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Abstract. — In this article we propose a geometric description of Arthur packets
for p-adic groups using vanishing cycles of perverse sheaves. Our approach is inspired
by the 1992 book by Adams, Barbasch and Vogan on the Langlands classification
of admissible representations of real groups and follows the direction indicated by
Vogan in his 1993 paper on the Langlands correspondence. We introduce and study
a functor built from vanishing cycles from the category of equivariant perverse sheaves
on the moduli space of certain Langlands parameters to local systems on the regular
part of the conormal bundle for this variety. By establishing the main properties of
this functor, we show that it plays the role of the microlocalisation functor in the
work of Adams, Barbasch and Vogan. Using this, we define ABV-packets for pure
rational forms of p-adic groups and we also give a geometric description of the transfer
coefficients that appear in Arthur’s work. This article includes conjectures modelled
on Vogan’s work, including the prediction that Arthur packets are ABV-packets for
p-adic groups. We verify these conjectures in several examples and while doing so,
we show how to calculate the transfer coefficients that appear in Arthur’s main local
result in the endoscopic classification of representations, using purely geometric tools.
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Résumé. — Dans cet article nous proposons une description géométrique des
paquets d’Arthur pour les groupes p-adiques en utilisant les cycles évanescents des
faisceaux pervers. Notre approche s’inspire du livre d’Adams, Barbasch et Vogan
sur la classification de Langlands des représentations admissibles des groupes réels
et suit la direction suggérée par Vogan dans son article sur la correspondance de
Langlands. Nous définissons et étudions un foncteur, construit àă partir des cycles
évanescents, de la catégoérie des faisceaux pervers équivariant sur l’espace de modules
de certains paramètres de Langlands vers la catégorie des systèmes locaux sur la partie
régulière du fibré conormal de cette variété. En établissant les principales propriétés
de ce foncteur, nous montrons qu’il joue le rôle du foncteur de microlocalisation
dans les travaux d’Adams, Barbasch et Vogan. En utilisant cela, nous définissons les
ABV-paquets des formes rationnelles pures des groupes p-adiques et nous donnons
également une description géométrique des coefficients de transfert qui apparaissent
dans les travaux d’Arthur. Cet article contient des conjectures inspirées des travaux de
Vogan et en particulier la prédiction que les paquets d’Arthur sont les ABV-paquets
pour les groupes p-adiques.

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Part I. Arthur packets and microlocal vanishing cycles. . . . . 10
2. Arthur packets and pure rational forms. . . . . . . . . . . . . . . . . . . . . . . . . . 10
3. Equivariant perverse sheaves on parameter varieties. . . . . . . . . . . . . 20
4. Reduction to unramified parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5. Arthur parameters and the conormal bundle. . . . . . . . . . . . . . . . . . . . 36
6. Microlocal vanishing cycles of perverse sheaves. . . . . . . . . . . . . . . . . . 44
7. Arthur packets and ABV-packets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Part II. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8. Template for the examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9. SL(2) 4-packet of quadratic unipotent representations. . . . . . . . . . . 91
10. SO(3) unipotent representations, regular parameter. . . . . . . . . . . . 97
11. PGL(4) shallow representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
12. SO(5) unipotent representations, regular parameter. . . . . . . . . . . . 116
13. SO(5) unipotent representations, singular parameter. . . . . . . . . . . 127
14. SO(7) unipotent representations, singular parameter. . . . . . . . . . . 152
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

1. Introduction

1.1. Motivation. — Let F be a local field of characteristic zero and G be a con-
nected reductive linear algebraic group over F . According to the local Langlands
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conjecture, the set Π(G(F )) of isomorphism classes of irreducible admissible repre-
sentations of G(F ) can be naturally partitioned into finite subsets, called L-packets.
Moreover, the local Langlands conjecture predicts that if an L-packet contains one
tempered representation, then all the representations in that L-packet are tempered,
so tempered L-packets provide a partition of tempered irreducible admissible repre-
sentations. Tempered L-packets enjoy some other very nice properties. For instance,
every tempered L-packet determines a stable distribution on G(F ) by a non-trivial
linear combination of the distribution characters of the representations in the packet.
Tempered L-packets also have an endoscopy theory, which leads to a parametrization
of the distribution characters of the representations in the packet.

These properties fail for non-tempered L-packets. To remedy this, in 1989 Arthur
introduced what are now know as Arthur packets, which enlarge the non-tempered
L-packets in such a way that these last two properties do extend to the non-tempered
case. Arthur’s motivation was global, arising from the classification of automorphic
representations, so the local meaning of Arthur packets was unclear when they first
appeared.

In 1992, shortly after Arthur packets were introduced, Adams, Barbasch and Vogan
suggested a purely local description of Arthur packets for real groups using microlocal
analysis of certain stratified complex varieties built from Langlands parameters. Then,
in 1993 Vogan used similar tools to make a prediction for a local description of Arthur
packets for p-adic groups. Since these constructions are purely local, and since the
initial description of Arthur packets was global in nature, it was not easy to compare
ABV-packets with Arthur packets. The conjecture that Arthur packets are ABV-
packets has remained open since the latter were introduced.

When Arthur finished his monumental work on the classification of automorphic
representations of symplectic and special orthogonal groups in 2013, the situation
changed dramatically. Not only did he prove his own conjectures on Arthur packets
given in [Art89], but he also gave a local characterisation of them, using twisted
endoscopy. This opened the door to comparing Arthur packets with ABV-packets
and motivated us to compare Arthur’s work with Vogan’s constructions in the p-adic
case. This article is the first in a series making that comparison.

1.2. Background. — To begin, let us briefly review Arthur’s main local result in
the endoscopic classification of representations. Let G be a quasi-split connected
reductive algebraic group over a p-adic field F . An Arthur parameter for G is a
homomorphism, ψ : LF × SL(2,C)→ LG, where LF is the local Langlands group, to

the Langlands group LG = Ĝ⋊WF , satisfying a number of conditions. One important

condition is that the image of ψ(WF ) under the projection onto Ĝ must have compact
closure. When G is symplectic or special orthogonal, Arthur [Art13, Theorem 1.5.1]
assigns to any ψ a multiset Πψ(G(F )) over Π(G(F )), known as the Arthur packet
of G associated with ψ. It is a deep result of Moeglin [Mœg11] that Πψ(G(F )) is
actually a subset of Π(G(F )). Endoscopy theory [Art13, Theorem 2.2.1] in this case
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gives rise to a canonical map

(1)
Πψ(G(F ))→ Ŝψ

π 7→ 〈 · , π〉ψ
to Ŝψ, the set of irreducible characters of Sψ = ZĜ(ψ)/ZĜ(ψ)

0Z(Ĝ)ΓF . If the Arthur

parameter ψ : LF × SL(2,C) → LG is trivial on the SL(2,C) factor then Πψ(G(F ))
is a tempered L-packet and the map (1) is a bijection. In general, Πψ(G(F ))
contains the L-packet Πφψ (G(F )), where φψ is the Langlands parameter given by

φψ(u) :=ψ(u, du), where for u ∈ LF we set du = diag(|u|1/2, |u|−1/2) with | | the
pullback of the norm map on WF . The map (1) determines a stable distribution on
G(F ) by

(2) ΘGψ =
∑

π∈Πψ(G(F ))

〈zψ, π〉ψ Θπ,

where zψ is the image of ψ(1,−1) in Sψ with (1,−1) ∈ LF ×SL(2,C) where −1 is the
non-trivial central element of SL(2,C).

In this article we express Arthur’s conjectural generalisation of (1) for inner twists
of G using pure rational forms of G as articulated by Vogan. A pure rational form
(also known as a pure inner form) of G is a cocycle δ ∈ Z1(F,G). An inner rational
form is a cocycle σ ∈ Z1(F, Inn(G)). Using the maps

Z1(F,G)→ Z1(F,Gad) = Z1(F, Inn(G))→ Z1(F,Aut(G)),

every pure rational form of G determines an inner rational form of G and every
inner rational form of G determines a rational form of G. Following [Vog93], a
representation of a pure rational form of G is defined to be a pair (π, δ), where δ is
a pure rational form of G and π is an equivalence class of admissible representations
of Gδ(F ). The action of G(F̄ ) by conjugation defines an equivalence relation on
such pairs, which is compatible with the equivalence relation on pure rational forms
Z1(F,G) producing H1(F,G). Again following [Vog93], we write Πpure(G/F ) for
the equivalence classes of such pairs. Then, after choosing a representative for each
class in H1(F,G), we may write

Πpure(G/F ) =
⊔

[δ]∈H1(F,G)

Π(Gδ(F ), δ),

where Π(Gδ(F ), δ) := {(π, δ) | π ∈ Π(Gδ(F ))}.
An inner twist of G is a pair (G1, ϕ) where G1 is a rational form of G together

with an isomorphism of algebraic groups ϕ from G1 ⊗F F̄ to G ⊗F F̄ such that
γ 7→ ϕ ◦ γ(ϕ)−1 is a 1-cocycle in Z1(ΓF , Inn(G)) [Art13, Section 9.1]. Every inner
rational form σ of G determines an inner twist (Gσ, ϕσ) such that the action of γ ∈ ΓF
onGσ(F̄ ) is given through the σ-twisted action onG(F̄ ). We use the notation (Gδ, ϕδ)
for the inner twist of G determined by the pure rational form δ. An Arthur parameter
ψ for G is relevant to Gδ if any Levi subgroup of LG that ψ factors through is the
dual group of a Levi subgroup of Gδ. In [Art13, Conjecture 9.4.2], Arthur assigns
to any relevant ψ a multiset Πψ(Gδ(F )) over Π(Gδ(F )), which is called the Arthur
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packet for Gδ associated to ψ. Moeglin’s work shows that, since Gδ comes from a
pure rational form, Πψ(Gδ(F )) is again a subset of Π(Gδ(F )). To extend (1) to this
case, Arthur replaces the group Sψ with a generally non-abelian group Sψ,sc [Art13,

Section 9.2], which is a central extension of Sψ by Ẑψ,sc; compare with (24). Let ζ̃Gδ
be a character of Ẑψ,sc and let Rep(Sψ,sc, ζ̃G

δ
) be the set of isomorphism classes of ζ̃G

δ
-

equivariant representations of Sψ,sc and 〈 · , π〉ψ,sc is the character of the associated
representation of Sψ,sc.

