronal representations
HSEFX(% (G/F) : [ﬂ(¢0, a ] [ﬂ(¢2, +)a 0]
DO 4, (G/F) | [m(¢2, + ), 0], [r(¢2,-),1] [m(#3, ), 0]
ABV
Hpure b3 (G/F) : [W(¢3, ’ ]’ [ﬂ-(qﬁ?n _)’ 0]
13.3.3. Stable dzstributzons and endoscopic transfer. — We now calculate the virtual

representations 77¢ Y: see (149). In the list below, we use the notation s = (s1, s2) for

clements of T[2].

bo:
Myes = [7(d0,+),0] + (=)(s152)[m(b2, +), 0]
772'5'(1,1) = [m(¢0),0] + [7(¢2,+),0]
774'\:5/(1171) = [ﬂ'(qﬁo),()] - [ﬂ-(qﬁ% +)50]
7725\:(_1,1) = [(¢0),0] = [7(2,+),0]
772)'5/(,11,1) = [ﬂ-(qﬁO)a 0] + [ﬂ-(qﬁQa +)a 0]
P2
My's = [m(d2,+),0] = (+=)(s)[m(¢2, =), 1] = (—==)(s)[m(#3, ), 0]

SO
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Moy = [T(d2,+),0] = [m(¢2, ), 1] — [7(¢3, ), 0]
Moy = [m(d2,+), 0]+ [w(¢2, =), 1] + [w(¢3, ), 0]
ngs\,’(—l,l) = [ﬁ(¢27+)70] - [Tr((vb?;*)al] + [W(ng,*),()]
ME iy = [w(de,+),0] + [r(d2, —), 1] = [x(¢s, ), 0]
¢3:
mer = [m(ds,4),0] + (=) (s152) [ (3, -), 0]
SO
ngf\,’(Ll) = [W(¢3a +)a 0] + [ﬂ-(qﬁ?n _)7 0]
772'5,/(1771) = [W(¢3a+)50] - [W(ng,*),()]
7725,’(_171) = [W(¢3a+)50] - [W(ng,*),()]
e (—1,1) [7(¢3,+),0] + [7(¢p3,—),0].
After comparing with Section 13.1.6, we see
Mpo,s = H%E\:s
Thps,s = nw?s

This proves (148) for admissible represenations with infinitesimal parameter A given
at the beginning of Section 13.

13.3.4. Kazhdan-Lusztig conjecture. — From Section 13.1.3 we find the multiplicity
matrix myep and from Section 13.2.3 we find the normalised geometric multiplicity

matrix my,,:
1 11 1]0 1 0 0 00
0 1 1 00 11 0 00
Meep=] 0 0 1 0|0 [, m’geo =11 1 1 0|0
0 00 1]0 10 0 10
0 0 0O | 1 0 0 0O | 1
Since 'Mmyep = m’geo, this confirms the Kazhdan-Lusztig conjecture as it applies to

representations with infinitesimal parameter A : Wr — G given at the beginning of
Section 13.

13.3.5. Aubert duality and Fourier transform. — To verify (150), use Vogan’s bi-
jection from Section 13.3.1 to compare Aubert duality from Section 13.1.5 with the
Fourier transform from Section 13.2.4 .

13.3.6. Normalisation. — To verify (152), observe that the twisting characters x.
of Ay from Section 13.1.5 are trivial except for the Arthur parameter v, as are
the local systems 7Ty from Section 13.2.7 and in both cases they are given by the
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character (——) of Ay, determined by the isomorphism Ay, = {£1} x {£1}, fixed in
Section 13.1.4.

13.4. Endoscopy and equivariant restriction of perverse sheaves. — As in
Section 13.1.6, we now consider the split endoscopic group G’ = SO(3) x SO(3) for
G determined by s = diag(1,—1,-1,1) € G. Then \ : W — LG factors through
e:LG" = LG to define N : Wp — LG’ by

M) = [ (1?0 w0\
0 |w|—1/27 0 |w|—1/2

In this section we will calculate both sides of (154). This will illustrate how the
Langlands-Shelstad lift of ©, on G'(F) to O, on G(F) is related to equivariant
restriction of perverse sheaves from V to the Vogan variety V' for G’. Note that
each component of )\ is the infinitesimal parameter Wr — “SO(3) that appeared in
Section 10; here we will use that Section extensively.

13.4.1. Parameters. — There are four Arthur parameters with infinitesimal param-
eter N : Wr — “G’, up to H'-conjugacy. Using notation from Section 10, they
are
1/)60 = 1/)0 X 1/}05 7/131 = 1/}1 X 1/)17
Yo = 1 xXto, Yy = o X Y,
SO
Yoolw, ,y) = ((y),2y), Yuw,zy) = (n(),n()),
Ww(wa%y) = (VQ(:E))VQ(?J))) 1/’61(“%%9) = (VQ(y)aVQ(‘T))‘

Although ¢ = € 0 ¢}, is H-conjugate to € o 9(;, the Arthur parameters ¥, and (;
for G’ are not H’'-conjugate.

13.4.2. Endoscopic Vogan wvariety. — The Vogan variety V' for ) is simply two
copies of the Vogan variety appearing in Section 10. As a subvariety of the conormal
bundle to V, the conormal to the Vogan variety V' for X : Wr — G’ is

0 =«

: y 0
75 ) = | 5— |
z 0
(C}). Set C} = Cox Cy. Then the regular conormal above the closed H'-orbit C), C V'
is

xy =0
yr' =0~

0 0
* / - 0 0 .’L'/ 7é 0
T06 (V )reg - 0 y/ | yl 7& 0
z 0
Base point:
0 0
/ ! O * !
(0, &0) = 0 1 € Ty (V' reg
1 0
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Fundamental groups:
T[2]

J{s>—>(sl ,82)

1= Ay Agye) — Ag = {£1} x {£1}

Local systems on strongly regular conormal:

LOCH(TE(,) (V)Sreg) : ]lo[f) Eo(f) ]:06 506
Rep(Awpep) : ++ — —+ +-
Pullback along the bundle map:
LOCH/ (Cé) — LOCH/ (TC*'S (V/)sreg)
]106 — ]106
Eoy
. Set C! = C, x Cp C V'. Then the regular conormal above C’, is
0 =
‘ B 0 0 x#£0
TC;(V)reg = 0 o | Yy #0
0 0
Base point:
0 1
0 0 N
(1'/107 510) = 0 1 €T ;(V)reg
0 0
Fundamental groups:
(2]

J{S'—?(Sl ,82)

(81 ,82)0—)52

Atyer) — Ag, = {£1}
Local systems on strongly regular conormal:
LocH(Téa,: Vsreg) : 1o Lo For Eor
Rep(Awy er)): ++ —— —+ +-—
Pullback along the bundle map:
Loch/ (C7) —  Locu (T¢, (V)sreg)

S1 (—<(Sl ,52)

{£1} = Ay,

]lC; — ]l(g;c
Lo
L"Cé — ]'—oé

143
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(Cy)- Set Cy, = Cp x C CV'. Then the regular conormal above Cy is

0 0
* _ y O ' #0
Ter (Vreg = 00 | Y20
0
Base point:
0 0
1 0 .
(1"/017 561) = 0 0 S TC; (V)reg
1 0
Fundamental groups:
(2]
J{S'—?(Sl,SQ)
s244(51,52) (s1,82)—s1
{£1} = 4y, A, &) Ag = {1}

Local systems on strongly regular conormal:
LocH(Tg; (V)sreg) : lo, Lo, Fo, Eoy
Rep(Awr 1)) ++ —— —+ +-—
Pullback along the bundle map:
Locy (C;) —  Locy (Té; (V)sreg)

1oy — 1o/
Y E@Z
Foy,
Ley - oy,
Cy)- Set Cp, = Cyp x Cy CV'. Then
0 =z
Tc*‘zy (V)reg = 0 0 y 0 | 2y #0
0 0
Base point:
0 1
1 0

(11,611) = € T*;y (V)reg

o O
o O
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Fundamental groups:

T2]

J{sb—)(sl,sz)

id
{1} x {1} = Aup, —— Ay, g, — Ag, =1

Local systems on strongly regular conormal:

Cocn(Tg, (Vi) . 1o, Lou, Toy, for,
Rep(A(w’lpiil)): ++ = -+ +-

Pullback along the bundle map:
Locy (CL,)

zy

c! =

13.4.3. Vanishing cycles. — The functor

RN
1 — ]lo/
—
—

PNEV' : Perp: (V') — Perp (T (V/ )reg)

may be deduced from Section 10.2.6 using the Sebastiani-Thom isomorphism [

145

|

and | |; see Table 13.4.1. Here we show the calculation of the last three rows,

to illustrate the method.

PNEV IC(Ler) = PNE (IC(Ec,) RIC(1ey))

x

- (pNEvIC(SC ) X
= (Z(fo,) ®IC(Eo

= IC(%o, ) &IC(]lOO

(PNEvZC (1))
0)) WIC(1o,)
) ®E(500) ‘ZE(]]-OU>

= IC(lo ‘Z]]-OO)@E(EO()‘X]]-OU)
Foy)

(
= IC(Fo,) ®IC(
Similarly,

PNEV'IC(Ley) = PNBY (IC(Lg,) RIC(Ec,))

)
= (PNEvZC(1l¢,)) X
= IL(lp,) K ( (Eo

(Eo,) WIC(1o,
(o, B 1p,) ®IC
(Eo

i
= 1IC
IC(Eoy) ® IC(Eoy)

(pNEvIC(E’cy))

) @IC(Eo,))

)@ IC(Eo,) WIC(1o,)
(5oy X ]1(90)
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TaBLE 13.4.1. PNE/ PerHA,(V,\/) — Peer, (TI’_}X,(V,\/)reg) on simple
objects, for X' : Wr — el given at the beginning of Section 13.

Persr (V') 5 Pergs (T, (V')reg)

IC(lgy) =  IC(loy)

IC(ley) =  IC(loy)

IC(ley) =  IC(loy)

IC(ley,) = IC(loy)

IC(Ley) =  IC(Fo,) @ IC(Foy)

IC(Ley) = IC(Eo,) ®IC(Eoy)

IC(Lcy,) = IC(Loy,) ®IC(Loy) ® IC(Loy) ®IC(Loy)

TABLE 13.4.2. NBw' : PerHA, (V) — LOCHM (T;I)\/ (Vs )sreg) on simple
objects, for \' : Wr — el given at the beginning of Section 13.

P’ || NBwsy, P Nbs, P’ NBsy P’ NEsy P’
IC(1cy) ++ 0 0 0
IC(]ICQ) 0 ++ 0 0
(1) 0 0 ++ 0
IC(1cy ) 0 0 0 4+t
IC(Lcr) —+ —+ 0 0
IC(Lcy) +- 0 +- 0
IC(Lcy,) - - - -

and
PNE/IC(Ley) = PNBY (ZC(Ec,) RIC(Ec,))
= (PNEVIC(Ec,)) W (PNEVIC(Ec,))
= (IC(Eo,) & IC(Eo,)) R (IC(E0,) ® TC(E0,))

= IC((?@I X 5(9y) @Z:C(gom X 5(90)
@IC((‘)@O X 5(9y) @IC((S‘OO X 5(90)
= IC(Lo,,) ®IC(Lo,) ®IC(Loy) ®IC(Loy)-
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13.4.4. Restriction. —

res : Perg (V) — KPergy (V')
I(le,) = IC(Lcy)
IC(le,) — IC(1ey)[1] @ IC(1ey)[1] © ZC(ey)[1]
IC(le,) =  IC(1ey, )]
IC(Lcy) — IC(Lgy)[l] @ IC(Ley, (1]
IC(Fe,) v+ IC(Ley)[l] @ IC(Ley)[L]

13.4.5. Restriction and vanishing cycles. — In this example the inclusion V' — V
induces a map of conormal bundles ¢ : T}, (V') < T7;(V); this is not true in general,
as Section 14.4.3 shows. Here we have

T (Vres N Ti(Vreg = T2 (V' )res
T, (Vireg N T (Vres = T8 (V )reg U TS (V' )reg
TEB(V reg 1 T*'(V )reg = Té‘;y(vl)reg-

We now calculate both sides of (153) in three cases: when P = IC(1¢,), ZC(Lc,)
and IC(Fe,).

The case P =IC(1¢,). — We now calculate both sides of (153) when P = ZC(1¢,).
By Section 13.4,

(L) lvr = IC(1ey ) 1] © IC(T ey )[1] & ZC(T gy (1],
after passing to the Grothendieck group of Pergy/ (V'). So, by Section 13.4.3,
NEV' (ZC(1c, )lv)
= N&' (ZC(1oy)[1] @ ZTC(1ey)[1] © TC(1¢y)[1])
= IC(lo,)[l] ® IC(Loy)[1] & IC(Loy) (1]

in the Grothendieck group of Perg: (T (V' )reg). Thus, for each (2',&") € TE (V' )reg
with image (2,&) € T (V )reg, the left-hand side of (153) is

(71)dimC’ trace,, (NEV'IC(RC2)|V/)(I, £)
(1) tracey, (zcuo;)m ®IC(Lo, (1] @10(506)[1])
while the right-hand side of (153) is

(—1)dmcC trace,, (EvIC(1c,))(a,¢)
= (=14 Ctrace,, (ZC(1o,) & LC(Loo))(we)

We now calculate both sides of (153) when P =ZC(1¢,).

(z,€")

(CY). If (2, ¢) € T*[,)(V’)reg then C" = C} and C = Cp and the left-hand side of
(153) is
(—1)dimCo trace(H 1) ZC(1oy (1]
= —(=1)%trace(y1,—1) ZC(1oy)
—(++)(+1,-1)

= —1,
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while the right-hand side of (153) is

(_1)dim Co trace(+17,1) (IC(]loZ) @IC(,C@O)) |TC*~0(V)reg
= trace(y+1,—1) ZC(Lo,)
= —1.
. * !
This confirms (153) on TC(,’(V reg-

(C2). If (2',&) € T¢, (V')reg then C" = C7 and C' = C3 and the left-hand side of
(153) is

(_1)dimC; trace(y1,-1) E(ﬁo;)[l]
—(=1)' trace(11,_1y ZC(Lo: )

(==)(+1,-1)

- 1

while the right-hand side of (153) is

(—1)dimC: trace(_1) (ZC(Lo,) © IC(Lo,))
= trace_1)IC(Lo,)
= ()=
—1.
This confirms (153) on T (V') reg-
(Cy)- If (a',€') € Téy (V')req then C' =
(153) is

T, (Ve

C; and C = C5 and the left-hand side of

(—1)dim ¢, trace(—1,11) ZC(Loy )[1]

= —(—1)1 trace(_1,41) Z,C(Eo;)

(==)(=1,+1)

-1

while the right-hand side of (153) is —1, as in the case above. This confirms
(153) on T, (V' )reg:

(Chy)- I (2,€) € TC"VQ/W(V’)reg then C’ =
(153) is

)

C;, and C' = C3 and the left-hand side of

(—1)8m o traceq 1,1y (ZC(1oy)[1] ® TC(Loy 1] & TC(Loy 1]
while the right-hand side of (153) is

(—1)dimCs trace(_1) (ZC(1o,) © IC(Lo,)) T (V)re
both of which are trivially 0. This confirms (153) on T(’S;y(V’ )reg-

(«,€")

This proves (154) when P = ZC(1¢,).