Endoscopy theory [Art13, Conjecture 9.4.2] gives a map

(3) Πψ(Gδ(F ))→ Rep(Sψ,sc, ζ̃Gδ );
the character of the representation attached to an irreducible representation π of the
inner twist (Gδ, ϕδ) is denoted by 〈 · , π〉ψ,sc. The map (3) depends only on (1) and
the pure rational form δ. For any Arthur parameter ψ for G and any pure rational
form δ of G we define

Πψ(Gδ(F ), δ) := {(π, δ) | π ∈ Πψ(Gδ(F ))}
where, if ψ is not relevant to Gδ, then Πψ(G

∗
δ(F )) and thus Πψ(Gδ(F ), δ) is empty.

Now we introduce

(4) Πψ(G/F ) := {[π, δ] ∈ Πpure(G/F ) | (π, δ) ∈ Πψ(Gδ(F ), δ)}.
After choosing a representative pure rational form δ for every class in H1(F,G), we
have

Πpure,ψ(G/F ) =
⊔

[δ]∈H1(F,G)

Πψ(Gδ(F ), δ).

Now, set
Aψ := π0(ZĜ(ψ)) = ZĜ(ψ)/ZĜ(ψ)

0

and let χδ : π0(Z(Ĝ)ΓF ) → C× be the character matching [δ] ∈ H1(F,G) under the

Kottwitz isomorphism H1(F,G) ∼= Hom(π0(Z(Ĝ)ΓF ),C1). Let Rep(Aψ, χδ) denote
the set of equivalence classes of representations of Aψ such that the pullback of the
representations along

π0(Z(Ĝ)ΓF )→ π0(ZĜ(ψ))

is χδ. In Proposition 2.10.3 we show that (3) defines a canonical map

(5) Πpure,ψ(G/F )→ Rep(Aψ)

and we write 〈 · , [π, δ]〉ψ for the representation attached to [π, δ] ∈ Πpure,ψ(G/F ).
built from canonical maps

(6) Πψ(Gδ(F ), δ)→ Rep(Aψ , χδ).

The maps (6) depend only on δ and (1), as discussed in Section 2.10. When δ = 1,
(6) recovers (1) and if ψ is tempered then (6) gives a canonical bijection

(7) Πφψ(Gδ(F ), δ)→ Π(Aψ , χδ),

where Π(Aψ , χδ) denotes the set of χδ-equivariant characters of Aψ .
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1.3. Main results. — In this article we give a geometric and categorical approach
to calculating a generalisation of (5), and therefore of (6) also, which applies to all
quasi-split connected reductive algebraic groups G over p-adic fields, by assuming the
local Langlands correspondence for its pure rational forms, as articulated by Vogan
in [Vog93]. The local Langlands correspondence is known for split symplectic and
orthogonal groups by the work of Arthur and others. In [Art13, Chapter 9] Arthur
sets the foundation for adapting his work to inner forms of these groups, which can
be seen as a step toward the version proposed by Vogan in [Vog93]. Building on
Arthur’s work, Vogan’s version of the local Langlands correspondence is known for
unitary groups by work of [Mok15] and [KMSW14]; it is expected that similar
arguments should yield the result for symplectic and orthogonal groups, but that has
not been done yet.

Our approach is based on ideas developed for real groups in [ABV92] and on
results from [Vog93] for p-adic groups. We conjecture that this geometric approach
produces a map that coincides with (6) from Arthur, after specializing to the case of
quasi-split symplectic and special orthogonal p-adic groups. The generalisation of (6)
that we propose leads quickly to what should be a generalisation of Arthur packets.

We now sketch our generalisation of (6). Let F be a p-adic field and let G be any
quasi-split connected reductive algebraic group over F . Every Langlands parameter
φ for G determines an “infinitesimal parameter” λφ :WF → LG by λφ(w) :=φ(w, dw)

where dw = diag(|w|1/2, |w|−1/2). The map φ 7→ λφ is not injective, but the preimage
of any infinitesimal parameter falls into finitely many equivalence classes of Langlands

parameters under Ĝ-conjugation. Set λψ :=λφψ . Let Πpure,λψ(G/F ) be the set of
[π, δ] ∈ Πpure(G/F ) such that the Langlands parameter φ, whose associated L-packet
contains π, satisfies λφ = λψ. The generalisation of (6) that we define takes the form
of a map

(8) Πpure,λψ(G/F )→ Rep(Aψ).

The genesis of the map (8) is the interesting part, as it represents a geometrisation
and categorification of (6).

To order to define (8), in Section 3 we review the definition of a variety Vλ, following
[Vog93], that parametrises the set Pλ(

LG) of Langlands parameters φ for G such that
λφ = λ. The variety Vλ is equipped with an action of ZĜ(λ). Then, again following
[Vog93], we consider the category PerZĜ (λ)(Vλ) of equivariant perverse sheaves on Vλ.

Together with (7), the version of the Langlands correspondence that applies to G and
its pure rational forms determines a bijection between Πpure,λ(G/F ) and isomorphism
classes of simple objects in PerZĜ (λ)(Vλ):

(9)
Πpure,λ(G/F )→ PerZĜ (λ)(Vλ)

simple

/iso ,

[π, δ] 7→ P(π, δ).
Inspired by an analogous result in [ABV92] for real groups, in Proposition 5.6.1 we

show that every Arthur parameter ψ determines a particular element in the conormal
bundle to Vλ

(xψ, ξψ) ∈ T ∗Cψ(Vλψ ),
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where Cψ ⊆ Vλψ is the ZĜ(λψ)-orbit of xψ ∈ Vλ, such that the ZĜ(λψ)-orbit of
(xψ , ξψ) is the unique open orbit T ∗Cψ(Vλψ )sreg in T ∗Cψ(Vλψ ). Then we use (xψ , ξψ)

to show that Aψ is the equivariant fundamental group of T ∗Cψ(Vλ)reg. Thus, (xψ , ξψ)

determines an equivalence of categories

LocZĜ(λ)(T
∗
Cψ

(Vλ)sreg)→ Rep(Aψ),

where Rep(Aψ) denotes the category of representations of Aψ . This means that
the spectral transfer factors 〈 · , π〉ψ,sc for ψ appearing in (3) can be interpreted as

equivariant local systems on T ∗Cψ(Vλψ )sreg
In Section 6.3 we use the vanishing cycles functor to define an exact functor

(10) NEvψ : PerZĜ (λ)(Vλ)→ Rep(Aψ)

which plays the role of the microlocalisation functor as it appears in [ABV92] for
real groups. Vanishing cycles of perverse sheaves on Vλ are fundamental tools for
understanding the singularities on the boundaries of strata in Vλ and their appearance
here is quite natural. Passing to isomorphism classes of objects, this functor defines
a map

PerZĜ (λ)(Vλ)
simple

/iso → Rep(Aψ)/iso.

When composed with (9), this defines (8).

1.4. Conjecture. — We now explain the conjectured relation between (5) and (8).
With reference to (10), consider the support of (8), which we call the ABV-packet for
ψ:

(11) ΠABV
pure,ψ(G/F ) := {[π, δ] ∈ Πpure,λ(G/F ) | NEvψ P(π, δ) 6= 0}.

We can break the ABV-packet ΠABV
pure,ψ(G/F ) apart according to pure rational forms

of G:
ΠABV

pure,ψ(G/F ) =
⊔

[δ]∈H1(F,G)

ΠABV
ψ (Gδ(F ), δ),

where
ΠABV
ψ (Gδ(F ), δ) = {(π, δ) ∈ Π(Gδ(F ), δ) | NEvψ P(π, δ) 6= 0}.

We may now state a simplified version of the main conjecture of this article; see
Conjecture 1 in Section 7.3 for a stronger form. Let ψ be an Arthur parameter for a
quasi-split symplectic or special orthogonal p-adic group G. Then

Πpure,ψ(G/F ) = ΠABV
pure,ψ(G/F ).