The case P =IC(L¢c,). — We now calculate both sides of (153) when P = ZC(L¢y,).
By Section 13.4,

IC(Ley)lv = IC(Leoy)[1] & IC(Ley, (1],
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after passing to the Grothendieck group of Pergy/ (V'). So, by Section 13.4.3,
NEV' (ZC(Lcy)|v)

= NE/ (zcacé)m @E(ccéy)m)
= Ic(lgy)[l] © IC(Loy, 1] © IC(Loy ) [1] @ IC(Loy )[1] © TC(Loy)[1]
in the Grothendieck group of Perg: (Tf; (V' )reg). Thus, for each (z/,&') € T/ (V' )reg
with image (2,&) € TE(V )reg, the left-hand side of (153) is
(_1)dimC’ tracears (NEV’IC(ACCS”V/)(I, €
(1) race,, (10(106)[1]@10(co;y)[1] ®IC(Loy (1]

@ I0(Lo )N & TC(Ley)N]) |,
while the right-hand side of (153) is

(—=1)4m € trace,, (EvIC(Lcy)) (x.6)

= (1) %trace,, (IC(Lo,) ®IC(Lo,))

(z:8)
We now calculate both sides of (153) in every case.

(CH). I (2, ¢) € T*[,)(V’)reg then C" = C} and C = Cp and the left-hand side of
(153) is
(—1)4m % trace 1,1 (ZC(1oy)[1] ® IC(Loy )[1])
= (=1)° (—trace(41,-1) ZC(loy) — trace1,—1) IC(Loy))
= —(+H)(+1,-1) = (==)(+1,-1)
= +1-1
0,

while the right-hand side of (153) is

(—1)dimCo trace(_1) (ZC(Lo,) © IC(Lo,))
This confirms (153) on T(’S(,’(V’)reg.

gy (Ve = V-

") I (2/,&) € T (V' )reg then C" = C. and C' = C5 and the left-hand side of
(153) is ’
(—1)dimC; trace(11,-1) ZC(Lo: )[1]
= —(—1)1 trace(JrL,l)IC(ﬁolz)
(—=)(+1,-1)
-1
while the right-hand side of (153) is
(—1)dimC: trace(_1) (ZC(Lo,) © IC(Lo,))
= trace_1)IC(Lo,)

= (D)
—1.

This confirms (153) on T (V) req-

Tg, (Ve
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(Cy)- It (2,€") € T (V )reg then €' = € and C = (3 and the left-hand side of
(153) is ’
(—1)4m % trace(_y 1) ZC(Loy )[1]
—(=1)" trace(_1 11y IC(Loy)
= (—)(=L+1)
= -1,
while the right-hand side of (153) is —1, as in the case above. This confirms
(153) on T, (V') reg-
(Cr,). I (2,¢) € %}*};y (V')reg then C" = C;, and C = C3 and the left-hand side of
(153) is

(—1)%m ey trace(y1,—1) ZC(Loy )[1]
= —(=1)*trace;;1,-1) ZC(Loy, )
= ()LD
= (1
+1
while the right-hand side of (153) is
(—1)dimCs trace(_1) (ZC(Lo,) © IC(Lo,))
= —trace_1)ZC(Lo,)

= —()(-1)
= 41

This confirms (153) on T (V')reg-
zy

oy (V)res

This proves (154) when P = ZC(Lc, ).

The case P = IC(F¢,). — We now calculate both sides of (153) when P = IC(F¢,).
By Section 13.4,
IC(Fey)lv =IC(Ley)[1] & IC(Ley ) [1],
after passing to the Grothendieck group of Pergy/ (V'). So, by Section 13.4.3,

NEY' (ZC(Fc,)|v)

= N (ZC(Ley)1] @ TC(Ley 1))

IC(Fo,)[1] & IC(Foy)[1] & IC (o, )[1] & IC(Eoy ) (1]

in the Grothendieck group of Perg: (T (V' )reg). Thus, for each (2',&") € TE (V' )reg
with image (2,&) € T (V )reg, the left-hand side of (153) is

(*Ddimc, traceq, (NEV/IC(}-CENV')

(z,¢7)
= (=% trace,, (I0(Foy)[1] @ IC(Foy (1]

S IC(Eoy)[1] ® E(goé)[l])(z',f’)
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while the right-hand side of (153) is
(_ 1)dim Cdprageas (EV(I{) IC(]:CQ ))
= (-1) fm trace,, (EvIC(Fe,)) |Té(v)mg
(—1)H™C traceq, (ZC(F0,)) 175 (V) e -

We now calculate both sides of (153) in every case.

(Co). If (2',&") € Ty (V')reg then C”
(153) is
(—1)4m 6 tracey 1,1y (ZC(Foy )[1] & ZC(Eoy )[1])
= (—1)° (= trace(y1,-1) ZC(Foy) — trace(1,—1) IC(Epy))
= (L) ()
= +1-1
while the right-hand side of (153) is
(—1)dim o trace(_1) (ZC(Fo,) |T50(V) =0.

reg
This confirms (153) on Téé(V')reg.

(CL). If (2/,&) € T (V' )reg then C’
(153) is

(—1)dim C. trace(41,—1) ZC(For, )[1]
= —(=1)*tracet1,—1) ZC(For )
= (—HEL-1
= —|—1,
while the right-hand side of (153) is
(_1)dim Ca trace(JrL,l) IC(.F@Z)|T52 (V)res
= trace(y1,—1) ZC(Fo,)
- 41
This confirms (153) on T (V' )reg-

151

C} and C = Cj and the left-hand side of

C! and C' = C3 and the left-hand side of

(ch. If (2/,¢') € Te, (V')reg then C" = Cj and C' = Cy and the left-hand side of

(153) is
(—1)dimC, trace(—1,+1) ZC(Eoy ) (1]
= —(—1)'trace_y,4+1)ZC(Eor )
= ()L 4)
= 11,

while the right-hand side of (153) is +1, as in the case above. This confirms

(153) on Tg, (V/)reg-

(cr). If («/,¢) e Té,, (V')reg then C" = C;,, and C' = C3 and the left-hand side of

Yy

(153) is

(71)dim Cly traCe(_,_l,_l) (IC(]:@;)D] &) IC(]:(%)[H) (@€
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while the right-hand side of (153) is
(—1)4mC trace,, (IC(Fo,)) |T53 V)

reg?

both of which are trivially 0. This confirms (153) on T, (V')reg-
Ty
This proves (154) when P = ZC(Fc¢y,).

14. SO(7) unipotent representations, singular parameter

Let G = SO(7).

The calculation of pure inner twists and inner twists and their

forms for GG is the same as in Section 12. Let GGi be the non-quasisplit form of G,
given by the quadratic form

0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 —ew 0 0 O O
00 0 € 0 00O
00 0 0 OO
0 1 0 0 0 00
1 0 0 0 0 00
One readily verifies that the Hasse invariant of this form is (w,e) = —1 so that the

form is not split. Note that the choice e = 1 would give a split form.
Consider the infinitesimal parameter A : Wy — G given by

|w]

3/2 0
0 |U}|1/2
0 0
0 0
0 0
0 0

0
0
0
0

0

0
0
0
|w|™
0
0

1/2

Here, and below, we use the symplectic form (z,y) =
Jij = (=1)387_; ; to determine a representation of Sp(6). Note that, in contrast to
the unramified infinitesimal parameters in Sections 10 and 12, in this case the image
of Frobenius is singular semisimple.

14.1. Arthur packets. —

txJy with matrix J given by

14.1.1. Parameters. — Up to Hy-conjugation, there are eight Langlands parameters
with infinitesimal parameter A, of which six are of Arthur type. The six Langlands
parameters of Arthur type are most easily described through their Arthur parameters:

Yo(w, z,y)
Yo (w, z,y)
¢4(w ,y)
where v4 : SL(2) —
SL(2)7 V3. ( )

va(y) ® va(y),
va(y) © va(w),
va(x) @ v3(y),
)

Sp(4

Yr(w, 2, y)
wﬁ(wa xz, y)
w5(wa xz, y)

is a 4-dimensional symplectic irreducible representation of

va(z) @ va(),
V4($) D V2(y)’
v3(z) @ v2(y).

SO(3) is a 3-dimensional orthogonal irreducible representation of
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SL(2) and, as above, vy : SL(2) — SL(2) is the identity representation. Note that ¢
is the Aubert dual of 7, 19 is the Aubert dual of v, and 14 is the Aubert dual of

Vs.

These Arthur parameters define the following six Langlands parameters:

do(w,z) = wvg(dy) ® va(dy), dr(w,x) = wvu(z) B va(r)
¢2(waz> = I/4(dw)EBl/2(ZL'>, ¢6(waz> = I/4($) @VQ(dw)v
da(w,z) = wva(z) @us(dy), ds(w,x) = v3(x) @ va(dy).

The remaining two Langlands parameters in Py(*G)/Zg()\) that are not of Arthur
type are given here:

|’LU|.Z‘11 |’LU|.Z‘12 0 0 0 0
|’LU|.T21 |’LU|.T22 0 0 0 0
(w.z) = 0 0 | |w'? 0 0 0
n® = 0 0 0 |w|Y? 0 0 ’
0 0 0 0 |w| 11 |w|_1m12
0 0 0 0 |’LU|7 T21 |’LU|71£C22
wP? 0 | o o] o 0
0 11 0 0 T12 0
o 0 0 11 T12 0 0
(bg(’w,l') B 0 0 o1 T29 0 0
0 —T21 0 0 —T22 0
0 00 o 0 J|u
14.1.2. L-packets. — In total, there are 15 admissible representations with infinites-

imal parameter A, of which 10 are representations of G(F') while 5 are representations
of G1(F). In order to list them, we must enumerate the irreducible representations
Ay, for each ¢ € Py(LG). In every case but one, the group Ay is trivial or has order 2;
in the latter case, the irreducible representations of these groups are unambiguously
labeled with + or —; in the former case, we simply elide the trivial representation,
such as in the list below.

g, (G(F)) = {m(d0)} I, (GL(F) = 0

Iy, (G(F)) = {m(¢1)} I, (G1(F) = 0

Iy, (G(F)) = {m(¢2,+)} Iy, (G1(F)) = {m(d2,—)}

My, (G(F)) = {m(¢s,+),7(d3, )} Iy, (G1(F)) = 0

Iy, (G(F)) = {m(¢s,+)} Iy, (G1(F)) = {m(ds;—)}

g, (G(F)) = {m(¢5)} g, (GL(F) = 0

H¢6 (G(F)) = {ﬂ-(¢6a +)} H¢6 (Gl (F)) = {ﬂ-(¢6a _)}

Uy, (G(F)) = Am(¢7,++).7(¢7, ——)} g, (G2(F)) = {n(¢7,+—),7(d7, —+)}
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The centraliser of ¢ is the following subgroup of 2-torsion elements f[Q] in the
diagonal dual torus 7'

st 0 0 O O O
0 s 0 O 0 O
0 0 s 0 0 O -~
Z@(¢7) = 0 0 S) s3 0 0 € T[Q] | 51 = 82
0 0 0 0 s O
0O 0 0 0 0 s

We fix the isomorphism Zz(¢7) = {1} x {£1} so that the image of Z(G ) in Zz(¢7)
is {(+1,+1),(—1,—1)}; using this isomorphism, we label irreducible representatlons
of Ay, = Zz(¢7) by the symbols ++, +—, —+ and ——. Note that the restriction of
these representations to Z(G) is trivial for ++ and —— only.

Of these 15 admissible representations, only the representation 7(¢7, +—) of G1(F)
is supercuspidal. In fact, 7(¢7,+—) is a unipotent supercusidal depth-zero represen-
tation. In Lusztig’s classification of unipotent representations, 7(¢7, +—) is the case

n=3a=1b=1of , 7.55]; it corresponds to the unique cuspidal unipo-
tent local system for G, see C3/(Cg x Cp) in | , 7.55]. Lusztig’s classification
also shows how m(¢7, + 7) may be constructed by compact induction, as follows; see
Bs/(D; x By) in | , 7.55]. Let G1 be the parahoric Op-group scheme asso-

ciated to an almost self-dual lattice chain and the quadratic form at the beginning
of Section 14. The generic fibre of G is the inner form Gy of G*, and G1(OF) is a
maximal parahoric subgroup of the F-points on the generic fibre of G;. The reductive

quotient G1r6d of the special fibre of G is SO(5) x SO(2) over F,, where SO(5) and
SO(2) are determined, respectively, by

0 00 01

0 0010 e 0
0 0 ¢ 0O and <0 1>,
01 00O

10 0 00

with ¢ = ¢ mod Op. Note that the parahoric G,(Ok) is not hyperspecial. The
finite group SO(5,F,) x SO(2,F,) admits a unique cuspidal unipotent irreducible
representation, °c. Let inf(°c) be the representation of G1(Op) obtained by inflation
of °c along G1(Of) — (Ql)ﬁd(]l"q). Now extend inf(°c) to the representation
inf(°c)" of N, (r)(G1(OF)) by tensoring with an unramified character which has
order 2 on Ng,(r)(G1(OF))/G1(OF). Then

(o7, +—) = CIndN*G(}Zi)(Gl(OF))(mf(o)*).

We remark that N¢, (7)(G1(OF)) also admits a smooth model over O, for which the
reductive quotient of the special fibre is S(O(5) x O(2)) = SO(5) x O(2).

14.1.3. Multiplicities in standard modules. — In order to describe the other admissi-
ble representations appearing in this example, we give the multiplicity of 7(¢, p) in the
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standard modules M (¢', p’) for representations of the pure form G(F') in Table 14.5.
To save space there we write m, for m(¢;) and «§ for m(¢;,€); a similar convention
applies to the notation for the standard modules. Let us see show how to calculate
row 8 in Table 14.5. Consider the standard module

M = Ind(||'* @ 7 (va, +))

for G(F). Tt is clear that this will contain mj. Moreover, it has an irreducible
submodule 7r;r *. To show there is nothing else, we can compute the Jacquet module
of Mgr with respect to the standard parabolic subgroup P, whose Levi component is
GL(1) x SO(5). By the geometric lemma, we get

s.s. Jacp Mg = |[*2 @ nd(||"? @ 7(v2, +)) @ [|"? @ 7(va, +) @ |2 @ 7(va, +)
and
ss. Ind(|[V? @ w(va,4)) = T(ve B V2, ++) B 7
where 7’ is the unique irreducible quotient. Here, s.s. denotes the semi-simplification
of the module. On the other hand,
ss. Jacpry = ||TV? @ 7w(ve, +) @ P2 @7
and
s.s. Jacpmd T = |[Y2 @ w(va, +) @ |[*? @ w(v2 ® va, +4).
Therefore,
s.s.MéIr = Wé” @ 7T;H'.
This explains row 8 in Table 14.5.

The multiplicity of 7(¢, p) in the standard modules M (¢, p'), for representations
of the form G;(F) are also displayed in Table 14.5.

14.1.4. Arthur packets. — In order to describe the component groups A, consider
the torus

S1

S92 0
0 S3
o= sgl 0

1
0 s

)
N
)

S1 = S92 C

=T
51

Let S[2] be the 2-torsion subgroup of S; Note that Z(G) C S[2]. Let us the notation

52

S92 0
0 S3

s(82,83):= 55 0 € S[2]

0 S92

52
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and let S[2] = {£1} x {£1} be the isomorphism determined by this notation. Then
Z(G) = {£1} is the diagonal subgroup, for which we will use the notation

S1
S1 0
0 A
s(s1, 1) = 5 € Z(G) c S[2).
S1 0
0 S1
51
We can now give the component groups Ay:
Ay, = S[2], Ay, = S[2],
Ay, = S5[2], Ay, = S[2,
Al/h; = Z(G)a Aws (G)
The Arthur packets for admissible representations of G(F') with infinitesimal pa-

rameter \ are

Iy (G(F)) = {m(¢0), m(¢2,+)},

Iy, (G(F)) = A{m(¢2,+),7(¢s, —)},
Iy, (G(F)) = {m(¢s, H)},

Iy, (G(F)) = A{m(¢s) }

st (G(F)) = {ﬂ.((bfia (¢7a )}a
Hw7(G(F)) = {ﬂ-((b% ++) (¢7a __)}a

and the Arthur packets for admissible representations of G1(F) with infinitesimal

parameter \ are

My, (G1(F)) = {m(¢a, =), m(d7(+-)},
Iy, (G1(F)) = An(¢2, ), 7(¢7,+-)},
H¢4(G1(F)) = A{m(¢s, =), m(¢7, +-)},
My (G1(F) = {m(¢7,—+), (b7, +-)},
My (Gi(F)) = A{m(d6,—),m(d7,+—)},
My (Gi(F) = {m(¢7,—+),7(d7, +-)}.

We arrange these representations
Table 14.5.

into pure Arthur packets in Table 14.5; see also
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14.1.5. Aubert duality. — The following table gives Aubert duality for the admissi-
ble representations of G(F') with infinitesimal parameter A.

T || T
W((bo) 7T(¢7a ++)
m(¢1,+) || w(¢s,+)
m(p2,+) || 7(¢p7,——)
(g3, +) m(¢1,+)
(g3, —) (g6, +)
ﬂ-( 4a+) 7T(¢5)

m(¢s5) (¢4, +)
(s, +) (g3, —)
(g7, ++) (o)
m(¢7,—=) || m(p2,+)

Aubert duality for the admissible representations of G1(F') with infinitesimal param-
eter A is given by the following table.

m | ft
7T(¢2a _) 7T(¢6a _)
7T(¢4a _) 7T(¢7’ _+)
ﬂ-(qﬁﬁa _) 7T(¢2a _)

m(¢7,+=) || 7(d7,+-)

The twisting characters Xy, Xuv., Xus and Xy, are trivial. The twisting characters
Xy, and Xy, are nontrivial, both given (——), using the respective isomorphisms
Ay, = S[2] = {£1} x {£1} and Ay, = S[2] = {£1} x {£1} fixed in Section 14.1.4.

14.1.6. Stable distributions and endoscopy. — The stable distributions on G(F)
attached to these Arthur packets are:

0F = tracem(¢o) + tracem(¢z,+), 657 = trace w(¢7, ++) + tracew(¢7, ——),
Oy, = trace (g2, +) — tracen(¢s, —), @gﬁ = trace (¢, +) — tracew(¢r, ——),
0y, = tracem (¢4, +), @5);5 = trace 7(¢s).

The characters (-, ) » of Ay are given in Table 14.5. With this, we easily find the
coefficients (ssy, ), in @gys. First calculate sy :=1(1,1,—1):

Syy = va(—=1)®ra(—1) =s(-1,-1), sy, = (1) ®wr(l) =s(1,1),
Sy = V4(71)@V2(1):5(7171>5 Sy = V4(1)®V2(71):S(1571)5
Sqpy - V2(1)®V3(71) :5(151)7 Sabs = V3(1)®V2(71) = 5(71771)
Then, using the notation s = s(ss, s3) from Section 14.1.4, we have:
916150,5 = tracem (o) + s283 tracew(¢pa,+),
65275 = tracenm(¢2,+) — S283 tracew(¢psz, —),
65475 = tracen(¢yq,+),
and
957,3 = tracen(¢7, ++) + s283 tracem(dr, ——),
@Zﬁﬁs = tracen(¢e,+) — s2s3 tracem (o7, ——),
Oy,.s = tracem(¢s).
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We now turn our attention to the distributions on G1(F') attached to these Arthur

packets:

and

+ tracen (o7, —+) + tracew(¢7,+—)
+ tracem (¢, —) — tracem(¢dr, +—)
— tracem(¢7, —+) — tracem(¢7, +—)

— tracem(dq,+) — tracem (o7, +—)
+ tracem(¢o, —) — trace (¢, +—)
+ tracen(dq, —) + tracenm(¢7,+—)

The characters (-, )  of Ay for these representations are also given in Table 14.5.

With this, we easily find the coefficients (ssy, 7T>¢ in @gls, again using the notation
s = s(s2,83) or s = s(s1, s1) from Section 14.1.4 from which we deduce

G
@golys
@ 1

2,8

e
Pa,s
and
G1
P7,8
G1
97’@6’5
1

Ps5,8

The endoscopic group

—satrace m(g, +) — s3 trace (o7, +—)
+s3 trace m(¢p2, —) — sa trace w(¢7, +—)
+s1 trace w(dq, —) + s1 trace w(p7, +—)

+sq trace w(¢7, —+) + s3 trace w (o7, +—)

+s9 trace (g, —) — s3 trace m(¢7, +—)

—s1 trace (g7, —+) — s1 trace w(d7, +—)

for G attached to s = s(1,—1) or s
group G’ = SO(5) x SO(3), in which case 95,

= s(—1,1) is the

is the endoscopic transfer of a stable

distribution @5// We write ¢/ = (), 1)) where ¥(1) is an Arthur parameter for
SO(3) and ¥ is an Arthur parameter for SO(5). The following table gives ¥(!) from
Section 10.1.1 and ¥(® from Section 12.1.1, for each Arthur parameter ¢ appearing
in Section 14.1.1 that factors through Lq'.

14.2. Vanishing cycles of perverse sheaves. —

§14.1.1 || §12.1.1 §10.1.1
0 1/,(2) 1/,(1)
Yo o Yo
(> o (3
Ve 3 Yo
7 3 Y1
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14.2.1. Vogan variety and its conormal bundle. — The centralizer in G of the in-
finitesimal parameter A : Wp — LG is
h1
ag b2
Hy = cz_dy e Gy =~ GL(1) x GL(2)
as bg
C3 dg
ha

We will write hy = (%272 ) and hs = (%2 '2). Then h = hydet hy ' and hy = hi', by

the choice of symplectlc “form J at the beginning of Section 14. The Vogan varieties
Vx and V' are:

U v
z x u’
/
Va= Y z ) V,\* = u 7 7
—v 2y
U A
—v'
SO
U v
u’ z x
A
T*(V/\): u o y/ Y = v u”lf;j’jjxx’:yy,’;zz’ Cﬁ
A U
—'

The action of Hy on V, V* and T*(V)) is simply the restriction of the adjoint
action of H C G on T*(V) C ﬁ This action is given by

= hi(u v)hy'
f) : hzc e

and

We remark that for u € (C

if and only if
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The H-invariant function (-|-): T*(Vy) — Al is the quadratic form

u v
! z x
/ —
v — Y : — 2uu’ + 200 + zx’ +yy’ + 227
2y —v
=2 u
-
The H)-invariant function [-, -] : T*(Vy) — by is given by
u v
/
Z, : :EZ (uv + V") Hy + (z2’ + 22")Ha
7 7 Y = +(yy' + 22" )Hz + (zy — 22" )E
5 Y v +(yz' — z2)F
=z u
v

where, {H1, Ha, H3} is the standard basis for the standard Cartan in g and, with
reference to Hy C G and by C @, {H1}, {H2, Hs, E, F} is the Chevalley basis for
gl(2) in sp(6). Thus, the conormal bundle is

; uu + v’ =0
Z, N fz zx' + 22 =0
Ty (Va) = 7 7 Y | yy' +22'=0
=Y v zy —xz' =0
-7 U , ,
e a— yz' —za' =0

Note that the fibre of (-|-) : Vi x Vi — A above 0 properly contains the conormal
bundle T7; (V) as a codimension-4 subvariety.

Although it is possible to continue to work with V and 7%(V) as matrices in g
and make all the following calculations, we now switch to the perspective on Vogan
varieties discussed in Section 8.2.1. This new perspective has several advantages: it
is notationally less awkward, it generalises to all classical groups after unramification
in the sense of Theorem 4.1.1 and it helps clarify the proper covers which play a
crucial role in the calculations of the vanishing cycles that we make later in this
section. Write g = sp(E,J), so E is a six-dimensional vector space equipped with
the symplectic form described in Section 14.1.1. Let E; be the eigenspace of A(Fr)
with eigenvalue ¢/2; let Es be the eigenspace of A(Fr) with eigenvalue q'/?; let F3
be the eigenspace of A(Fr) with eigenvalue ¢~/2; let E,; be the eigenspace of \(Fr)
with eigenvalue ¢=3/2. Then GL(FE,) x GL(E3) x GL(E,) x GL(FE;) acts naturally
on the variety Hom(FEs3, E4) x Hom(FEs, E5) x Hom(E7, Es). If we identify E3 with
the dual space E5 and E; with E} then V may be identified with the subvariety of
(w1, ws,ws) in Hom(E, Eq) x Hom(Es, E3) x Hom(E3, E) such that w3 = w; and
twg = woy, SO

%4 {(w,X) € Hom(Ey, E3) x Hom(Ey, E3) | 'X =X }
Hom(E,, Ey) x Sym?(E3).

1R
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The action of H on V now corresponds to the natural action of GL(E;) x GL(E3)
on Hom(E1, Ey) x Hom(Es, E3). After choosing bases for E; and Es, the conversion
from the matrices in g to pairs (w, X) € Hom(E;, E>) x Sym*(E3) is given by

o) o (7)-( ) D)

We will use coordinates (w, X) for V) when convenient. The same perspective gives
coordinates (w’, X') for V¥ where

-z 2 0 -1\ /72
w'=(u o) and X/:<z' y’)<1 0)<x' —z’)'

In these coordinates, the action of H on V is given by

how = ‘hy'w'hy  h-w' = hwhy'

h-X = haXthy h-X'" = haX'ths,
the H-invariant function (-|-): T*(Vy) — Al is given by

((w, X) | (W', X)) = w'w + trace X' X,
and the H-invariant function [-,] : T*(Vy) — b, is given by
[(w, X), (w', X")] = (v'w, X' X).
In particular, the conormal may be written as
T*(Vy) 2 {(w, X),(w, X)) e VxV*|ww=0,X"X=0}.

14.2.2. FEquivariant local systems and orbit duality. — The variety V) is stratified
into H-orbits according to the possible values of rank X (either 2, 1 or 0), rank tw
(either 1 or 0) and rank ‘wXw (either 1 or 0). There are eight compatible values
for these ranks. We now describe these eight locally closed subvarieties C' C V, the
singularities in the closure C' C V and the equivariant local systems on C. For each
H-orbit C' C V except the open orbit C'; C V, the H-equivariant fundamental group
of C is trivial or of order 2. So in each of these cases we use the notation 1o for
the constant local system and L& or F¢ for the non-constant irreducible equivariant
local system on C. (The choice of L& or Fe will be explained in Section 14.2.4.)

Cy: Closed orbit:
Coy ={0}.
This corresponds to the minimal rank values
rank X =0, rank ‘w = 0, rank ‘wXw = 0.

This is the only closed orbit in V.
C1: Punctured plane:

C; ={(w,X)eVy| X =0,w# 0}.
This corresponds to the rank values

rank X = 0, rank ‘w = 1, rank ‘wXw = 0.
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While C; is not affine, its closure C; = {(w, X) € Vi | X = 0} is A2, This orbit
is not of Arthur type. Since A¢, is trivial, 1¢, is the only simple equivariant
local system on C.

Smooth cone:

Cy={(w,X) €Vy| rank X =1, w = 0}.
This corresponds to the rank values
rank X =1, rank ‘w = 0, rank ‘wXw = 0.
Then C5 is not an affine variety and the singular locus of its closure
Co = {(2,9.2) | 2y + 2> = 0)

is precisely Cy. We remark that xy + 22 is a semi-invariant of V3 with character
h + det h3. Now Ac, = {£1}; let F¢, be the equivariant local system for the
non-trivial character of Ac,. Then F¢, coincides with the local system denoted
by the same symbol in Section 13.2.3.

The rank values

rank X = 2, rank ‘w = 0, rank ‘wXw = 0.
determine
Cs ={(w,X) € Vy| rankX =2, w =0} = {(z,9,2) | zy + 2> # 0}.
The closure of C3 is smooth:
Csz ={(w,X) € V) | w=0} = A>

This orbit is not of Arthur type. Since Ag, = {£1}, there are two simple
equivariant local systems on C3, denoted by 1¢, and L¢,. Then L, coincides
with the local system denoted by the same symbol in Section 13.2.3.