Moreover, for all pure rational forms δ of G and for all [π, δ] ∈ Πpure,λψ(G/F ),

〈s, [π, δ]〉ψ = traceas NEvψ P(π, δ),
for all s ∈ ZĜ(ψ), where as is the image of s under ZĜ(ψ) ∈ Aψ. In particular, taking
the case when δ is trivial, if π ∈ Πλψ (G(F )) then

〈s, π〉ψ = traceas NEvψ P(π),
with s ∈ ZĜ(ψ) and as ∈ Aψ as above.
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The pithy version of this conjecture is Arthur packets are ABV-packets for p-
adic groups, but that statement obscures the fact that Arthur packets are defined
separately for each inner rational form (more precisely the corresponding inner twist),
while ABV-packets treat all pure rational forms in one go. More seriously, this pithy
version of the conjecture obscures the fact that the conjecture proposes a completely
geometric approach to calculating the characters 〈 · , π〉ψ,sc appearing in Arthur’s
endoscopic classification of representations.

To simplify the discussion, in this overview we have only described ABV-packets
for Arthur parameters; however, as we see in this article, it is possible to attach
an ABV-packet to each Langlands parameter. Consequently, there are more ABV-
packets than Arthur packets. So, while the conjecture above asserts that every Arthur
packet in an ABV-packet, it is certainly not true that every ABV-packet is an Arthur
packet. If validated, the conjecture gives credence to the idea that ABV-packets may
be thought of as generalised Arthur packets.

Although we do not prove the conjecture above in this article, we do have in mind
a strategy for a proof using twisted spectral endoscopic transfer and its geometric
counterpart for perverse sheaves on Vogan varieties; we use this strategy to prove
Conjectures 1 and 2 for unipotent representations of odd orthogonal groups in forth-
coming work [CFMX].

1.5. Examples. — Our objective in Part II of this article is to show how to use van-
ishing cycles of perverse sheaves to calculate the local transfer coefficients 〈sψ s, π〉ψ
that appear in Arthur’s endoscopic classification [Art13, Theorem 1.5.1]. We do this
by independently calculating both sides of Conjecture 1 in examples:

(12) 〈sψ s, π〉ψ = (−1)dimCψ−dimCπ traces NEvψ P(π),
for every s ∈ ZĜ(ψ). By making these calculations, we wish to demonstrate that the
functor NEv provides a practical tool for calculating Arthur packets, the associated
stable distributions and their transfer under endoscopy. We also verify the Kazhdan-
Lusztig conjecture for p-adic groups as it applies to our examples.

Specifically, in Part II we consider certain admissible representations of the p-
adic groups: SL(2) and its inner form; PGL(4); split SO(3), SO(5), SO(7) and their
pure rational forms. There are a variety of reasons why we have chosen to present
this specific set of examples. The groups SO(3), SO(5), and SO(7) are the first few
groups in the family SO(2n + 1), and this is the family we study in [CFMX] for
unipotent representations. The group SO(7) is the first in this family to exhibit some
of the more general phenomena that meaningfully illuminate the conjectures from
Part I. Moreover, since SO(3) × SO(3) is an elliptic endoscopic group for SO(5) and
SO(5)×SO(3) is an elliptic endoscopic group for SO(7), we are also able to use these
examples to show how to use geometric tools to compute Langlands-Shelstad transfer
of invariant distributions for endoscopic groups. Not only was this ultimately a useful
feature for doing the geometric calculations, but presenting these examples side by
side allows one to see certain relationships that hold more generally for endoscopic
groups. We also include two examples – for SL(2) and PGL(4) – that show how the
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problem of calculating Arthur packets and Arthur’s transfer coefficients is reduced to
unipotent representations.

1.6. Related work. — Using techniques different from those employed in this arti-
cle (namely, microlocalisation of regular holonomic D-modules, rather than vanishing
cycles of perverse sheaves) one of the authors of this article has calculated many
other examples of ABV-packets in his PhD thesis [Mra17]. Specifically, if π is a
unipotent representation of PGL(n), SL(n), Sp(2n) or SO(2n+ 1), of any of its pure
rational forms, and if the image of Frobenius of the infinitesimal parameter of π is
regular semisimple in the dual group, then all ABV-packets containing π have been
calculated by finding the support of the microlocalisation of the relevant D-modules.
This work overlaps with Sections 10 and 12, here. However, we found it difficult to
calculate the finer properties of the microlocalisation of these D-modules required to
determine the local transfer coefficients appearing in Arthur’s work. This is one of
the reasons we use vanishing cycles of perverse sheaves in this article.

1.7. Disclaimer. — To acknowledge the debt we owe to [ABV92] and [Vog93], we
refer to the packets appearing in this article as ABV-packets for p-adic groups, though
it must be pointed out that they appear neither in [ABV92] nor in [Vog93]. For
real groups, the definition of "ABV-packets" uses an exact functor Qmic

C : PerH(V )→
LocH(T ∗C(V )reg) introduced in [ABV92, Theorem 24.8] whose properties are estab-
lished using stratified Morse theory, which we have not used in this article; and for
p-adic groups, [Vog93] uses the microlocal Euler characteristic χmic

C : PerH(V ) → Z
derived from the microlocalisation functor, which we also have not used in this article.
We have elected to use vanishing cycles, or more precisely the functor Ev, in place of
stratified Morse theory or microlocalisation because we found Ev more amenable to
the many calculations we performed in Part II and because we found some theoretical
advantages to using vanishing cycles.
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PART I. ARTHUR PACKETS AND MICROLOCAL VANISHING
CYCLES

Here are the main features of Part I, by section.
In Section 2 we review the main local result from [Art13], adapted to pure rational

forms of quasi-split connected reductive groups over p-adic fields.
In Section 3 we describe Vogan’s parameter variety for p-adic groups and review

Vogan’s perspective on the local Langlands conjecture for pure rational forms of quasi-
split connected reductive groups over p-adic fields, based on [Vog93].

Theorem 4.1.1 shows that the Vogan variety for an arbitrary infinitesimal parame-
ter coincides with the Vogan variety for an unramified infinitesimal parameter. This
theorem also shows that the category of equivariant perverse sheaves is related to
the category of equivariant perverse sheaves on a graded Lie algebra, thereby putting
tools from [Lus95c] at our disposal.

Proposition 5.1.1 shows that Arthur parameters determine conormal vectors to
Vogan’s parameter space and further that representations of the component group
attached to the Arthur parameter correspond exactly to equivariant local systems on
the orbit of that conormal vector, as in the case of real groups [ABV92].

In Section 6 we use vanishing cycles to define two exact functors – denoted by
Evs and NEvs – from equivariant perverse sheaves on the Vogan variety to equivariant
local systems on the strongly regular part of the conormal bundle associated to its
stratification. Sections 6.3 through 6.9 establish the main properties of Evs, including
Theorem 6.7.5 which determines the rank of these local systems. Theorem 6.10.1
shows that NEvs replaces microlocalisation by showing that it enjoys properties parallel
to Qmic from [ABV92, Theorem 24.8],

In Section 7 we express Vogan’s conjectures from [Vog93] in terms of vanishing
cycles; see Conjectures 1 and 2. One of the most interesting features of the vanishing
cycles approach to Arthur packets is that it suggests two different parametrizations
of Arthur packets, as determined by the two functor Evs and NEvs. The conjectures
predict that the one determined by the functor NEvs coincides with Arthur’s work.

2. Arthur packets and pure rational forms

The goal of this section is primarily to set some notation and recall the characters
of Aψ and Aψ,sc appearing in Arthur’s work as they pertain to pure rational forms.

2.1. Local Langlands group. — Let F be a p-adic field; let q = qF be the
cardinality of the residue field for F . Let F̄ be an algebraic closure of F and set
ΓF :=Gal(F̄ /F ). There is an exact sequence

1 IF ΓF Gal(F̄q/Fq) 1,

where IF is the inertia subgroup of ΓF and F̄q is an algebraic closure of Fq. Since

Gal(F̄q/Fq) ∼= Ẑ, it contains a dense subgroup WkF
∼= Z, in which 1 corresponds to
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the automorphism x 7→ xqF in F̄q. We fix a lift Fr in ΓF of x 7→ xqF in WkF . The
Weil group WF of F is the preimage of WkF in ΓF ,

1 IF WF WkF 1,

topologized so that the compact subgroup IF is open in WF . Let

| |F :WF −→ R×

be the norm homomorphism, trivial on IF and sending Fr to qF . Then | |F is
continuous with respect to this topology for WF .

The local Langlands group of F is the trivial extension of WF by SL(2,C):

1 SL(2,C) LF WF 1.

2.2. L-groups. — Let G be a connected reductive linear algebraic group over F .
Let

Ψ0(G) = (X∗,∆, X∗,∆
∨)

be the based root datum of G. The dual based root datum is

Ψ∨0 (G) := (X∗,∆
∨, X∗,∆).

A dual group of G is a complex connected reductive algebraic group Ĝ together with
a bijection

ηĜ : Ψ∨0 (G)
∼= Ψ0(Ĝ).

The Galois group ΓF acts on Ψ0(G) and Ψ∨0 (G); see [Bor79, Section 1.3]. This action
induces a homomorphism

µ : ΓF −→ Aut(Ψ0(G)) ∼= Aut(Ψ∨0 (G)).

Let Ĝ be a dual group of G. Then we can compose ηĜ with µ and get a homomorphism

µĜ : ΓF −→ Aut(Ψ0(Ĝ)).