The rank values

rank X =1, rank fw =1, rank ‘wXw =0
determine
Cy={(w,X) eV, | rankX =1, w# 0, Xw=0}.
The singular locus of the closure
Cy = {(u,v,2,y,2) | zy + 2> =0, —2u+ 20 =0 = zu + yv}

is Cy. Here, Ag, = {£1}. Let 1¢, and F¢, be the local systems for the trivial
and non-trivial characters, respectively, of Ac,.
The rank values

rank X = 2, rank ‘w =1, rank ‘wXw =0
determine
Cs = {(w,X) € Vy | rank X = 2,w # 0, ‘wXw = 0}.
The closure of Cf,

Cs = {(u,v,2,,2) | —u’x+ 2uvz + 0%y = 0},
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has singular locus C3. We remark that —u?z + 2uvz + v%y is a semi-invariant
of Vy with character h — h?. The group Ac, is trivial.
Cs: The rank values

rank X =1, rank ‘w =1, rank 'fwXw =1
determine
Co = {(w,X) € Vs | rank X = 1,w # 0, 'wXw # 0}.
The singular locus of
Co = {(u,v,z,y,2) | xy+2° =0}

is C;. Then Ac, = {£1}. Let 1¢, and Fg, be the local systems for the
trivial and non-trivial characters, respectively, of Ac,. The local system F¢ is
associated to the double cover from adjoining d? = —u?x + 2uvz + v?y, which
is isomorphic to the pullback of the double cover from Fc,.

C7: Open dense orbit:

Cr={(w,X) €Vy| rankX =2,w #0, "'wXw # 0}.
This corresponds to the maximal rank values:
rank X = 2, rank ‘w =1, rank ‘wXw = 1.

Now, Ac, = S[2] = {£1} x {£1}. Let 1¢, be the local system for the trivial
character (++4) of Ac,; let L, be the local system for the character (——) of
Ac.; let Fe, be the local system for the character (—+) of Ac,; let Ec, be
the local system for the character (+—) of Ac,. Equivalently, L¢, is the local
system on (7 associated to the double cover d?> = xy + 22, F¢., is the local

system associated to the double cover d? = —u?z + 2uvz + v%y, and Ec, is the
local system associated to the double cover d? = (zy + 22)(—u?x + 2uvz +v%y).

Dimensions, closure relations for these eight orbits in V', and their dual orbits in V*,
are given as follows:

C7 = Co 5
N
Cs =Cy Cs = Cs 4
[ T T
C3=0C4 Cy = Cs 3
1
Cy = Cs C,=0Cs 2



164 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

From this table one can find the eccentricities, as defined in Section 6.7, of these
strata:

ec, = dimCp+dimC7; —dimV =04+5-5=0
ec;, = dimCy+dimC;—dimV =24+3-5=0
ec, = dimCy+dimCg—dimV =2+4-5=1
ec, = dimCs3+dimCy; —dimV =3+2-5=0
ec, = dimCy+dimC;—-dimV =3+4-5=2
ec; = dimC;+dimCy—dimV =44+3-5=2
ec, = dimCs+dimCy—dimV =4+2-5=1
ec, = dimCr+dimCy—dimV =54+0-5=0
14.2.3. FEquivariant perverse sheaves. — Table 14.2.1 shows the results of calculating

P|c for every simple equivariant perverse sheaf ZC(C, L) and every stratum C in V.
Using this, Table 14.5.6 gives the normalised geometric multiplicity matrix, m’geo.

Notice that my,, decomposes into block matrices of size 10 x 10, 4 x 4 and 1 x 1.

TABLE 14.2.1. Standard sheaves and perverse sheaves in Perp, (Vi)

L2 Pl Pl | Ple Ples | Pl | Ples | Plos | Ple
IC(1¢,) 1¢,[0] 0 0 0 0 0 0 0
IC(1ey) 1¢, (2] 1c, [2] 0 0 0 0 0 0
IC(1ey,) 1c,[2] 0 1c,[2] 0 0 0 0 0
IC(1¢y) 1c,[3] 0 1c,[3] 1,3 0 0 0 0
IC(Lcy) g, (1] 0 0 Ly (3] 0 0 0 0
IC(1cy) || Teo[l @ 1y [3] | 1oy [3] | Tey(3] 0 1, 3] | 0 0 0
IC(1c,) || 1eo[21© 1, [4] | 10y [4] | 1, [4] | Tes[4] © Les[4] | Leoy[4] | Lo, [4] 0 0
IC(1cy) 1c, [4] 1o, [4] | 1ey[4] 0 1c,[4] 0 1c,[4] 0
C(1c,) L, 5] Le,[5] | Le, (5] 1, (5] Le,[5] | Los[5] | 1e[5] | Lc,[5]
IC(Lc,) L, [3] 1c, (3] L, 5] 0 1, [5] 0 | L[5
IC(Fe,) 0 0 Fo, 2] 0 0 0 0
IC(Fe,) 0 0 | Fe,[3] 0 Feu 3] 0 0
IC(Fey) 0 0 Feo, 4] 0 Fe, 4] 0 Feoi 4] 0
IC(Fe,) 0 0 Fe, 5] 0 0 Feold) | Fe. 5]
IC(Ec,) 0 0 0 0 0 Ec. 5]

We now give a few explicit examples of the technique, sketched in Section 8.2.3,
which we used to find the local systems appearing in Table 14.2.1.

(a) The calculations from Section 13.2.3 show how to find rows 1-5 and row 11 so
here we begin with row 6.
(b) To compute ZC(1¢,)|c for every H-orbit C' C V', observe that
Cy={(w,X)eVy | 'wX =0, det(X)=0}.

Note that ‘wX = 0 implies det(X) = 0 provided w # 0. This variety is singular
precisely when w and X are both zero; in other words, Cj is the singular locus
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of Cy4, as we remarked in Section 14.2.1. The blowup of C4 at the origin is:

b a)w=0, (a b)XO}.

= {((w,X),[a:b])GVAXE”1 | ( twX =0 det X =0

Let 7(1) : 6‘&1) — C4 be the obvious projection. In the definition of 6‘4&1),
the first two equations imply the second two; this observation greatly simplifies
checking the following claims. The cover 7(!) : 6‘&1) — (' is proper and the
variety 674 is smooth. Moreover, the fibres of 7(1) have the following structure:
— above C4, Cy and O, 71 is an isomorphism;
— the fibre of 7V above Cj is P*.
It follows that 7(*) is semi-small. By the decomposition theorem,

77!(1)(]159 3]) = ZC(1c,).
By proper base change,
IL(ley)les, = 1,3l IL(ley)le, = 1eo,(3]
IL(le)ley, = 1e[3] IL(ley)ley, = loll] @ 1g,[3],

and IC(1¢,)|c = 0 for all other strata C'.
(¢) Next, we show how to compute ZC(F¢,). The singular variety C4 also admits
a finite double cover:

@
~ X = « , (a =0
&= [ @mensar ) X=(3)@ 9. @ o
twX =0, det X =0
Again, the first two equations imply the second two. This variety is singular
precisely when w, X, and («, 8) are all zero. Consider the pullback:

Then 5&3) is smooth and the projections onto (19, @il) and C4 are all proper.
The fibres of (%) : 6‘&3) — C4 have the following structure:

— the fibre of 7(3) over Cj is the non-split double cover of Cly;

— the fibre of 7(3) over Cj is the non-split double cover of C;

— the fibre of 7®) over C] is isomorphic to C7;

— the fibre of 7®) over () is P!.
It follows that () is semi-small and, by the Decomposition Theorem, that:

) (1o [3]) = ZC(1c,) © IC(Fe,).
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It now follows that:
IC(Fe)les, = Feuldl IC(Fey)les Fe, 3]
IC)(}—C4)|01 =0 Z’C(‘FC4)|CO 0.

We simply list the other covers needed to calculate P|c in all other cases except
P = &, following the procedure illustrated above in the cases P = IC(1¢,) and
P =1IC(Fe,).

5'5:{((w,X),[a:b])€V><IP’1|(a b)X(Z):O, (-b a)sz}
CV = {((w, X),[a:0)) eV xP'|(a b)X =0}

e = {(wxn@mevxat x=(5) @ )}
c = {(w,X, [a:b)) eV xP'|(a b)X (Z) :0}

~§2){((w,X),[a:b:r])GVx]P’ﬂ(a b)X<Z> —02, (b a)w()}

Finally there is the most complex example: the smooth cover V of C7 = V needed to
understand ZC(E7). The construction of the smooth cover V' of V proceeds by first
adjoining a square root of

(—ulz + 2uvz + viy) (zy + 27).
This results in a variety which is singular on Cy. After blowing up along C the result
will still be singular along Cj, so a further blow up along C5 is needed. The following
steps construct V' in detail.

(i) Let V@ be the blow up V along C, This equivalent to adding coordinates
[a:b] € P! and the condition
(a b)Xw=0,
because the two equations Xw = 0 define Cj.

(ii) Let V® be the blow up of 6’§1) along C3. For this one must add coordinates
[c:d] € P! with the condition

(—d c)w =0,

because the equation w = 0 defines C'3. The additional equation necessary to

define the blow up is
c
(a B)X < d) —o.
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(iii) Next, we replace [a : b] with [a : b : r] and add the equation

(a B)X (‘;) 2

The resulting variety, V®) has coordinates:
(w,X,la:b:7],[c:d])

together with all the above equations. Then V® is a double cover of V(® and
is singular precisely when

X<Z>O and  [a:b]=][c:d).

(iv) We now form the blowup V of V3 along the singular locus. In order to have
homogeneous equations we write our relations in the form

X(Z)(c =0 (a b)(dc):o.

Then V is formed by introducing coordinates [Y : y], where Y is a 2 by 2 matrix,
and the conditions

X(Z) (¢ d)y=Y(a b) (dc)

(2) Y =0 Trace(Y) =0.

Note that [c: d] determines Y up to rescaling.

and

14.2.4. Cuspidal support decomposition and Fourier transform. — Up to conjuga-
tion, G = Sp(6) admits three cuspidal Levi subgroups: G = Sp(6) itself, the group
M= Sp(2) x GL(1) x GL(1) and the torus T = GL(1) x GL(1) x GL(1). Simple ob-
jects in these three subcategories are listed below. This decomposition is responsible
for the choice of symbols £, F and £ made in Section 14.2.3.

Perg (V)¢ || Perg (V) || Pery (V)

Z’C(lco)
E(]]‘Cl)
E(]]-CQ) IC(‘FCZ)
Z’C(lcs) IC(‘CCJ)
IC( 4) ZC(]:CAL)
IC(1c,)
IC(1cs) IC(Fee)
(]1-07) IC(‘CC7) IC(-FCW) IC(£C7)

The Fourier transform respects the cuspidal support decomposition; see Ta-
ble 14.2.2.
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TABLE 14.2.2. Fourier transform

| Peri, (V) 5 Pery, (V) |

E(le,) =  IC(Lgg)
IC(le,) = IC(Ley)
IC(le,) v+ IC(Lcg)
IE(le,) = IC(Ley)
IC(Le,) = IC(Lgy)
IC(le,) = IC(Lc¢y)
IC(les) = IC(L¢g)
IC(les) = IC(Ley)
IC(]lC7) — IC(]lc;)
IC(Le,) — IC(1¢cy)
IC(]:CQ) — IC(]:CZ*)
IL(Fe,) =  IC(Fcp)
IC(]:CO) — IC(]:Cg)
IC(Fo,) =  IC(Fcy)
I(Z(gc7) — IC(ECS)
14.2.5. FEquivariant perverse sheaves on the reqular conormal bundle. — For each

stratum C, we pick (z,§) € T (V)reg such that the H-orbit T (V )sreg of (2, ) is open
in Tg, (V)reg- Then, we find all equivariant local systems on each T¢(V )sreq- The per-
verse extensions of these local systems to the regular conormal bundle T (V)eg will
be needed when we compute vanishing cycles of perverse sheave on V' in Section 14.2.6.
Here we revert to expressing V as a subvariety in g, largely for typographic reasons.

Co: Base point for T¢ (Vi )sreg:

1

(550560) = 0

o o

—= O
O =

0

1

The equivariant fundamental group is A(,,.¢)) = Za, (70,&) = S[2]. Thus,
T¢, (VA )sreg carries four local systems. The following table displays how we label
equivariant local systems on T (Vi )sreg by showing the matching representation

of A(io-fo):

Locp, (Téo (VA )sreg)
Rep(A(sy.60)) :

To,
++

Lo, Fo, Eo,
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The map on equivariant fundamental groups A(y,¢,) — Az, induced from
the projection T¢ (V)seg — Co is trivial; on the other hand, the map on
equivariant fundamental groups A(.,.¢,) — Ag, induced from the projection
TE, (V)sreg — C = Ct is the identity isomorphism.

S[2]

|

id
1= A A(ﬂﬂoyfo) A§0
Pull-back along the bundle map:

Pery (Co) — PerH(TC*iU (V)reg)

IC(]lCo) = IC(]lOo)
IC(‘COU)
E(‘FOU)
IC(€o,)
Base point for T, (VA)sreg:
1 0
0 0 0
0 0 0
(xlvé.l) = 0 1 0 )
1 0 1
0 0

The equivariant fundamental group is A, ¢,) = Zm, (71,&1) = S[2]. Thus,
T&, (Va)reg carries four local systems. The following table displays how we label
equivariant local systems on T (Vi )sreg by showing the matching representation
of A(ﬂﬂlafl):

Locu, (T¢, (VA )sreg) = Loy Lo, Fo, Eo,

Rep(A@z,ey): ++ — —+ +-—
For use below, we remark that Lo, is the local system associated to the double
cover arising from taking v/det X’.

The map on equivariant fundamental groups A, ¢,) — Az, induced from
the projection T (V)sreg — C1 is trivial; on the other hand, the map on
equivariant fundamental groups A, ¢,) — A¢, induced from the projection
T¢, (V)seeg = CF = C§ is (s2, 53) — s253.

S[2]

|

1= Aml A — A(l'hfl) m AEl = {:I:l}




170 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

Pull-back along the bundle map:
Locy(Cy) — LocH(Tél(V)sreg)

]lc1 —> ]1(91

Lo,

Fo,

Eo,

Ca: Base point for T, (V)sreg:
0 0

1 0 0

0 1 0
(z2,82) = 0 0 0
1 0 0

0 1

The equivariant fundamental group is A, ¢,) = Zm, ((22,§2)) = S[2]. Thus,
T, (Va)reg carries four local systems.

LOCHA(TC*‘Q(VA)sreg): 102 ACOQ ]:(92 5(92
Rep(A(y )t ++ —— —+ +-

The map on equivariant fundamental groups Ay, ¢,) — Az, induced from
the projection T¢, (V)sreg — C2 is given by projection to the second factor while
the map on equivariant fundamental groups A, ¢,) — Ae¢, induced from the
projection T, (V)seg = C5 = C§ is projection to the first factor:

S[2]

[

A(l'z ,62)

83<—<(82,83) (52753)'—)82

{:l:l} = AOEQ AE2 = {il}

Pull-backalong the bundle map:
LOCH(CQ) — LOCH(TE'2 (V)sreg)

]102 — ]1(92
Lo,
Fo,
]:(12 — 5@2

C3: Base point for T, (V)sreg:

0 0
1 0 1
0 1 0
(x3,&3) = 00 0
0 0 0
0 1
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The equivariant fundamental group is A, ¢,) = Zm, ((23,£3)) = S[2]. Thus,
T¢, (VA)reg carries four local systems.

Locu, (T¢,(Vi)sreg) © Loy Lo, Fo, Eo,
Rep(A(xs,Ez)): ++ — -+ +-

The map on equivariant fundamental groups A, ¢,) — Az, induced from the
projection T¢, (V)sreg — C2 has kernel Z(H ), while A, ¢,) — Ag, is trivial.

S[2]
|
{£1} = A,, 2oa(e2,55) Alwy ) — Agy =1

Pull-back along the bundle map:
Locu(C3) —  Locu(T¢, (V)sreg)

]103 — ]1(93
ECS — Eoo
Fo,
Eo,
Base point for T¢, (VA )sreg:
1 0
0 0 0
1 1 0
(:C47 54) = 1 0 0
0 —1 1
-1 0

The equivariant fundamental group is A, ¢,) = Zu, ((24,61)) = Z(@) Thus,
Tc*'4(V/\)reg carries two local systems.

Locw, (Tg‘4 (Vk)sreg) o lo, Fo,
Rep(A@ien): + =
The map on equivariant fundamental groups A, ¢,) — Az, induced from the

projection T¢, (V)sreg — Cjy is the identity isomorphism, while A, ¢,) — Ag,
is trivial.

Z(@)
Ju
(£} = Ay, 2 Ap,ey — Ae =1
Pull-back along the bundle map:
Locy (Cy) —  Locy (TE,(V)sres)

]104 — ]1(94
.7'-04 — ]'—(94
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Base point for T¢,_ (V) )sreg:

0 1
1 1 0
0 0 -1
(@5,&5) = 01 1
0 0 0
0 1

The equivariant fundamental group is A, ¢,) = Zm, ((25,85)) = Z((A?) Thus,
T¢. (VA)reg carries two local systems.

Locu, (T¢,(Va)sieg) © Los  Fos

Rep(A(%-,EEw)) : + —
The map on equivariant fundamental groups A, ¢,) — Az, induced from the
projection TC*‘S(V)sreg — Cs is trivial, while A, ) — Ag; is the identity
isomorphism.

Z(@)
J{id
1= Az5 — A(m5755) I4d> A&) = {:t}

Pull-back along the bundle map:
LOCH(C5) — LOCH(TE'E, (V)sreg)

]105 — ]1(95
Fou
Base point for T¢, (VA )sreg:
1 0
0 0 1
0 0 0
(:L'Sa 56) = 0 1 0
0 0 1
0 0

The equivariant fundamental group is A, ) = Zm, ((z6,86)) = S[2]. Thus,
TéG (VA)reg carries four local systems.

LOCHA (TC*‘G (V)\)sreg) 0 Lo, [’Oe ]:(96 506
Rep(A(xﬁ-,EG)) e S
The map on equivariant fundamental groups A4 ¢5) — Aze induced from the

projection T¢, (V)sreg — Cs is given by projection to the first factor while
the map on equivariant fundamental groups A, ¢;) — Agg induced from the
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projection T¢, (V)sreg — Cg = C? is projection to the second factor:

S[2]
lid
(41} = Ay, 250200 gy s g (1)

Pull-back along the bundle map:
Locu(Cs) —  Locu (T, (V)sreg)

]106 — ]1(96
Lo,
.7:06 — ]'—(96
Eoq
C7: Base point for Té,?(V,\)Sreg:
1 0
0 0 1
0 1 0
(1‘7, 57) - 0 0 0
0 0 1
0 0

173

The equivariant fundamental group is A, ¢,y = Zm, ((27,£7)) = S[2]. Thus,

Ta(VA)reg carries four local systems.

Locu, (Tg, Va)sreg) © Lo, Lo, Fo, Eo,
Rep(A(IL&)): ++ — -+ +-

The map on equivariant fundamental groups A, ¢,) — Az, induced from
the projection T¢, (V)sreg — Cr is the identity, while the map on equivariant
fundamental groups A, ¢,) — Ag, induced from the projection T¢, (V)sreg —

Cz = Cf is trivial.
S[2]
lid
Agy 4 A o) — Ag, =1

Pull-back along the bundle map:

Locy(C7) — Locy (Té7 (V)sreg)
]lc7 — ]1(97
£C7 — £(97
]:(17 — .7:(97
507 — 5@7

14.2.6. Vanishing cycles of perverse sheaves. — Tables 14.2.3 and 14.2.4 record the
functor PEv on simple objects, from two perspectives. In this section we explain some

of the calculations.
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Rows 1-5 and row 11 of Table 14.2.4 follow from Section 13.2.5.

We show how to calculate row 6. First note that it follows from Proposition 6.5.1
that all of PEve, ZC(1¢, ), PEve, IC(1¢, ), PEvey IC(1¢,) and PEve, ZIC(1¢,) vanish.
We calculate PEve, ZC(1¢,), PEve, ZC(1¢,), PEve, IC(1¢,) and PEve, ZC(1¢, ), here.

(a)

(b)

To calculate PEve, ZC(1¢,), recall the cover 71'4(11) : @il) — C4 from Sec-
tion 14.2.3. For reasons explained in Section 8.2.6, we begin by finding the singu-
larities of the composition fo (m(ll) xid) on a&l) x C§. The equations that define
a&l) x Cg as a subvariety of V x P! x V* with coordinates (w, X, [a : b],w’, X")
are
(—b a)w:(), (a b)X:O,
twX =0, det(X) =0
together with the equations that define Cf in terms of w’ and X’. The singu-
larities of fo (Tril) x id) on 5&1) x Cf, are found by examining the Jacobian for
the functions taking (w, X, [a : b],w’, X') to
(=b a)w, (a b)X, ww+ trace(X'X);

this Jacobian is given here:

du dv dxr dy dz da db du dv di’ dy d2

b e 0 O O w —uw O 0O 0O 0 O

0 0 —a 0 b -z =z 0 0 0 0 0
0 0 0 b a z Y 0 0 0 0 0
o voox oy 22 0 0 uw v x oy 2z

where the second and third rows correspond to the function with value (a b) X.
This system of equations forms an H-bundle over P!, so we can specialize the
[a : b] coordinates to [1 : 0] without loss of generality. Now we can see that if the

rank of this matrix is less than 4 on 5'4&1) x C§ then v’ =y’ = 0, which implies
tw'X'w' = 0, which contradicts (w’, X') € C§. Therefore, fo (m(ll) x id) is
smooth on Cil) x C§. Now, by Lemma 6.2.2,

R =0.

(I)fo(wf)xid)(]léf)xcg)

By smooth base change, this implies
pEVCUIC(]lC4) =0.

The argument showing PEve, ZC(1¢,) = 0 is similar to (a) above. To find the

singularities of f o (m(ll) x id) on C’il) x C7 we simply add the equation that

defines C7 to the list of functions in the case above. The Jacobian for the

functions

(=b a)w, (a b)X, ww+trace(X'X), w =0,
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is given here,

du dv dxr dy dz da db du dv di’ dy d7

-b a 0 0 0 v —u 0 0 0 0 0
0 0 —a O b —x =z 0 0 0 0 0
0 0 0 b a z Y 0 0 0 0 0
o Vo2 oy 220 0 w v =z y 2z
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0,

where, as above, rows two and three refer to (a b) X. Arguing as above, by
setting [a : b] = [1: 0] we find z = z = w = 0. If the rank of this Jacobian were
less than 6 then v’ = 3’ = 0 so ‘wX'w = 0, which would force the point to be

non-regular in the conormal bundle. It follows that f o (m(ll) x id) is smooth on
the regular part of 6‘&1) x Cf. Therefore,
PEve, IC(1¢,) = 0.
The closed equation that cuts out C’_g is rank X’ = 1. Thus, to find the singular
locus of fo (Tril) x id) on 5'4&1) x C5 we consider the functions
(=b a)w, (a b)X, ww+trace(X'X), det X7,
and the associated Jacobian, below.
du dv dxr dy dz da db du dv di' dy d7

b a O 0 0 v —u 0 0 0 0 0
0 0 —a 0 b -z =z 0 0 0 0 0
0 0 0 b a z Y 0 0 0 0 0
o vox oy 22 0 0 uw v x oy 2z

~

0 0 0 0 0 0 0 0 0 Y 27
If the rank of this Jacobian is not maximal, then v’ = y’ = 0, which implies
tw' X'w’ = 0 which contradicts (w’, X') € Cj. Thus, fo (Tril) x id) is smooth
on C{" x C3. 1t follows that
PEve, IC(1¢,) = 0.
The closure of Cy x Cf is cut out by the equations

zutz=0,, zutyo=0, u’ 2 +2uv' +v"7y.

We wish to find the restriction of
f=xx' + 222 +yy +uu + v
to Cy x Cf in local coordinates. Localize away from u = 0, and v' = 0 and note

that this implies that y # 0 on Cy x Cj; note also that (x4,&4) lies in this open
subvariety. Then

2 7\ 2 ’
—v —vz v , U , (A
z=—1, x:—:—2y7 Yy = — -~ SC*Q—IZ
u u u u
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SO we may rewrite
f=xa +222" +yy +uu + o0

9 7\ 2 ’
= (%) yx' — Q%yz' —y (%) x + Q%z + uu' + vv’

v\ 2 u\? v oo
=y (—) —(—/) x’—2(—+—/)z’ + uu’ 4+ vv’
u v u v

uu' + vv') ((UU’ —wu) 2’y — 2uv' 2y + u2v'2)

u2v? (

This gives us f expressed in the form ¢XY where ¢ is non-vanishing and non-
singular, X and Y are both non-singular on C4 x C§ (for X this is because the
differential of u’ is non-zero for Y it is because the differential of 2z’ is non-zero).
It follows from Corollary 6.2.6 that the vanishing cycles functor evaluates to a
constant sheaf, so
PEve, %(]1.04) - IC(]]-O4)'
This completes the calculations needed for row 6 of Table 14.2.4.

We show how to compute row 12. As recalled in Section 8.2.6, PEveZC(F¢,) = 0
unless C C Oy, and PEve, IC(Fe,) = IC(Fo,); see Section 14.2.5. So here we
determine PEve, IC(F¢,) for i = 0,1,2. Recall the cover 7r4(13) : 5&3) — Oy from
Section 14.2.3. As above, we begin by finding the singularities of the composition
fo (m(f’) x id) on 6‘&3) x CF. The equations that define éf’) x C} as a subvariety of
V x A? x P! x V* with coordinates (w, X, A, B, [a : b],w’, X') are

(a b) <g) —o, (a B)X =0,
(—b a)sz, X:(A B) g )
(-B A)w=0, 'wX=0, det(X) =0,

together with the equations that define C} in terms of w’ and X’. The conormal
bundle to this variety is generated by the differentials of the functions

@o(p) b au

together with the equations that define C’_Z* We find the singular locus of fo (Wf) xid)
on éf’) x CF by checking the rank of the Jacobian of these functions. This will
determine the support of the sheaf

(158) R (1

(I)fo(ﬂ'f') xid) \ TP x oy )-

If fo (m(f) x id) is smooth on 6‘&3) x CF or if the restriction of this sheaf to the
preimage of (Cy x C}).eg under ﬂ'f) x id is 0, then Evg, Fo, = 0. However, if the

restriction of (158) to the preimage of (Cy X CF)yeq under m(f’) x id is not 0, then

to determine PEve, IC(F¢,) we must calculate the pushforward of this restriction
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along the proper morphism m(f’) x id (and in principle eliminate any contribution
from PEvc,(1¢,), however in each of the following three cases there is none). We now
show the remaining calculations for row 12.

()

(f)

To find the support of (158) when C; = Cs, we consider the differentials of the
following functions.

(—b a)w, (a b) (g), w'w+ Tr(X'X), det X'

This gives the following Jacobian, in which we hide z, y and z since we have
x = —A?, z = AB and y = B2. In this table the rows are the differentials of
the above functions, in that order, and to save space, we set A’ := — Az’ + Bz’
and B':= Az’ + By’

du dv dA dB da db du' dv dx' dy dY

—b a 0 0 v —u 0 0 0 0 0
0 0 a b A B 0 0 0 0 0
W v 24" 2B 0 0 w v —A%?2 B? 2AB
0 0 0 0 0 0 0 0 y 27

Again we observe that this system of equations is an H-bundle over P! and
therefore we can set [a : b] = [1 : 0] without loss of generality. If we do this we
find v =2 = 2z = A = 0. Moreover, if we suppose that the rank is not maximal,
then v’ = 0 by inspecting the first four columns and 3’ = 0 by inspecting the
fourth column. This implies ‘w’ X’w’ = 0 with contradicts (w’, X') € C3. Thus,

the singular locus of f o (ﬂ'f) x id) on 5&3) x C3 is empty. It follows that
pEV02 IC(]:4) =0.

To find the support of (158) when C; = C1, we consider the differentials of the
following functions.

(b Q)w, (a b (g) race(X'X).