An L-group data for G is a triple (Ĝ, ρ, SplĜ), where Ĝ is a dual group of G,

ρ : ΓF −→ Aut(Ĝ) is a continuous homomorphism and SplĜ := (B, T, {Xα}) is a

splitting of Ĝ such that ρ preserves SplĜ and induces µĜ on Ψ0(Ĝ) (see [Bor79,
Sections 1, 2] for details.)

The L-group of G determined by the L-group data (Ĝ, ρ, SplĜ) is

LG := Ĝ⋊WF ,

where the action of WF on Ĝ factors through ρ. Since ρ induces µĜ on Ψ0(Ĝ) and

since Aut(Ψ0(Ĝ)) is finite, the action of WF on Ĝ factors through a finite quotient of

WF . We remark that the L-group, LG, only depends on Ĝ and ρ and is unique up to

conjugation by elements in Ĝ fixed by ΓF .
Henceforth we fix an L-group, LG, of G and make LG a topological group by giving

Ĝ the complex topology and WF the profinite topology.
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2.3. Langlands parameters. — If φ : LF → LG is a group homomorphism that
commutes with the projections LF → WF and LG → WF , then we may define

φ◦ : LF → Ĝ by φ(w, x) = φ◦(w, x) ⋊ w. Then we have the following map of
split short exact sequences:

1 SL(2,C) LF WF 1

1 Ĝ LG WF 1.

φ
φ◦

A Langlands parameter for G is a homomorphism φ : LF → LG such that

(P.i) φ is continuous;
(P.ii) φ commutes with the projections LF →WF and LG→ WF ;

(P.iii) φ◦|SL(2,C) : SL(2,C)→ Ĝ is induced from a morphism of algebraic groups;

(P.iv) the image of φ|WF consists of semisimple elements in LG.

See [Bor79, Section 8.2(i)] and Section 4.2 for the meaning of semisimple elements
in L-groups.

Let P (LG) be the set of Langlands parameters for G. For φ ∈ P (LG), we refer to

Aφ :=π0(ZĜ(φ)) = ZĜ(φ)/ZĜ(φ)
0

as the component group for φ.

Langlands parameters are equivalent if they are conjugate under Ĝ. The set
of equivalence classes of Langlands parameters of G is denoted by Φ(G/F ); it is
independent of the choice of L-group LG made above.

2.4. Arthur parameters. — If ψ : LF × SL(2,C) −→ LG is a group homomor-
phism that commutes with the projections LF×SL(2,C)→ LF →WF and LG→WF ,

then we define ψ◦ : LF × SL(2,C) → Ĝ by ψ(w, x, y) = φ◦(w, x, y) ⋊ w, where
(w, x) ∈ LF and y ∈ SL(2,C).

An Arthur parameter for G is a homomorphism ψ : LF × SL(2,C) −→ LG such
that

(Q.i) ψ|LF is a Langlands parameter for G;

(Q.ii) ψ◦|SL(2,C) : SL(2,C)→ Ĝ is induced from a morphism of algebraic groups;

(Q.iii) the image ψ◦|WF :WF → Ĝ is bounded (its closure is compact).

Following [Vog93, Definition 4.2], the set of Arthur parameters for G will be denoted

by Q(LG). The set of Ĝ-conjugacy classes of Arthur parameters will be denoted by
Ψ(G/F ).

For ψ ∈ Q(LG), we refer to

Aψ :=π0(ZĜ(ψ)) = ZĜ(ψ)/ZĜ(ψ)
0

as the component group for ψ.
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2.5. Langlands parameters of Arthur type. — Define d :WF → SL(2,C) by

(13) dw :=

(
|w|1/2 0

0 |w|−1/2

)
.

Note that w 7→ (w, dw) is a section of LF →WF . For ψ : LF × SL(2,C)→ LG, define
φψ : LF → LG by

φψ(w, x) = ψ(w, x, dw).

This defines a map

(14)
Q(LG) → P (LG)

ψ 7→ φψ .

We will refer to φψ as the Langlands parameter for ψ. The function ψ 7→ φψ is
neither injective nor surjective. Langlands parameters in the image of the map
Q(LG)→ P (LG) are called Langlands parameters of Arthur type. The function

Ψ(G/F )→ Φ(G/F ),

induced from Q(LG)→ P (LG), is injective.

2.6. Pure rational forms. — We suppose now that the connected reductive alge-
braic group G over F is quasi-split.

An inner rational form σ of G is a 1-cocycle of ΓF in Gad, where Gad is the
adjoint group of G. It determines an inner twist (Gσ, ϕ

∗
σ) of G as follows. Let

Gσ(F̄ ) := G∗(F̄ ) and ϕσ be the identity map. The action of γ ∈ ΓF on Gσ(F̄ )
is given through the twisted Galois action on G(F̄ ), i.e., γ : g 7→ Ad(σ(γ))(γ · g)
for g ∈ G(F̄ ), where γ · g refers to the action of ΓF on G(F̄ ) defining G over F .
We will represent the inner twist by Gσ, and identify Gσ(F ) as a subgroup of G(F̄ )
through ϕσ. Two inner rational forms σ1, σ2 of G are equivalent if they give the same
cohomology class in H1(F,Gad), or equivalently Gσ1

(F ) and Gσ2
(F ) are conjugate

under G(F̄ ). There is a canonical isomorphism

H1(F,Gad)
∼= Hom(Z(Ĝsc)

ΓF ,C1)

where Ĝsc is the simply connected cover of the derived group of Ĝ. The character of

Z(Ĝsc)
ΓF determined by [σ] ∈ H1(F,Gad) will be denoted ζσ.

A pure rational form δ of G is a 1-cocycle of ΓF in G. It determines an inner
rational form σ := δ(σ) by the canonical map

(15) Z1(F,G)→ Z1(F,Gad).

We will denote the inner twist Gσ by Gδ. Two pure rational forms of G are equivalent
if they give the same cohomology class in H1(F,Gad). There is also a canonical
isomorphism

H1(F,G) ∼= Hom(π0(Z(Ĝ)ΓF ),C1).

The character of π0(Z(Ĝ)ΓF ) corresponding to the equivalence class of δ will be
denoted by χδ. By [Kot84, Proposition 6.4], the homomorphism G → Gad induces a



14 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

commuting diagram:

H1(F,G) H1(F,Gad)

Hom(π0(Z(Ĝ)ΓF ),C1) Hom(Z(Ĝsc)
ΓF ,C1).

∼= ∼=

So ζσ is the image of χδ and we will also denote it by ζδ.

2.7. Langlands packets for pure rational forms. — An isomorphism class of
representations of a pure rational form of G is a pair (π, δ), where π is an isomorphism
class of admissible representations of Gδ(F ). Then G(F̄ )-conjugation defines an
equivalence relation on such pairs, which is compatible with the equivalence relation
on pure rational forms Z1(F,G). We denote the equivalence class of (π, δ) by [π, δ],
and following [Vog93], write Πpure(G/F ) for the set of these equivalence classes.
The local Langlands correspondence for pure rational forms of G can be stated as

in the following conjecture. There is a natural bijection between Πpure(G/F ) and Ĝ-
conjugacy classes of pairs (φ, ρ) with φ ∈ P (LG) and ρ ∈ Irrep(Aφ). We will call the
pair (φ, ρ) in this conjecture a complete Langlands parameter. For φ ∈ P (LG), we
define the corresponding pure Langlands packet

Πpure,φ(G/F )

to be consisting of [π, δ] in Πpure(G/F ), such that they are associated with Ĝ-
conjugacy classes of (φ, ρ) for any ρ ∈ Irrep(Aφ) under the local Langlands cor-
respondence for pure rational forms. This is also known as the Langlands-Vogan
packet.

2.8. Arthur packets for quasi-split symplectic or special orthogonal groups.
— From now on until the end of Section 2, we will assumeG is a quasi-split symplectic
or special orthogonal group over F . In [Art13, Theorem 1.5.1], Arthur assigns to
ψ ∈ Q(LG) a multiset Πψ(G(F )) over Π(G(F )), which is usually referred to as the
Arthur packet of G associated with ψ. It is a deep result of Moeglin [Mœg11] that
Πψ(G(F )) is actually a subset of Π(G(F )). Arthur [Art13, Theorem 2.2.1] also
associates Πψ(G(F )) with a canonical map

(16)
Πψ(G(F ))→ Ŝψ

π 7→ 〈 · , π〉ψ
where

(17) Sψ = ZĜ(ψ)/ZĜ(ψ)
0Z(Ĝ)ΓF ,

and Ŝψ denotes the set of irreducible characters of Sψ. We use (16) to define a stable
virtual representation of G(F ) by

(18) ηGψ :=
∑

π∈Πψ(G(F ))

〈sψ, π〉ψ π,
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where sψ ∈ Sψ is the image of ψ(1, 1,−1) under the mapping ZĜ(ψ) → Sψ and
where (1, 1,−1) ∈ LF with −1 denoting the non-trivial central element in SL(2,C).
Every semisimple s ∈ ZĜ(ψ) determines an element x of Sψ and thus a new virtual
representation

(19) ηGψ,s :=
∑

π∈Πψ(G(F ))

〈sψx, π〉ψ π.

Turning to the stable distributions on G(F ), we set

(20) ΘGψ :=
∑

π∈Πψ(G(F ))

〈sψ , π〉ψ Θπ,

and

(21) ΘGψ,s :=
∑

π∈Πψ(G(F ))

〈sψx, π〉ψ Θπ.

The pair (ψ, s) also determines an endoscopic datum (G′,LG
′
, s, ξ) for G and an

Arthur parameter ψ′ for G′ so that ψ = ξ ◦ ψ′. In fact, G′ is a product group, whose
factors consist of symplectic, special orthogonal and general linear groups. So one can
extend the above discussions about G to G′ without difficulty, as done in [Art13].

Arthur’s main local result shows that, for locally constant compactly supported
function f on G(F ), we have

(22) ΘGψ,s(f) = ΘG
′

ψ′ (f ′),

where f ′ is the Langlands-Shelstad transfer of f from G(F ) to G′(F ). It is in this
sense that the maps (16) are compatible with spectral endoscopic transfer to G(F ).

On the other hand, there is an involution θ of G := GL(N) over F such that
(G,LG, s, ξN ) is a twisted endoscopic datum for G+(F ) := GL(N,F ) ⋊ 〈θ〉 in the

sense of [KS99, Section 2.1], for suitable semisimple s ∈ Ĝθ, the component of θ̂ in

Ĝ+ := Ĝ⋊ 〈θ̂〉, where θ̂ is the dual involution. Arthur’s main local result also shows
that, for locally constant compactly supported function fθ on Gθ(F ) := G(F )⋊ θ,

(23) ΘGψ (f) = ΘG
+

ψN ,s(f
θ),

where f is the Langlands-Kottwitz-Shelstad transfer of fθ from Gθ(F ) to G∗(F ) and

ΘG
+

ψN ,s
is the twisted character of a particular extension of the Speh representation of

GL(N,F ) associated with Arthur parameter ψN := ξN ◦ψ to the disconnected group
G+(F ). It is in this sense that the maps (16) are compatible with twisted spectral
endoscopic transfer from G(F ).

Arthur shows that the map (16) is uniquely determined by: the stability of ΘGψ ;

property (22) for all endoscopic data G′; and property (23) for twisted endoscopy of
GL(N). In particular, the endoscopic character identities that are used to pin down
〈 · , π〉ψ involve values at all elements of Sψ .

When ψ is trivial on the second SL(2,C), it becomes a tempered Langlands param-
eter. In this case, Arthur shows (16) is a bijection. By the Langlands classification
of Π(G(F )), which is in terms of tempered representations, this bijection extends to
all Langlands parameters of G. Moreover, it follows from Arthur’s results that there
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is a bijection between Π(G(F )) and Ĝ-conjugacy classes of pairs (φ, ǫ) for φ ∈ P (LG)

and ǫ ∈ Ŝφ.

2.9. Arthur packets for inner rational forms. — A conjectural description of
Arthur packets for inner twists of G is presented in [Art13, Chapter 9], though
the story is far from complete. Let σ be an inner rational forms of G. An Arthur
parameter ψ of Gσ is said to be relevant if any Levi subgroup of LGσ that ψ factors
through is the L-group of a Levi subgroup of Gσ. We denote the subset of relevant
Arthur parameter by Qrel(Gσ). In [Art13, Conjecture 9.4.2], Arthur assigns to
ψ ∈ Qrel(Gσ) a multiset Πψ(Gσ(F )) over Π(Gσ(F )), which is called the Arthur
packet of Gσ associated with ψ. This time Moeglin’s results [Mœg11] only show
Πψ(Gσ(F )) is a subset of Π(Gσ(F )) in case when σ comes from a pure rational form;
see also [Art13, Conjecture 9.4.2, Remark 2]. For the purpose of comparison with
the geometric construction of Arthur packets, in this article we define Πψ(Gσ(F ))
simply as the image of this multiset in Π(Gσ(F )).

To extend (16) to this case, one must replace the group Sψ with a larger, finite,
generally non-abelian group Sψ,sc, which is a central extension

(24) 1 Ẑψ,sc Sψ,sc Sψ 1

of Sψ by the finite abelian group

Ẑψ,sc :=Z(Ĝ∗sc)/Z(Ĝ
∗
sc) ∩ S0

ψ,sc.

To explain the group in this exact sequence, we introduce the following notations. Set

Sψ :=ZĜ∗(ψ) and S̄ψ :=ZĜ∗(ψ)/Z(Ĝ)ΓF .

So S̄ψ is the image of Sψ in Ĝ∗ad, whose preimage in Ĝ∗ is SψZ(Ĝ). Let Sψ,sc be the

preimage of S̄ψ under the projection Ĝ∗sc → Ĝ∗ad, which is the same as the preimage

of SψZ(Ĝ) in Ĝ∗sc. Let S♯ψ,sc be the preimage of Sψ in Ĝ∗sc and Ẑ♯sc be the preimage

of Z(Ĝ)ΓF in Ĝ∗sc. Let us write Z(Ĝ∗) (resp. Z(Ĝ∗sc)) for Ẑ (resp. Ẑsc). It is clear

that ẐΓF
sc →֒ Ẑ♯sc. Then we have the following commutative diagram, which is exact

on each row:

1 ẐΓF Sψ S̄ψ 1

1 Ẑ♯sc S♯ψ,sc S̄ψ 1

1 Ẑsc Sψ,sc S̄ψ 1.

Note Sψ,sc = S♯ψ,scẐsc, and hence S0
ψ,sc = (S♯ψ,sc)

0. After passing to the component
groups, we have the following commutative diagram, which is again exact on each
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row:

1 ẐΓF
ψ Aψ Sψ 1

1 Ẑ♯ψ,sc S♯ψ,sc Sψ 1

1 Ẑψ,sc Sψ,sc Sψ 1.

Here Aψ ,Sψ,S♯ψ,sc,Sψ,sc are the corresponding component groups and

ẐΓF
ψ := ẐΓF /ẐΓF ∩ S0

ψ

Ẑ♯ψ,sc := Ẑ♯sc/Ẑ
♯
sc ∩ S0

ψ,sc

Ẑψ,sc := Ẑsc/Ẑsc ∩ S0
ψ,sc

Let ζσ be the character of ẐΓF
sc corresponding to the equivalence class of σ. We will

also fix an extension of ζσ to Ẑsc and denote that by ζ̃σ. By [Art99, Lemma 2.1], an

Arthur parameter ψ of Gσ is relevant if and only if the restriction of ζσ to ẐΓF
sc ∩S0

ψ,sc

is trivial.

Lemma 2.9.1. — ẐΓF
sc ∩ S0

ψ,sc = Ẑsc ∩ S0
ψ,sc.

Proof. — It suffices to show Ẑsc ∩ S0
ψ,sc ⊆ ẐΓF

sc . Let LF × SL(2,C) act on Ĝ∗sc by

conjugation of the preimage of ψ(LF × SL(2,C)) in LGsc. Then we can define the

group cohomology H0
ψ(LF × SL(2,C), Ĝ∗sc), which is the group of fixed points in Ĝsc

under the action of LF × SL(2,C). It is clear that H0
ψ(LF × SL(2,C), Ĝ∗sc) ⊆ S♯ψ,sc.

In fact, it is also not hard to show that

(H0
ψ(LF × SL(2,C), Ĝ∗sc))

0 = (S♯ψ,sc)
0.

As a result, we have

Ẑsc∩S0
ψ,sc ⊆ Ẑsc∩ (H0

ψ(LF ×SL(2,C), Ĝ∗sc))
0 ⊆ Ẑsc∩H0

ψ(LF ×SL(2,C), Ĝ∗sc) = ẐΓF
sc .

This finishes the proof.

So, if ψ is relevant, it follows from Lemma 2.9.1 that ζ̃σ descends to a character

of Ẑψ,sc. Let Rep(Sψ,sc, ζ̃σ) be the set of isomorphism classes of ζ̃σ-equivariant
representations of Sψ,sc. In [Art13, Conjecture 9.4.2], Arthur conjectures a map

(25) Πψ(Gσ(F ))→ Rep(Sψ,sc, ζ̃σ)
and writes 〈 · , π〉ψ,sc for the character of the associated representation of Sψ,sc.
Because of our definition of Πψ(Gσ(F )) here, one can not replace Rep(Sψ,sc, ζ̃σ) by

the subset Π(Sψ,sc, ζ̃σ) of ζ̃σ-equivariant irreducible characters of Sψ,sc as in Arthur’s
original formulation. The map (25) is far from being canonical for it depends on (16)
and various other choices implicitly.



18 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

When ψ is a tempered Langlands parameter, Arthur states all these results as a
theorem [Art13, Theorem 9.4.1]. In particular, he claims (25) gives a bijection

(26) Πφ(Gσ(F ))→ Π(Sφ,sc, ζ̃σ).
By the Langlands classification of Π(Gσ(F )), which is in terms of tempered represen-
tations, this bijection extends to all relevant Langlands parameters of Gσ. Moreover,
it follows from [Art13, Theorem 9.4.1] that there is a bijection between Π(Gσ(F ))

and Ĝ-conjugacy classes of pairs (φ, ǫ) for φ ∈ Prel(
LG
∗
σ) and ǫ ∈ Π(Sφ,sc, ζ̃σ).