In this case we have v’ = v’ = 0, so they may be omitted, and so the relevant
Jacobian is:

du dv dA dB da db dx' dy dZ

-b a 0 0 voo—u 0 0 0

0 0 a b A B 0 0 0

0 0 24’ 2B 0 0 —A?> B? 2A4B,

where, as above, we set A':= — Az’ + Bz’ and B':= Az’ + By’. On 5&3) x Cf

we find that the singular locus of f o (Wf)

A=B=0, (-b a)w=0.
This is already sufficient to conclude that PEve, ZC(Fe,) # 0. Since we only

need to compute the vanishing cycles (158) over the regular part of the conormal
bundle, we may assume w # 0. We claim that local coordinates for the regular

x id) is cut out by
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part of the conormal bundle are given by (X', w). Indeed, the coordinate [a : b]
is determined by w and all other coordinates are zero on the singular locus. It
follows from this that the map from the singular locus to T (V) )reg is one-to-
one. Moreover, we are free to localize away from the exceptional divisor of the
blowup and thus essentially ignore [a : b] while computing the vanishing cycles.
Doing this, we can give new coordinates for our variety by setting

()

for some new coordinate ¢. That is, on this open we have local coordinates
u,v,c,x’,y’, 2, with no relations, and we wish to compute
R(I)cz(fuzz’+2uvz’+v2z’)(]l)-

The function —u?2’ + 2uvz’ + v?2’ is smooth and non-vanishing on the regular
part of the conormal bundle, so by setting h = —u’z’ + 2uvz’ + v22/, we
may consider the smooth map on our open subvariety induced from the map
AS — A? given on coordinates by (u,v,c,2’,y’,2') + (c,h). By smooth base
change R®2(_ 24/ 4 ouvz 4022y (1) is the pullback of R®.2,(1). It follows from
Lemma 6.2.4 that R®_2;,(1) is the skyscraper sheaf on ¢ = 0 associated to the
cover arising from taking the square root of h. Pulling this back, we have the
same. This is the cover associated to the sheaf Fo, in Section 14.2.5, so

PRve, IC(Fe,) = IC(Fo,).

To find the support of (158) when C; = Cj, we consider the differentials of the
following functions.

A
(=b a)w, (a b) <B> , ww+ Tr(X'X).
This determines the following Jacobian, in which we again use the notation
A= — Az’ + B2’ and B’ := A2’ + By":
du dv dA dB da db du' dv dx' dy d7

-b a 0 0 v —u 0 0 0 0 0
0 0 a b A B 0 0 0 0 0
W o 24 2B 0 0 wuwu v —A? B? 24B.

The singular locus of f o (m(f’) x id) on 6‘&3) x C§ is
u=v=A=B=0, (a b)w/:().

Note, this is already sufficient to conclude that PEve, ZIC(Fe,) # 0. We may
assume w’ # 0, since we only need to compute (158) the vanishing cycles over
the regular part of the conormal bundle. Local coordinates for the conormal
bundle are now given by (w’, X’). Since [a : b] is determined by w’, and all
other coordinates are zero, it follows that the map from the singular locus to
TE(V)reg is one-to-one. In the following, wherever we write (a,b) you should
interpret this as either (1,b) or (a,1) as though we were working in one of the
two charts for P!.
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We pick new local coordinates in a neighbourhood of the singular locus:
these will be [a : 8], ¢,d, X', w" with the change of coordinates given by (A, B) =
c(—b,a) and (u,v) = d(a,b). The function ww’ + trace(X X’) may now be
re-written in the form

d(a b)w +c*(=b a) X’ (ab) :

The functions h = (a b)w’ and g = (—=b a) X’ (_ab) are smooth (on the

regular part of the conormal bundle). We may thus consider the map to A*
induced by:
([a:b],e,d, X", w'") = (c,d, h,g)

The map ww' + trace(X X') is simply the pullback of dh + c%g. Thus, if
we can compute R®gp,.2,(1) on A%, by smooth base change this will give
us RPyqirace(x x) (1) over the regular part of the conormal bundle. By
Proposition 6.2.5, we see that R®4r.2,(1) is the skyscraper sheaf over d =
h = ¢ = 0 associated to the cover coming from adjoining the square root of
g. Pulling this back to ~£3) x Cj and identifying the singular locus with the
regular part of the conormal, we conclude that

pEVCO IC('FC4> :IC’(‘FOO)

by comparing the covers associated to the local systems in Section 14.2.5.

(h) The computations for PEve, ZC(Fe,) are essentially the same as those for
PEve, ZC(1¢,). While working on the cover one has x = A2, y = B2, z = AB,
the result is that one finds

f=zx' + 222" +yy' +uu + o0
1
= ——5 (uu’ +vv') ((UU’ —wu') 2’ B? — 2uv'2' B% + u2v'2) :
u2v
Taking the proper pushforward we obtain a direct sum of two sheaves, however
as PEve, ZC(1¢, ) was the constant sheaf, we realize PEve, ZC(F¢,) will be the
non-trivial factor.

"Bve, IC(Fe,) = IC(Fo,)-
14.2.7. Normalization of Ev and the twisting local system. — Using Table 14.2.4 we
find our second case when the equivariant local system 7 is non-trivial:
_ 18 # # #
T=1h olh oLh ol o1}, o1}, ol o1l .

We use 7 in Table 14.5.7 to calculate PNEv : Perp, (Vi) — Perpm, (T7, (V3)reg);
compare with Table 14.2.4

14.2.8. Vanishing cycles and the Fourier transform. — Compare Table 14.2.6 with
the Fourier transform from Section 14.2.4 to confirm (141) in this example.

14.2.9. Arthur sheaves. — Arthur perverse sheaves in Perp, (V3), decomposed into
pure packet sheaves and coronal perverse sheaves, are displayed in Table 14.2.7.
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TABLE 14.2.3. PEv : Perp, (Va) — Perm, (Tf;, (Va)reg) on simple objects,
for A : Wr — “G given at the beginning of Section 14. See also

Table 14.2.4.

Perpy(V) —2% Pergy (T (V)res)

IC(lg,) +— IC(1lo,)

IL(le,) = IC(lo,)

IL(le,) + IC(Lo,) ®IC(Lo,)

IC(lg,) +— IC(lo,)

IC(Ley) = IC(Lo,) ®IC(1o,)

IC(le,) = IC(lo,)

IL(les) +—  IC(lo,)

IC(lgs) +  IC(Los) ®IC(Lo,)

IC(1le,) +— IZC(1w,)

IC(Le,) = IC(Lo;) ®IC(log)

IC(Fe,) + IC(Fo,)

IC(Fe,) + IC(Fo,) ®IC(Fo,) ®IC(Fo,)

IC(Fey) +  IC(Eog)

IC(Fey) + IC(Fo,) ®IC(Fos) & IC(Fo,)

IC(Ec,) v+ IC(Eo,) ®IC(Foy) DIC(En,) ®IC(En,)

@ IC(Fo,) ®IC(En,) ®IC(Fo,) DIC(Eo,)

14.3. ABV-packets. —
14.3.1. Admissible representations versus perverse sheaves. — Using Vogan’s bijec-
tion between Perp, (VA)j‘:;ple and Ilpure x(G/F) as discussed in Section 8.3.1, we now

match the 8 Langlands parameters from Section 14.1.1 with the 8 strata from Sec-
tion 14.2.1 and the 15 admissible representations from Section 14.1.2 with the 15
perverse sheaves from Section 14.2.3; see Table 14.3.1.

14.3.2. ABV-packets. — Using the bijection from Section 14.3.1 and the calcula-
tion of the functor Ev from Section 14.2.6, we now easily find the ABV-packets
H?ﬁg ¢(G /F) for Langlands parameters ¢ with infinitesimal parameter \ : Wr — LG,
using Section 8.3.2. We record the stable distributions 771'25’ arising from ABV-packets
through our calculations in Table 14.3.2. We will examine the invariant distributions

nw v, later.

14.3.3. Kazhdan-Lusztig conjecture. — Using the bijection of Section 14.1.4, we
compare the multiplicity matrix from Section 14.1.3 with the normalised geometric
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TABLE 14.2.4. Bvs : Pery, (VA) — Locu, (Tf7, (Va)sreg) On simple objects;

see also Table 14.2.5. Here we use the notation Evws; := BEvsc;.

| P |BsP EsiP EsmP BEssP EsiP EssP EwsgP Esr P
IC(ley) || ++ 0 0 0 0 0 0 0
I(ley) || 0 ++ 0 0 0 0 0 0
C(le,) | —— 0 — 0 0 0 0 0
IC(1es) 0 0 0 ++ 0 0 0 0
C(Ley) || O 0 4+ 0 0 0 0
C(1¢,) 0 0 0 0 + 0 0 0
7C(1cs) 0 0 0 0 0 + 0 0
7C(1ey) 0 - 0 0 0 0 — 0
C(1c,) 0 0 0 0 0 0 0 ++
C(Ley) 0 0 0 0 0 0 ++ -
C(Fe,) || © —+ 0 0 0

IC(Fey) || —+  —+ 0 0 - 0

IC(Fey) 0 0 0 0 0 +-

1C(Fe,) —+ 0 - 0 —
L) | +— -+ 4= —+ —~ - —+ 4

multiplicity matrix from Section 14.2.3. Since ‘myep = méeo, this confirms the

Kazhdan-Lusztig conjecture in this example.

14.3.4. Aubert duality and Fourier transform. — To verify (150), use Vogan’s bi-
jection from Section 14.3.1 to compare Aubert duality from Section 14.1.5 with the
Fourier transform from Section 14.2.4.

14.3.5. Normalisation. — To verify (152), compare the twisting characters x,, of Ay,
from Section 14.1.5 with the restriction 7y to ¢, (V)reg of the T from Section 14.2.8.
In both cases the character is trivial except on Ay, and Ay, where it is the character
(——), using notation from Section 14.1.4. Using this notation, here is another
perspective on T, where for each C' C V we display the corresponding character
of A‘é’ic. As a provocation, we also display the parity of the eccentricities of the orbits
C.
|| Co Ci Cy Cs3 Cq4 Cs Cg Cf
Tc ++ ++ — ++ + + —— ++
(—1)cc 1 1 -1 1 1 1 -1 1

14.3.6. ABV-packets that are not Arthur packets. — We conclude Section 14.3 by
drawing attention to the two ABV-packets Hﬁlﬁz s, (G/F) and Hﬁlﬁ\e/, 4, (G/F) that
are not Arthur packets, as ¢1 and ¢3 are not of Arthur type. While the following two

admissible homomorphisms Lz x SL(2,C) — G are not Arthur parameters because
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TABLE 14.2.5. PNBv : Pery, (Va) — Perm, (T4, (Va)reg) on simple objects,
for A : Wr — “G given at the beginning of Section 14. See also

Table 14.5.7
Per (V) 5 Pergy (T} (V)reg)
IC(1le,) = IC(1o,)
IC(le,) = IC(lo,)
IC(le,) = IC(lo,) ®IC(Lo,)
IC(1le,) +— IC(1lo,)
IC(Lcy) = IC(Loy) BIC(Lo,)
IC(le,) = IC(loy)
IC(1le,) +— IC(los)
IC(1le,) +— IC(lop,) ®@IC(Lo,)
IC(1le,) = IC(1p,)
IC(Le,) = IC(Lo,) BIC(Log)
IC(Fe,) +—  IC(Eo,)
IC(Fc,) + IC(Fo,) ®IC(Fo,) ®IC(Fo,)
IC(Fe,) +—  IC(Fog)
IC(Fc,) + IC(Fo,) ®IC(Fo,) ® IC(Fo,)
IC(Ec,) + IC(Eo,)®IC(En,) DIC(En,) ®IC(En,)
@ IC(Fo,) ®IC(Fo,) ®IC(Fo,) DIC(Eo,)

they are not bounded on Wp,
wl(waxay) VQ(y)@(VZQ(dw)®V2($))a
Ya(w,z,y) = va(r) © (V3(dw) @ 12(y)),

they do behave like Arthur parameters in other regards, as we now explain. First
¢y, = 1 and ¢y, = ¢3. We note too that 15 is the Aubert dual of 1;. Let us define

Mpurey, (G/F):=TIA8Y . (G/F) and e, (G/F):=TA2Y | (G/F).

pure,pi pure,¢3
Then pure,y, (G/F) and Ipyre 4, (G/F) define the following pseudo-Arthur packets

for G and G-
Iy, (G(F)) = A{m(¢1), 7(ds,+)},
st (G(F)) = {W(¢3a +)a 7T(¢3, _)}7

My, (G1(F)) = {n(¢s,—), m(¢7,+-)},
st(Gl(F)) = {ﬂ-((b% _+)77T(¢77+_)}'

and
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TABLE 14.2.6.

Comparing this table with Table 14.2.2 verifies (141) in

this example. Recall the notation O; ::Téi(V)Sreg and that EEgi denotes
the extension by zero of EEQi from Tc*vi (V)sreg 10 T8 (V)sreg-

| Pers(V) ™3 Lo (Th(V)uer) = Loca (T (V)ues) &= Peru(V?) |
C(le,) 1, — 11596 ~  IC(lcy)
C(ley,) 15, — nﬁgf ~  IC(lcy)
C(le,) — 15, & L), — by ® Lo “  TC(Lc:)
C(le,) 1%, — 1%, — IC(ley)
C(Loy) Ll &Ly, — L ® Lo —  TC(le)
C(le,) — 15, > 1%, —  IC(le)
C(le,) 15, — nﬁog ~  IC(lcy)
IC(ley) — 15, & LY, — s ©F Ll “  IC(Les)
C(le,) 1, — 1159; ~  IC(lcy)
IC(Le,) Lh & LY, — "Los @ LY, “  IC(lcy)
IC(Fe,) + £d, > Ebs —  IC(Fcy)
IC(Fe,) — Fb,&F &Fs, — Fo.oF L ®Fo; = IC(Fey)
IC(Fe,) — Fo, — }'ﬁoé —  IC(Fcz)
C(Fo,) = Fo @Fb @Fh +— Fo.@Fo @Fb, i IC(For)
IC(Ec;) = Eb, ®EH BEL, s ®EH: BES. = TC(Ecy)

D EH, ®Fp,® ® £, © T @
Fo, © Fo, ® &S, Fos ® Foor ® Ee
TABLE 14.2.7. Arthur sheaves

Arthur || pure packet coronal

sheaves || sheaves sheaves
Acy || ZC(1g,) ® IC(1e,) ® IC(Fo,) ® IC(Ecy)
Ac, IC(1l¢g,) ® IC(lcg) B IC(Fe,) @ IC(Ecy,)
Ac, || ZC(Le,) ® IC(Fes) @ IC(Ley) © IC(Ecy)
Ac, || ZC(1e,) @ IC(Ley) @ 1C(Fe,) ® IC(Ec,)
Ac, || ZC(Ley) ® IC(Fey) & IC(Ec,)
Ac. || ZC(1cy) ® 1C(Fe,) ® IC(Ec,)
Acg || ZC(1eg) ® IC(Feg) @ IC(Ley) ® IC(Ecy)
Ac, IC(le,) BIC(Le,) ®IC(Fey,) DIC(Ec,)
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TABLE 14.3.1. Bijection between equivalence classes of irreducible ad-
missible representations of pure rational forms of SO(7) and isomorphism
classes of simple perverse sheaves on V)
Per sz, (VA)S2P' || Mpure \(G/F)
IC(1c,) ¢0), 0]
c(1e,) 1), 0]
C(1ey) 2,+), 0]
IC(1g,) 3,+),0]
IC(Lcy) 3.—), 0]
c(1e,) 4, 1), 0)]
IC(1cy) 5), 0]
ZC(1g,) 6, +),0]
IC(1ey) 7,++), 0]
C(Le,) 7, ——),0]
IC(F>) 2, =), 1]
IC(Fy) 45, —),1]
IC(Fs) 6:—)s 1]
IC(F7) 7, —+), 1]
IC(&7) 7, +—), 1]
TABLE 14.3.2. Stable virtual representations arising from ABV-packets
ABV- || pure L-packet coronal
packets || representations representations
mi || +7(¢o) (2, +) + m(¢pa, =) + 7(d7,+-)
e +7(¢1) +7(¢pa, =) + 7(¢e, +) + (7, +—)
miy || +7(d2,+) — w2, —) —7(¢ps, —) + w(¢7, +-)
e +7(¢s3, +) + 7(¢3, —) —7(¢7, —+) — 7(¢7,+—)
ey +7(pa, +) — (¢, —) —7(¢7,+—)
My || +m(es) +m(pr, —+) + m(¢r, +-)
e +7 (¢, +) — (¢, —) —7(¢7, ——) + 7(¢7,+—)
me || 7 (d7, +4) + 7(pr, ——) = 7(p7, —+) — 77, +—)
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Aubert duality defines a bijection between Iy, (G(F)) and Iy, (G(F)) and between
Iy, (G1(F)) and Iy, (G1(F)). Moreover, it follows from the Kazhdan-Lusztig conjec-
ture, which we have already established for this example in Section 14.3.3, that the
associated distributions

@GI = tracem(¢y1) + trace (s, +)

@%3 = tracen(¢s, +) + tracew(¢sz, —)

and

9211 — (—tracem (¢4, —) — trace (7, +—))

O, = —(ttracem(¢7, —+) + tracem(¢7, +—))

are stable. Moreover, using the characters of microlocal fundamental groups arising
from our calculation of the functor Evg, and Eve, we may define 651,5’ @i;s, @ghs
and @ghs. It follows from Section 14.1.6 that these distributions coincide with the
endoscopic transfer of stable distributions from an elliptic endoscopic group G’; those
stable distributions on G’ (F') also arise from ABV-packets that are not Arthur packets.
In these regards, the pseudo-Arthur packets Iy, (G(F)), Iy, (G1(F)), Iy, (G(F)),
and Iy, (G1(F)) behave like Arthur packets.

14.4. Endoscopy and equivariant restriction of perverse sheaves. — In this
section we will calculate both sides of (154) for G = SO(7) and the elliptic endoscopic
G’ = SO(5) xSO(3), which already appeared in Section 14.1.6. This will illustrate how
the Langlands-Shelstad lift of ©, on G'(F') to Oy, s on G(F) is related to equivariant
restriction of perverse sheaves from V' to the Vogan variety V' for G’; see Section 14.1.6
for ¢’.

The endoscopic datum for G’ includes s € H given by

10 0 0 00

0 1 O 0 0 O
oo -1 0 00
' 00 0 -1 0O
00 0 0 10
00 0 0 01
Note that
A|0|B A B
Zg(s) = 0O|E|O |(C’ D)ESp(4),E€Sp(2) = Sp(4) x Sp(4),
c|0|D

so G = Zg(s).

14.4.1. Endoscopic Vogan variety. — The infinitesimal parameter A : Wr — G
factors through e : LG < L@ to define N : Wp — LG by

w0 0 0
1/2 1/2
)\/(w) = 0 |’LU| 91/2 0 ) |w| 91/2
0 0 |wl 0 0 |w

0 0 0 w2
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To simplify notation below, let us set G():= SO(3) and G := SO(5) and define
AD Wi = LG and A@ Wy — La® accordingly. Also set
HY :=Z5,A\Y) and H® :=Zz, (\?)
and V(D :=V, ) and V) :=V, (). Then,
H =HY xH® and V' =v® xv®,
with the action of H®) on V() given in Section 10 and the action of H® on V() given
in Section 12. It follows that, with reference to Sections 10 and 12, V' is stratified
into eight H’-orbits:
Cuz x Cy Cy x Cy Cy x Cy Co x Cy
CUQCXCO C XCO C XCO CoXCo.
For all H'-orbits C' C V’, the microlocal fundamental group A%IC is canonically

isomorphic to the centre Z(G’) = Z(G@) x Z(GW), because we have chosen G’
so that the unramified infinitesimal parameter X' is regular semisimple at Fr. Con-
sequently, the image of Z (é\') under ¢ : G < G is the group S[2] introduced in
Section 14.1.4.

14.4.2. Restriction. — We now describe the restriction functor Dy (V) — Dy (V”)
on simple perverse sheaves, after passing to Grothendieck groups.

res : Perg (V) — KPergy (V')

E(]]-Co) = IC(]]-CO|X]]-CO)[ ]
IC(le,) +w  IC(le, Wlg)[]
IC(le,) — IC(le, Wlg,)[l] ®IC(1c, K lg,)[1] ®IC(1g, M 1g,)[1]
IC(]lCJ) — IC(]ICT X ]lc )[1]
C(Le,) w  IC(Le, REc,)[1] ®IC(1e, B Le, (1]
IC(]lc4) — IC(]ch@]lc )[2]@1(:(]10 ﬁlcy)[l]
I(Z(]lc5) — IC(]lcu &]lc )[2]@1(2(]10 ﬁlcy)[Q]@IC(]lco &]lcy)p]
® IC(Le, R Ec,)[2] @ I0(Le, B 1c,)[2]
IC(]lCO) — IC(]IC xlco)[Q]@IC(]lcu &]ICy)[Q] @ﬂz(]lcu &]1(;0)[2]
IC(]lC7) — IC(]IC X ]10 )[2]
¢(Le,) w  IC(Le., Réc,)[2] @ I0(Le, B 1c,)[2]
and

IC(]:CZ) — IC(ﬁCI X ]lco>[1] @IC(]lCO X Scy)[l]

IC(]:C4) — IC(]lCu X gcy)[l] @Zz(ﬁcm X ]lco)[Q]

IC(]:C@) — IC(ECUE X ]100)[2] @IC(]lC X gcy)[Q]

IC(]:C7) — IC(ECW&]le)[ ]]@IC(KC X1c )[2]@1:6(»60 &]1(;0)[4]

4

® IC(1c, X &¢,)

IC(EC7) — IC(ﬁcw X EC )[2] @IC([CI X Scy)[Q]
14.4.3. Restriction and vanishing cycles. — Although the inclusion V'’ < V induces
a map of conormal bundles € : T}, (V') — T5(V), this does not restrict to a map of
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regular conormal bundles. Instead, we have

Té'o(v)reg N Tf}/(vl)reg = Tégxc‘o(vl)reg
T8, (Vg N Tip(Vreg = T, xco(V reg
TE'Q(V)reg N T (Vieg = c*'gxcy(vl)reg
Tég(v)reg n T;I/(V/)wg = Témxcy(vl)reg
T&(V)reg n Tf}'(vl)reg =

TE,(Vireg N Tip(Vreg = 0

Téﬁ(v)reg n Tﬁ'(vl)reg = TéquCO(V )reg
T8, (Vg N Tip (Vg = T¢,,xc,(V reg

Thus, the hypothesis for (153) is met only for (z/,&") € T}/ (V')reg from the list of
regular conormal bundles appearing on the right-hand side of these equations.
We now prove a few more interesting cases of (153).

The case P = IC(Ec,). — From Section 14.4.2 we see that, in the Grothendieck group
of PerH/ (T;I’ (V/)reg);
PRV (IC(Ec, ) v)
= PR/ (IC([,C”I X Ecy) OIC(Le, K Scy))
- (pEv@)zcwCuI) X PEv(l)IC(Scy)) @ (pEv(Q)IC(ﬁcI) X PEv(l)IC(Scy))
= ((®(Lo.,) DTC(Lo,)) B (IC(Eo,) & IC(Eoy)))
© ((ZC(Lo,) ®IC(Lo,)) M (IC(Eo,) & IC(Eo, )
= IC(Lo,,XNEo,) IC(Lo,, Ko, ®IC(Lo, K Eo,)
© IC(Lo, WEo,) ®IC(Lo, Ko, ®IC(Lo, M Eo,)
& IC(E@O X 5@y) @IC(,C@O X 5@0).
On the other hand, recall from Section 14.2.7 that
"BVIC(Ec;) = IC(o,) ®IC(Eo,) ©IC(Eo,) ® IC(Eo,)
@ﬂz(f(93) @IC(‘FO2) @IC(‘F(Ql) @IC(SOU)
We can now easily calculate both sides of (153) on all six components of T (V )reg N
Tir (V' )reg-

(Co x Cp). If (2',€") € T o (V' )reg then (2,8) € T (V)reg- In this case the left-
hand side of (153) is
(—1)dim(CoxCo) traceq, (pEv'IC(Sc7)|v/)
= (—1)0 trace(y1,-1) IC(E@O X 5(90)
= —1’
while the right-hand side of (153) is

(—1)3mCo trace,. (PEVIC(Ec,))
= (=1)3™% trace,, 7C(Eo,)
= trace(+17_1) IC(EOO)

= _1-

(2,€")

(I7€)
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(Cu X Co)

(Co X Cy)

(Cy x Cy).
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This confirms (153) on T, o, (V' )reg-
If (2/,¢&) € TE, w0y (V' )reg then (z,8) € T¢, (V)reg. In this case the left-
hand side of (153) is
(71)dim(Cu><Co) traceag (PEV’IC(507)|V,)
= (—1)1 trace(y1,-1) IC(E@u XEo,)
= —(—)(+1,-1)
+1,
while the right-hand side of (153) is

(—1)3mC trace,, (PEVIC(Ec,))

(—1)3mC trace,. IC(Fo,)

(—1)%trace(41,-1) IC(Fo, )
- 41

This confirms (153) on T¢ e (V' )reg-

If (¢/,&') € T¢ o, (V' )reg then (z,8) € T¢,(V)reg. In this case the left-

hand side of (153) is

(—1)dim(CoxC) trace,, (PEV' IC(Ec,)|v)
= (—1)1 trace(y1,-1) IC(E@O X goy)

= —(—o)(+1,-1)

+1,

while the right-hand side of (153) is

(—1)3mC2 trace,. (PEVIC(Ec,))
= (=1)3™C2 trace,. IC(Fo,)
= (—I)Qtrace(ﬂ,_l)IC(}“@)
- +1.

This confirms (153) on T¢ ¢, (V')reg-

If (¢/,¢) € T¢, (V' )reg then (2,€) € T¢, (V)reg- In this case the left-
hand side of (153) is

(—1)4im(C=xC) trace,, (PEV'IC(Ec,)|v)
= (—1)2 trace(+17,1)IC(£om @goy)
= -1,

while the right-hand side of (153) is

(—1)3mCs trace,. (PEVIC(Ec,))
= (=1)3™C trace,, IC(Fo,)
_ (71)3 tI‘aCe(+1,—1)IC(‘FO3)
= _1.

(z",€")

(I7€)

(«,€")

(I7€)

(«,€")

(I7€)
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This confirms (153) on T¢, ¢, (V')reg-
(Cuz x Co). It (2',&) € T¢, oo (V' )reg then (2,€) € T¢ (V)reg- In this case the
left-hand side of (153) is
(—1)dim(CusxCo) trace,, (PEV'IC(Ec,)|v)
= (—1)2 trace(y1,-1) IC(E@W X 5(90)
= -1,
while the right-hand side of (153) is

(—1)4imC trace,, (PEVIC(Ec,))
(—1)4im % trace,, IC(Eo,)
(—1)* trace(41,-1) IC(Eoy)
- 1
This confirms (153) on T, o, (V' )reg-
(Cuz x Cy). If (2/,€') € TE, o, (V' )reg then (2,£) € T¢ (V)reg. In this case the
left-hand side of (153) is
(—1)dim(Cuex) trace,, (PEV' IC(Ec,)|v)
= (—1)3 trace(y1,-1) IC(E@W X goy)
= (o)L -)
= +1,
while the right-hand side of (153) is

(—1)3mC7 trace,, (PEVIC(Ec,))
(—1)4m 7 trace,, IC(Eo,)
(71)5 trace(y1,—1) IC(o,)
= —(+-)(+1,-1)

This confirms (153) on T¢, o, (V')reg:

(z,€")

(I7€)

(z,€")

(I7€)

This confirms (154) for P = IC(Ec,).

The case P = IC(F¢,). — Then from Section 14.4.2 we see that, in the Grothendieck
group of Perg/ (T77, (V' )reg),
PRV (IC(Fcy)lv)
PR/ (IC(]lcu X Scy)[l] @IC(ECI X ]lco))
- (pEv@)zcaCu) X PEV<1>zC(5Cy)) @ (PEV(Q)IC(KCE) X pEv(l)IC(]ICU))

(ZC(10,) B (ZC(Eo,) & IC(Eoy))) © ((IC(Lo.) & IC(Lo,)) KIC(1o, )
= IC(]lou X goy) @Z:C(]lou X’EOU) @IC(K@T X Eoo) @I(Z(ﬁoo X ]1(90).
On the other hand, recall from Section 14.2.7 that

PEVIC(Fe,) = IC(Fo,)®IC(Fo,) ®IC(Fo,).
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We can now easily calculate both sides of (153) on all six components of T (V )reg N

Tipr (V' )req

(Co x Co).