2.10. Pure Arthur packets. — Let δ be a pure rational form of G and ψ be an

Arthur parameter of Gδ. Let χδ be the character of π0(Z(Ĝ)ΓF ) corresponding to

the equivalence class of δ. We will also denote its pull-back to Z(Ĝ)ΓF by χδ. Let

ζδ := ζσ(δ) be the character of Z(Ĝsc)
ΓF , which is also the pull-back of χδ along

Z(Ĝsc)
ΓF → π0(Z(Ĝ)ΓF ).

Lemma 2.10.1. — χδ is trivial on ẐΓF ∩S0
ψ if and only if ζδ is trivial on ẐΓF

sc ∩S0
ψ,sc.

Proof. — One just needs to notice that S0
ψ is the product of (ẐΓF )0 with the image

of S0
ψ,sc in Sψ.

As a direct consequence, we have the following corollary.

Corollary 2.10.2. — An Arthur parameter ψ of Gδ is relevant if and only if χδ is

trivial on ẐΓF ∩ S0
ψ.

Let us assume ψ is relevant. Then χδ descends to a character of ẐΓF
ψ . Let

Rep(Aψ , χδ) be the set equivalence classes of χδ-equivariant representations of Aψ .

Let ζ̃δ be a character of Ẑsc extending ζδ, so that its restriction to Ẑ♯sc is the pull-back

of χδ. Since ψ is relevant, ζ̃δ descends to a character of Ẑψ,sc. Let Rep(Sψ,sc, ζ̃δ) be

the set of equivalence classes of ζ̃δ-equivariant representations of Sψ,sc.

Proposition 2.10.3. — Let χ a character of π0(Z(Ĝ)ΓF ). Let ζ̃ be a character of

Z(Ĝsc) Suppose the pull-back of χ along Ẑ♯sc → Z(Ĝ)ΓF → π0(Z(Ĝ)ΓF ) coincides

with the restriction of ζ̃ to Ẑ♯sc →֒ Z(Ĝsc). Then there is a canonical bijection

(27) Rep(Aψ , χ)→ Rep(Sψ,sc, ζ̃).

Proof. — Since

Ker(S♯ψ,sc → Aψ) = Ker(Ẑ♯ψ,sc → ẐΓF
ψ ),

there is a canonical bijection

Rep(Aψ , χ)→ Rep(S♯ψ,sc, ζ♯),
where ζ♯ is the pull-back of χδ to Ẑ♯ψ,sc. Since

Sψ,sc = Ẑψ,sc S♯ψ,sc and Ẑψ,sc ∩ S♯ψ,sc = Ẑ♯ψ,sc,



ARTHUR PACKETS FOR p-ADIC GROUPS BY WAY OF VANISHING CYCLES 19

there is also a canonical bijection

Rep(Sψ,sc, ζ̃)→ Rep(S♯ψ,sc, ζ♯).
Combining the two isomorphisms above, we obtain the canonical bijection promised
above.

Let us take δ among various other choices to be made in defining (25). To emphasize
this choice, we will define

Πψ(Gδ(F ), δ) := {(π, δ) | π ∈ Πψ(Gδ(F ))}.
Then by composing (25) with (27) modulo isomorphisms, we can have a canonical
map

(28)
Πψ(Gδ(F ), δ)→ Rep(Aψ , χδ)

(π, δ) 7→ 〈 · , (π, δ)〉ψ
which only depends on δ and (16). In particular, it becomes (16) when δ = 1. For
equivalent pure rational forms δ1 and δ2 of G, it follows from the construction of (25)
that the following diagram commutes.

Πψ(Gδ1(F ), δ1) Πψ(Gδ2 (F ), δ2)

Rep(Aψ, χδ1)/iso Rep(Aψ , χδ2)/iso.

∼=

As a result, (28) is also well-defined for the equivalence class [π, δ].
Let ψ be an Arthur parameter of G. For pure rational form δ such that ψ is

not relevant, we will define Πψ(Gδ(F ), δ) to be empty. Then we can define the pure
Arthur packet associated with ψ to be

(29) Πpure,ψ(G/F ) =
⊔

[δ]∈H1(F,G)

Πψ(Gδ(F ), δ)

as a subset of Πpure(G/F ). It is equipped with a canonical map

(30)
Πpure,ψ(G/F )→ Rep(Aψ)

[π, δ] 7→ 〈·, [π, δ]〉ψ
When ψ is a tempered Langlands parameter, this induces a bijection

Πpure,φ(G/F )→ Π(Aφ)

[π, δ] 7→ 〈·, [π, δ]〉φ.
This bijection also extends to all Langlands parameters φ of G, according to the dis-
cussion in the end of Section 2.9. Combined with the local Langlands correspondence
for each pure rational form of G, we can conclude the local Langlands correspondence
for pure rational forms of G appearing in Section 2.7.

2.11. Virtual representations of pure rational forms. — Let KΠpure(G/F ) be
the free abelian group generated by the set Πpure(G/F ). Define ηψ ∈ KΠpure(G/F )
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by

(31) ηψ :=
∑

[π,δ]∈Πpure,ψ(G/F )

e(δ) 〈aψ, [π, δ]〉ψ [π, δ],

where e(δ) = e(Gδ) is the Kottwitz sign [Kot83] of the group Gδ, and aψ is the image
of ψ(1, 1,−1) in Aψ . Using (29) we have

ηψ =
∑

[δ]∈H1(F,G)

e(δ) ηδψ

where, for each pure rational form δ of G,

ηδψ :=
∑

(π,δ)∈Πψ(Gδ(F ),δ)

〈aψ, (π, δ)〉ψ [π, δ].

For semisimple s ∈ ZĜ(ψ), we define ηψ,s ∈ KΠpure(G/F ) by

(32) ηψ,s =
∑

[π,δ]∈Πpure,ψ(G/F )

e(δ) 〈aψas, (π, δ)〉ψ [π, δ],

where as is the image of s in Aψ. As above, we can break this into summands indexed
by pure rational form by writing

ηψ,s =
∑

[δ]∈H1(F,G)

e(δ) ηδψ,s

where, for each pure rational form δ of G,

ηδψ,s :=
∑

(π,δ)∈Πψ(Gδ(F ),δ)

〈aψas, (π, δ)〉ψ [π, δ].

Then ηδψ,1 = ηδψ and ηψ,1 = ηψ. We note that, with reference to (18) and (19),

η1ψ = ηGψ and η1ψ,s = ηGψ,s.

Turning from virtual representations to distributions, we see that each ηδψ and ηδψ,s
determines a distribution on Gδ(F ) by

Θδψ,s :=
∑

(π,δ)∈Πψ(Gδ(F ),δ)

〈aψas, (π, δ)〉ψ Θπ.

This extends (20) and (21) from G(F ) to Gδ(F ) arising from pure rational forms δ
of G:

Θ1
ψ = ΘGψ and Θ1

ψ,s = ΘGψ,s.

3. Equivariant perverse sheaves on parameter varieties

In this section we drop the quasi-split hypothesis and let G be an arbitrary con-
nected reductive algebraic group over a p-adic field F .

3.1. Infinitesimal parameters. — An infinitesimal parameter for G is a homo-
morphism λ : WF → LG such that

(R.i) λ is continuous;
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(R.ii) λ is a section of LG→WF ;
(R.iii) the image of λ consists of semisimple elements in LG.

Let R(LG) be the set of infinitesimal parameters for G. The component group for λ
is

(33) Aλ :=π0(ZĜ(λ)) = ZĜ(λ)/ZĜ(λ)
0.

The set of Ĝ-conjugacy classes of infinitesimal parameters is denoted by Λ(G/F ).
For any Langlands parameter φ : LF → LG, define the infinitesimal parameter of

φ by
λφ :WF → LG

w 7→ (w, dw),

where d :WF → SL(2,C) was defined in Section 2.1. This defines

(34)
P (LG) → R(LG)

φ 7→ λφ.

The function φ 7→ λφ is surjective but not, in general, injective. For any fixed
λ ∈ R(LG), set

Pλ(
LG) := {φ ∈ P (LG) | λφ = λ}.

We write Φλ(G/F ) for the set of ZĜ(λ)-conjugacy classes of Langlands parameters
with infinitesimal parameter λ.

With reference to Section 2.7, for any quasi-split G over F , we set

Πpure,λ(G/F ) :=
⋃

φ∈Pλ(LG)

Πpure,φ(G/F ),

with the union taken in Πpure(G/F ). Then, after choosing a representative for each
class in Φλ(

LG), we have

Πpure,λ(G/F ) =
⊔

[φ]∈Φλ(LG)

Πpure,φ(G/F ).

Now the local Langlands correspondence for pure rational forms of G (cf. Section 2.7)
provides a bijection

(35) Πpure,λ(G/F )↔ {(φ, ρ) | φ ∈ Pλ(LG), ρ ∈ Irrep(Aφ)}/∼,
where the equivalence on pairs (φ, ρ) is defined by ZĜ(λ)-conjugation.