(Cu X Co)

(CO X Cy)

If (2/,¢') € T¢, x 0y (V' )reg then the left-hand side of (153) is
(

—1)dim(CoxCo) trace,, (PEV' IC(Fe,)|v')
= (=1)%tracet1,—1) ZC(Lo, K 1p,)
+1,

while the right-hand side of (153) is

(—1)dim o trace,, (PEVIC(Fc,))
= (=1)4m % trace, IC(Fo,)
= trace(;1,—1)ZC(Fo,)
= (~H(,-1)
- 41
This confirms (153) on T¢, , ¢, (V' )reg for P = IC(Fc, ).
If (2/,&) € TE, vy (V )reg then (z,8) € T¢, (V)reg. In this case the left-
hand side of (153) is
(—1)dim(CuxCo) traceq, (PBY' IC(Fe,)|v-)
= (—1)1 trace(y1,-1) IC(]lou X 5(90)
()1, )
= —"—1’
while the right-hand side of (153) is

(—1)4im 1 trace,, (PEVIC(Fe,))
= (=1)¥m % trace,, IC(Fo,)
= (71)2trace(+1,_1)IC(fol)
= (N
- 41
This confirms (153) on T¢, o, (V' )reg for P = IC(Fc,).
If (2/,¢) € T¢ xc, (V' )reg then (z,£) € T¢, (V)ieg. In this case the left-
hand side of (153) is
(fl)dim(c‘)xcy) traceq, (pEv'IC(]:c4)|v/)
= (=1)'trace;1,-1)0
= 0,
while the right-hand side of (153) is

(—1)4mC2 trace, . (PEVIC(Fc,))
= (=1)4mC trace,, 0
= 0.

This confirms (153) on T¢, ¢, (V' )reg for P = IC(Fe,).

(z,€")

(I7€)

(=,¢7)

(I7€)

(z,€")

(,€)
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(Cz x Cy). If (2/,&) € TE, c,(V )reg then (2,€) € T¢, (V)reg- In this case the left-
hand side of (153) is
—1)dm(CaxCy) grace,, (PEV IC(Fe,)|v:
A 4
= (—1)?trace41,-1)0
= 0,
while the right-hand side of (153) is
(—1)4im s trace,, (PEVIC(Fey)) (a6
= (=1)3mCs trace,, 0
= 0.
This confirms (153) on T¢: ¢, (V/)reg for P = IC(Fc,).
(Cuz x Co). If (2,8") € T4, wco(V )reg then (2,8) € T (V)reg. In this case the
left-hand side of (153) is
(—1)dim(Cusx0) trace,, (PEV IC(Fey)|v) (@
= (—1)*trace1,—1)0
= 0,
while the right-hand side of (153) is
(—1)4im e trace,, (PEVIC(Fc,))
= (—1)4mC% trace,, 0
= 0.
This confirms (153) on T¢, o (V' )reg for P = IC(Fc,).
(Cuz x Cy). If (2',&) € T, o, (V' )reg then (2,8) € T¢ (V)reg- In this case the
left-hand side of (153) is
(fl)dim(cwxcy) traceqy, (pEv'IC(Ec7)|v/)
= (—1)*trace(4+1,-1)0
while the right-hand side of (153) is
(—1)¥mC7 trace,, (PEVIC(Fe,))
= (=1)¥mC trace,, 0
= 0.
This confirms (153) on T¢:, ¢, (V')reg for P =IC(Fc,).
This confirms (154) for P = IC(F¢,).

(«,€")

£

(I7€)

(z,€")

(,€)
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14.5. Tables for the SO(7) example. — Here we gather together all the main
results of the calculations performed in Section 14.

TABLE 14.5.1. Arthur packets for representations of G(F) and G1(F)
with infinitesimal parameter A. For typographic reasons, here we use the
abbreviated notation 7; := 7(¢;), 7 := (s, £) and 77 :=7(¢s, +%).

7

|11, (G(F) |1, (G(F) || e, (G1(F) | 11,,(GL(F)) |

{ro) (romt |0 (7,
{m} undefined 0 undefined
{r3'} {m3 75} {my } {my . mi )
{md, 73} undefined 0 undefined
{m{} {m{} {mi} {mi 777}
{ms} {ms} 0 {mr T.md 7}
{md'} {rg 777} || {76} {r77}

{md Ty "} [ A oy ) | {mg o T} [ e o)

TABLE 14.5.2. ABV-packets for representations of G(F') and G1(F') with
infinitesimal parameter A. Comparing this table with Table 14.5 shows
that all Arthur packets for admissible representations with infinitesimal
parameter A are recovered from ABV-packets. Again we use the abbrevi-
ated notation 7; :=7(¢;), 7 :=7(¢i, ) and 7 =7 (¢i, £%).

|11, (G(F) | IABYV(G(F) || 1, (G () [ IABY (G (1) |

{mo} {mo, 5 } 0 {my m(¢7 7}
{m} {m, 7 } 0 {my, 777}
{r3} {r5 75} {r3} {ry, 757}
{r5 73} | {rd, 735} 0 {m7 "mi 7}
{1} {1} {mi} {my 77}
{5} {ms} 0 {o7 7,77}
{mg} {rg 77~} || {m} {677}
{mf ¥ Y | A Tomr 7Y | o Y | {r T )
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TABLE 14.5.3. Pure Arthur packets, decomposed into pure L-packets
Iyure,»(G/F) and the remaining coronal representations. The notation
[m, 8] is explained in Section 2.7 and recalled in Section 8.1.2. For
typographic reasons, here we use the abbreviated notation m;:=m(¢;),

7 i=n(¢s, 7) and 7EF = 7w(s, E).

pure Arthur packet H pure L-packet

coronal representations ‘

Hpure,o (G/F) [0, 0],

Mpure, v, (G/F) [r3,0], [r3 1],

Hpure,v, (G/F) [772_: 0], [my, 1],

Mpure,us (G/F) [775701

Mpure wa(G/F) [ﬂ'g 0]7 [7r67 ]7

Mpure,47 (G/F) [r7 ", 0], [m7 ~,0], [v7 7,1], [77 7, 1]

[ﬂ—;70]7 [WZ71]7 ﬂ—

TABLE 14.5.4. ABV-packets II22Y ,(G/F), decomposed into pure L-

pure,¢

packets Ipure,s(G/F) and the remaining coronal representations. Com-
paring this table with Table 14.5 verifies Conjecture 1(a) in this case.
The same comparison shows that not all ABV-packets are pure Arthur
packets. The notation [mr,d] is explained in Section 2.7 and recalled in
Section 8.1.2. For typographic reasons, we use the abbreviated notation

mii=m(¢i), 7 i=7(¢s, ) and wEE = 7w (¢, ££).

| ABV-

coronal representations ‘

I5ire.60 (G/F) || Imo, 0]
e, (G/F) || [n(¢1),0]
(73, 0], [, 1]
Tt s (w3, 0, [r3, 0]

(G/F)
(G/F)
(G/F)
s, (G/F) || i, 0], [x3,1]
(G/F)
(G/F)
(G/F)

IABY
Mpure, 6,

pure b4
ABV
pure b5
ABV
pure b6
ABV
pure b7

Q
~
2

[7T570]
[g, 0], [ms 1]
[73 7,0, [m7 7,0], [n7 1), [777,1]

Q
~
&

w3, 0], [x

(31, [7g

,1

w7, 1]
0], [r7 1]
[r5, 0], [m7 7, 1]
[r7 © 1], [mF 7, 1]
[7T7_:1]

[r7 7,10, [mf 7,0

[r7 =, 0], [mF 7, 1]

)

193



194 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

TABLE 14.5.5. Multiplicities of admissible representations in standard
modules. We use the abbreviated notation 7; :=m(¢;), 75 :=7(¢:, 7) and
i+ = (¢, £4) and we also set M;:= M(¢i), ME:=n(¢i,n) and
MEE = n(¢i, £%).

| G || T Tl 71';' 7r§'+ T 7"2_ 5 Trg— 7I':;+ T | T, T, g 7r7_+ | 7r;'_ |
My 1 1 1 1 1 2 2 1 1 1 0 0 0 0 0
My 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0
My 0 0 1 1 0 11 1 1 0 0 0 o0 0 0
Mt o o o 1 0 0 1 o0 1 0 0 0 o0 0 0
My~ 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
Mz' 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
M5 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
Mg' 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
Mitjlo o o 0 0 0 0 0 1 0 0 0 0 0 0
M, 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
My 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
M, 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
Mg 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
]W7_+ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
M;'_ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

TABLE 14.5.6. The normalised geometric multiplicity matrix. The table
records the multiplicity of L& in L’uc,|c. Comparing this table with
Table 14.5 verifies the Kazhdan-Lusztig conjecture in this case; see also
Table 14.2.1. Recall the notation £*:=7C(Lc)[— dim C].

‘ || lcy, ley le, 1oy Loy 1oy, ley leg 1o, Loy | Fe, Feo Fos Foo | Ec, |
]1ﬁcO 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]].ﬁc1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
]lucz 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
i,/ r o 1 1 0o 0o 0o 0o 0 00 0 0o 0| o0
[:ncs 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
it l2 1 1 o o 1 0 0 0 0|0 0 0o o0 | o0
]].ncs 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0
it 1 1 0o o 1 0o 1 0 00 0 0o 0| o0
|+ 1 1 1 0o 1 1 1 1 0|0 0 0o o0 | o
L?j 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0
féQ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
]-'g4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
]:és 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
fé7 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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TABLE 14.5.7. NBws : Pery, (VA) — Locu, (T, (Va)sreg) on simple objects.
See also Table 14.2.5. Here we use the notation NEvs; := NEwsc;,.

P |NEwoP NEsiP NEs:P NEssP NEsiP NEs;P NEsgP  NEwsy P
(e, | ++ 0 0 0 0 0 0 0
(1c,) 0 ++ 0 0 0 0 0 0
(e,) | —— 0 ++ 0 0 0 0 0
(1) 0 0 0 ++ 0 0 0 0
TC(Ley) 0 0 _ _ 0 0 0 0
(1c,) 0 0 0 0 + 0 0 0
(1) 0 0 0 0 0 + 0 0
(1) 0 _ 0 0 0 0 ++ 0
(1c,) 0 0 0 0 0 0 0 ++
(Le,) 0 0 0 0 0 0 _ _
C(Fe,) 0 0 - 0 0 0 0 0
(Fe) | -+ —+ 0 0 - 0 0 0
TC(Fey) 0 0 0 0 0 —t 0
(Fe,) 0 0 —t 0 - 0 —+
(Ee,) | +- —+ —+ —+ — - +— +—

TABLE 14.5.8. The characters (-, ), of Ay. Comparing this table with
Table 14.5.7 verifies Conjecture 1 in this example.

™ [Comyy oy, Comyy Camy (Comyy Camys

5

(o) ++ 0 0 0 0 0
m(d2,+) —— ++ 0 0 0 0
m(¢3,—) 0 — 0 0 0 0
7(¢a, +) 0 0 + 0 0 0
m(ps) 0 0 0 + 0 0
7(d6, +) 0 0 0 0 ++ 0
m(¢7, ++) 0 0 0 0 0 -
m(p7, ——) 0 0 0 0 —— ——
m(¢2, —) 0 +— 0 0

(¢4, —) —+ 0 - 0

m(pg, —) 0 0 0 —+

(o7, —+) 0 0 - 0 —+
(g7, +-) +— —+ - - +- +-
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Index
Ac, equivariant fundamental group of C, 29 ép, 30
Ay, component group for A, 21 ng, 14
Ag, component group for ¢, 12 775)/’37 70, 72
Ay, component group for 1, 12 nE, 69, 72
ATé«(V)\)sregﬂ equivariant fundamental group 771'\1;37’7 772
of T (V3 )sreg, 40 G 6
C, orbit in Vy, 29 mthv,sv
C*, dual orbit, 39 L 69, 72
Cy, orbit attached to an Arthur parameter, nfb, 20
36 MNy» 19
Gy, 33 g, infinitesimal parameter of ¢, 21
Hy, 21 Ay, infinitesimal parameter of ¢, 36
J)\,33 )\anWF*)LG)\,&?)
Ky, 21 (7)771
My, 31, 34 Ay, T1
P(@), set of Langlands parameters, 12 By, 71
Py (LG), 21 Cy, coronal perverse sheaf, 72
Q(EG), set of Arthur parameters, 12 Lrs, 69
REG), 21 P(m,6), 30
Té(‘/)\)regv 36 Sw,scv 16
T% (Vi )sreg, 40 T, 66
T, (Va)reg, 36 Tc, 66
Ty, (VA sses 40 Ty, 66
V¥, dual Vogan variety, 39 Ep)\’ 22
Vi = Va(fG), Vogan variety for X, 22 Bv, 65
X(EG), 24 "Eve, 65
tV,, transposed Vogan variety, 37 ¢ : Lp — ~G, Langlands parameter, 12
mp, 30
Ev, 53 & 39
Bvg, 52 ., 37, 40
Ev,,, 66 Su» o
Bvs, 66 27D
Evsc, 65 e(P), 71
KM pure(G/F), 19 ec, 58
I, 32
Ac, 58
NEv, 67 9, 58
’ TA:LG)\ —)LG7 33
NEvc, 67 .
sx, hyperbolic part of fy, 32
NEv,, 68 L
ty, elliptic part of fy, 32
NEvsc, 67 Ty € Vi, 22
Perm, (V)\i7 29 2y € Vi, 40
Perz (X (*G), 28 Y, 40
wdnls e
A ' ABV-packet, IIABY _(G/F), 68
ABV » Hipure,C )
H%‘ge,C(G/F)’ ABV-packet, 68 Arthur parameters for G, 12
Hpur;{¢(G/F), 68 component group for A\, Ay, 21
Iy, (Gs(F),9), 19 component group for ¢, Ag, 12
pure, (G/F), pure Arthur packet, 19 component group for ¢, Ay, 12
IIyure,s (G/F), pure Langlands packet, 14 coronal perverse sheaf, Cy,, 72
Y(G/F), 12 dual orbit, C*, 39
xP, 30 eccentricity, ec, 58

L, local system, 29 elliptic part, 31
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equivariant fundamental group of C, A¢, 29 normalised microlocal vanishing cycles func-

equivariant perverse sheaves, 28, 29 tor, NEv, 67

equivariant pullback, 26 orbit of Arthur type, Cy, 36

hyperbolic part, 31 parameter variety, 24

infinitesimal parameter, 20, 21 pure Arthur packet, II,yre,y (G/F), 19

infinitesimal parameter of 1, Ay, 36 pure Langlands packet, Iyyre,¢ (G/F), 14

isomorphism class of representations of a pure pure packet perverse sheaf, B, 71
rational form, 14 regular conormal, 36

Langlands parameter, ¢ : Lp — LG, 12 strongly regular conormal, 40

Langlands parameters, 12 transposed orbit, 39

Langlands parameters of Arthur type, 13 transposed Vogan variety, ‘Vy, 37

microlocal vanishing cycles functor, Ev, 53 unramification, 33

nearby cycles functor, 45 vanishing cycles functor, 45
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