3.2. Vogan varieties. — Fix λ ∈ R(LG). Define

(36) Hλ :=ZĜ(λ) := {g ∈ Ĝ | (g ⋊ 1)λ(w)(g ⋊ 1)−1 = λ(w), ∀w ∈WF }
and

(37) Kλ :=ZĜ(λ(IF )) := {g ∈ Ĝ | (g ⋊ 1)λ(w)(g ⋊ 1)−1 = λ(w), ∀w ∈ IF }.
The centraliser Kλ of λ(IF ) in Ĝ consists of fixed points in Ĝ under a finite group of

semisimple automorphisms of Ĝ, so Kλ is a reductive algebraic group. Since Hλ can
be viewed as the group of fixed points in Kλ under the semisimple automorphism
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Ad(λ(Fr)), then Kλ is also a reductive algebraic group. Neither Hλ nor Kλ is
connected, in general.

Following [Vog93, (4.4)(e)], define

(38) Vλ :=Vλ(
LG) := {x ∈ LieKλ | Ad(λ(Fr))x = qFx},

called the Vogan variety for λ. Then Hλ acts on Vλ by conjugation.

Lemma 3.2.1. — Vλ is a conical subvariety in the nilpotent cone of LieKλ.

Proof. — Set kλ = LieKλ. Decompose kλ according to the eigenvalues of Ad(λ(Fr)):

(39) kλ =
⊕

ν∈C∗

kλ(ν).

Then, using the Lie bracket in kλ, we have

(40) [ , ] : kλ(ν1)× kλ(ν2)→ kλ(ν1ν2).

It follows that all elements in Vλ are ad-nilpotent in ĝ. So it is enough to show that
Vλ does not intersect the centre ẑ of ĝ. Since the adjoint action of λ(WF ) on ẑ factors
through a finite quotient of ΓF , the Ad(λ(Fr))-eigenvalues on ẑ are all roots of unity.
In particular, they can not be qF , so Vλ does not intersect ẑ. This shows that all
elements in Vλ are nilpotent in ĝ. It is clear from (38) that Vλ(

LG) is closed under

scalar multiplication by C× in k
nilp
λ .

With reference to decomposition of kλ = LieKλ in the proof of Lemma 3.2.1,
observe that

kλ(qF ) = Vλ and kλ(1) = LieHλ.

Proposition 3.2.2. — For each infinitesimal parameter λ ∈ R(LG), the Hλ-
equivariant function

Pλ(
LG) −→ Vλ(

LG),

φ 7→ xφ := dϕ

(
0 1
0 0

)
,

where ϕ :=φ◦|SL(2,C) : SL(2,C) → Ĝ, is surjective. The fibre of Pλ(
LG) → Vλ(

LG)

over any x ∈ Vλ(
LG) is a principal homogeneous space for the unipotent radical of

ZHλ(x). The induced map between the sets of Hλ-orbits

Φλ(
LG) −→ Vλ(

LG)/Hλ,

[φ] 7→ Cφ

is a bijection.

Proof. — Fix x ∈ Vλ = kλ(qF ). By Lemma 3.2.1, x is nilpotent. There exists an
sl2-triple (x, y, h) in kλ such that

(41) x ∈ Vλ = kλ(qF ) and z ∈ hλ = kλ(1) and y ∈ kλ(q
−1
F );
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see, for example, [GR10, Lemma 2.1]. Let ϕ : SL(2,C)→ Kλ be the homomorphism
defined by

dϕ

(
0 1
0 0

)
= x, dϕ

(
1 0
0 −1

)
= h, dϕ

(
0 0
1 0

)
= y,

and define φ :WF × SL(2,C)→ LG by

φ(w, g) = ϕ(g) ϕ(d−1w ) λ(w).

Then φ ∈ Pλ(LG) and

d(φ◦|SL(2,C))
(
0 1
0 0

)
= dϕ

(
0 1
0 0

)
= x.

This shows the map Pλ(
LG)→ Vλ(

LG) is surjective.
Now, suppose that φ1 is also mapped to x under the map Pλ(

LG) → Vλ(
LG) and

set ϕ1 :=φ◦1|SL(2,C). Then ϕ1 determines an sl2-triple (x, y1, z1) in kλ such that

z1 ∈ hλ = kλ(1) and y1 ∈ kλ(q
−1
F ).

The two sl2-triples (x, y, z) and (x, y1, z1) are conjugate by an element of ZHλ(x); see,
for example, the second part of [GR10, Lemma 2.1]. Thus, ϕ and ϕ1 are conjugate
under ZHλ(x). We can also write φ1 as

φ1(w, g) = ϕ1(g)ϕ1(d
−1
w )λ(w).

It is then clear that φ and φ1 are also conjugate under ZHλ(x). This shows that
the map Pλ(

LG) → Vλ(
LG) induces a bijection between Hλ-orbits and also that the

fibre above any x ∈ Vλ is in bijection with ZHλ(x)/ZHλ (φ) for φ 7→ x and that
ZHλ(x) = ZHλ(φ)U where U is the unipotent radical of ZHλ(x).

We remark that Proposition 3.2.2 is analogous to [ABV92, Proposition 6.17]
for real groups. However, Proposition 3.2.2 might appear to contradict with
[Vog93][Corollary 4.6]. The apparent discrepancy is explained by the two different
incarnations of the Weil-Deligne group: we use LF = WF × SL(2,C) while [Vog93]
uses W ′F =WF ⋊Gadd(C) and we use pullback along WF → LF given by w 7→ (w, dw)
to define the infinitesimal parameter of a Langlands parameter while [Vog93] uses
restriction of a parameter W ′F → LG to WF to define its infinitesimal parameter.
We find LF preferable to W ′F here because it stresses the analogy to the real groups
case. However, there is a cost. In the optic of [Vog93], Vλ is exactly a moduli space
for Langlands parameters φ :W ′F → LG with φ|WF = λ, while in this article the map
Pλ(

LG)→ Vλ(
LG) from Langlands parameters φ : LF → LG with λφ = λ to Vλ is not

a bijection, as we saw in Proposition 3.2.2.

3.3. Parameter varieties. — Recall from Section 3.1 that elements of Λ(G/F )

are Ĝ-conjugacy class of elements of R(LG). We will use the notation [λ] ∈ Λ(G/F )
for the class of λ ∈ R(LG); then [λ] is an infinitesimal character in the language of
[Vog93]. Consider the variety

(42) Xλ :=Xλ(
LG) := Ĝ×Hλ Vλ(LG).
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Then [λ] = [λ′] implies Xλ(
LG) ∼= Xλ′(LG). Set

P[λ](
LG) := {φ ∈ P (LG) | λφ = Ad(g)λ, ∃g ∈ Ĝ}.

It follows immediately from Proposition 3.2.2 that the function

(43) P[λ](
LG)→ Xλ(

LG),

induced from Pλ(
LG) → Vλ(

LG) is Ĝ-equivariant, surjective, and the fibre over any
x ∈ Xλ(

LG) is a principal homogeneous space for the unipotent radical of ZĜ(x).

Let HomWF (WF ,
LG) be the set of homomorphisms that satisfy conditions (R.i)

and (R.ii). Observe that

R(LG) = {λ ∈ HomWF (WF ,
LG) | λ(Fr) ∈ LGss}

where LGss ⊆ LG denotes the set of semisimple elements in LG. Now let
HomWF (IF ,

LG) be the set of continuous homomorphisms that commute with the
natural maps IF → WF and LG → WF . As explained in [Pra, Section 10], the set
HomWF (WF ,

LG) naturally carries the structure of (locally finite-type) variety over C

and its components are indexed by Ĝ-conjugacy classes of those φ0 ∈ HomWF (IF ,
LG)

that lie in the image of HomWF (WF ,
LG) → HomWF (IF ,

LG) given by restriction.

We remark that Ĝ-orbits in HomWF (WF ,
LG) are closed subvarieties.

Now consider the (locally finite-type) variety

X(LG) := {(λ, x) ∈ HomWF (WF ,
LG)× Lie Ĝ | x ∈ Vλ(LG)}.

This (locally finite-type) variety comes equipped with morphisms

X(LG) → HomWF (WF ,
LG) → HomWF (IF ,

LG)
(λ, x) 7→ λ 7→ λ|IF .

The components of X(LG) are again indexed by the Ĝ-conjugacy classes of those
φ0 ∈ HomWF (IF ,

LG) that lie in the image of HomWF (WF ,
LG) → HomWF (IF ,

LG).
The fibre of X(LG) → HomWF (WF ,

LG) above λ ∈ R(LG) ⊆ X(LG) is precisely the
affine variety Xλ(

LG) defined in (42).
Now, with reference to the definition of λφ from (34) and the definition of xφ in

Proposition 3.2.2, consider the map

(44)
P (LG) → X(LG)

φ 7→ (λφ, xφ).

It follows from Proposition 3.2.2 that the image is {(λ, x) ∈ X(LG) | λ ∈ R(LG)} and
the fibre of P (LG)→ X(LG) above any (λ, x) in its image is a principal homogeneous
space for the unipotent radical of ZĜ(x), and moreover that P (LG)→ X(LG) induces
a bijection

Φ(LG) −→ X(LG)/Ĝ,

[φ] 7→ Sφ.

Though the map (44) is neither injective nor surjective, in general, and though X(LG)
is not of finite type over C, in general, we refer to X(LG) as the parameter variety for
G.
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We note that X(LG) is stratified into Ĝ-orbit varieties, locally closed in X(LG);

this stratification is not finite, in general, but it is closure-finite. For each Ĝ-orbit
S ⊆ X(LG), there is some λ ∈ HomWF (WF ,

LG) such that S ⊆ Xλ(
LG). Then S̄, the

closure of S in X(LG), is also contained in Xλ(
LG). It is essentially for this reason

that this article is concerned with the affine varieties Xλ(
LG), for [λ] ∈ Λ(G/F ),

rather than the full parameter variety X(LG).

3.4. Equivariant perverse sheaves. — The definitive reference for perverse
sheaves is [BBD82], and we will use notation from that paper here, but equivariant
perverse sheaves do not appear in [BBD82], so we now briefly describe that category
and some properties that will be important to us. Our treatment is consistent with
[BL94, Section 5].

Let m : H × V → V be a group action in the category of algebraic varieties.
So, in particular, H is an algebraic group, but need not be connected. Consider the
morphisms

H ×H × V H × V V
m1,m2,m3 m

m0

s

where m0 : H × V → V is projection, s : V → H × V is defined by s(x) = (1, x) and
m1,m2,m3 : H ×H × V → H × V are defined by

m1(h1, h2, x) = (h1h2, x)

m2(h1, h2, x) = (h1,m(h2, x))

m3(h1, h2, x) = (h2, x).

These are all smooth morphisms. An object in PerH(V ) is a pair (A, α) where
A ∈ Per(V ) and

(45) α : m∗[dimH ]A → m∗0[dimH ]A
is an isomorphism in Per(H × V ) such that

(46) s∗(α) = idA[dimH ]

and such that the following diagram in Per(H ×H × V ), which makes implicit use of
[BBD82, 1.3.17]commutes:

(47)

m∗2[dimH ]m∗[dimH ]A m∗2[dimH ]m∗0[dimH ]A

m∗1[dimH ]m∗[dimH ]A m∗3[dimH ]m∗[dimH ]A

m∗1[dimH ]m∗0[dimH ]A m∗3[dimH ]m∗0[dimH ]A.

m◦m1=m◦m2

m∗
2 [dimH](α)

m0◦m2=m◦m3

m∗
1 [dimH](α) m∗

3 [dimH](α)

m0◦m3=m0◦m1

We remark that pHdimH m∗ = m∗[dimH ] on Per(V ) and pHdimH m∗i = m∗i [dimH ]
on Per(H × V ) for i = 1, 2, 3; see [BBD82, 4.2.4]. This does not require connected
H .
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Morphisms of H-equivariant perverse sheaves (A, α) → (B, β) are morphisms of
perverse sheaves φ : A→ B for which the diagram

(48)

m∗[dimH ]A m∗[dimH ]B

m∗0[dimH ]A m∗0[dimH ]B

α

m∗[dimH](φ)

β

m∗
0 [dimH](φ)

commutes. This defines PerH(V ), the category of H-equivariant perverse sheaves on
V .

The category PerH(V ) comes equipped with the forgetful functor

PerH(V )→ Per(V )

trivial on morphisms and given on objects by (A, α) → A. This is a special case of
a more general construction called equivariant pullback. Let m : H × V → V and
m′ : H ′ × V ′ → V ′ be actions. Let u : H ′ → H be a morphism in the category of
algebraic groups and suppose H ′ acts on V and H acts on V . A morphism f : V ′ → V
is equivariant (with respect to u) if

H ′ × V ′ V ′

H × V V

m′

u×f f

m

commutes. Then for every i ∈ Z there is a functor pHiu f
∗ : PerH(V ) → PerH′(V ′)

making

PerH′(V ′) PerH(V )

Per(V ′) Per(V )

forget

pHiu f
∗

forget

pHi f∗

commute; we call this equivariant pullback. The forgetful functor above is just
pH0

1 id
∗
V , where u : 1→ H .

The category PerH(V ) also comes equipped with the forgetful functor

PerH(V )→ PerH0(V )

where H0 is the identity component of H . The category PerH0(V ) is easier to study
than PerH(V ), since the functor PerH0(V ) → Per(V ) is faithful, which is generally
not the case for PerH(V ) → Per(V ) when H is not connected. The following lemma
shows how PerH(V ) is related to PerH0 (V ).

Lemma 3.4.1. — Let m : H×V → V be a group action in the category of algebraic
varieties. Suppose V is smooth and connected. We have a sequence of functors

Rep(π0(H)) PerH(V ) PerH0 (V )
E 7→EV [dimV ] forget: P7→P0

π∗

such that:

(a) for every E ∈ Rep(π0(H)), (EV [dim V ])0 ∼= 1

dimE
V [dimV ];
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(b) the functor Rep(π0(H)) → PerH(V ) is fully faithful and its essential im-
age is the category of perverse local systems L[dimV ] ∈ PerH(V ) such that
(L[dimV ])0 ∼= 1

dimL
V [dim V ];

(c) the forgetful functor PerH(V ) → PerH0 (V ) is exact and admits an adjoint
π∗ : PerH0 (V )→ PerH(V ), both left and right;

(d) every P ∈ PerH(V ) is a summand of π∗P0.

Proof. — The identity idV : V → V is equivariant with respect to the inclusion
u : H0 → H of the identity component of H . Consider the functor

pH0
u id
∗
V : PerH(V )→ PerH0(V ).

The trivial map 0 : V → 0 is equivariant with respect to the quotient π0 : H → π0(H).

H × V V

π0(H)× 0 0

Consider the functor
pHdimH

π0
0∗ : Perπ0(H)(0)→ PerH(V ).

Then
( pHdimH

π0
0∗) ( pH0

u id
∗
V )
∼= pHdimH

0 0∗

and we have a sequence of functors

Perπ0(H)(0) PerH(V ) PerH0(V )
forget

The tensor category Perπ0(H)(0) is equivalent to Rep(π0(H)), the category of repre-
sentations of the finite group π0(H). Property (a) now follows from the canonical
isomorphism of functors above.

Since V is smooth, the functor Rep(π0(H)) → PerH(V ) is given explicitly by
E 7→ EV [dim V ]; this functor is full and faithful [BBD82, Corollaire 4.2.6.2] from
which we also find the adjoint functors PerH(V ) → Rep(π0(H)) and Property (b).
Connectedness of V plays a role here.

To see Property (c), set Ṽ = H×H0V and consider the closed embedding i : V → Ṽ
given by i(x) = [1, x]H0 . By descent, equivariant pullback

pH0
u i
∗ : PerH(Ṽ )→ PerH0 (V )

is an equivalence. Now consider the morphism

c : Ṽ → V

[h, x]H0 7→ h · x.
Then c : Ṽ → V is an H-equivariant finite etale cover with group π0(H) = H/H0.

In fact, Ṽ ∼= V × H/H0 and c is simply the composition of this isomorphism with
projection V ×H/H0 → V . Since c is proper and semismall, the adjoint to pullback

pH0 c∗ : Per(V )→ Per(Ṽ )
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takes perverse sheaves to perverse sheaves,
pH0 c∗ : Per(Ṽ )→ Per(V )

and coincides with pH0 c!; see also [BBD82, Corollaire 2.2.6]. To see that the adjoint
extends to a functor of equivariant perverse sheaves, define

pH0
H c∗ : PerH(Ṽ )→ PerH(V )

as follows. On objects, pH0
H c∗(Ã, α̃) = (A, α) with A = pH0 c∗Ã while the isomor-

phism α : pHdimH m∗A → pHdimH m∗0A in Per(H × V ) is defined by the following
diagram of isomorphisms.

pHdimH m∗A pHdimH m∗0A

pHdimH m∗( pH0 c∗Ã) pHdimH m∗0(
pH0 c∗Ã)

pH0(idH ×c)∗ pHdimH(m̃)∗A pH0(idH ×c)∗ pHdimH(m̃0)
∗A

α

smooth base change smooth base change

pH0(idH ×c)∗(α̃)

It is straightforward to verify that α satisfies (46) and (47) as they apply here and

also that if Ã → B̃ is a map in PerH(Ṽ ) then pHi c!(Ã → B̃) satisfies condition (48),

so is a map in PerH(V ). By this definition of pHiH c∗ : PerH(Ṽ )→ PerH(V ), it follows
immediately that the diagram

PerH(Ṽ ) PerH(V )

Per(Ṽ ) Per(V )

forget

pH0
H c∗

forget

c∗=
pH0 c∗

commutes. Now, we define the adjoint π∗ : PerH0 (V ) → PerH(V ) by the following
diagram

PerH0 (V ) PerH(V )

PerH(Ṽ ).

π∗

pH0
u i

∗

equiv.

pH0
H c∗

This shows Property (c).

Property (d) follows from the Decomposition Theorem applied to c : Ṽ → V .

3.5. Equivariant perverse sheaves on parameter varieties. — Our fundamen-

tal object of study is the category PerĜ(Xλ) of Ĝ-equivariant perverse sheaves on

X(LG), for fixed [λ] ∈ Λ(G/F ). Consider the closed embedding

Vλ → Xλ

x 7→ [1, x]Hλ .
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By a simple application of descent, the functor obtained by equivariant pullback along
Vλ → Xλ,

PerHλ(Vλ)← PerĜ(Xλ),

is an equivalence. Consequently, it may equally be said that our fundamental object
of study is the category PerHλ(Vλ) of Hλ-equivariant perverse sheaves on Vλ.

Now define

(49) X̃λ := Ĝ×H0
λ
Vλ.

Then
Vλ → X̃λ

x 7→ [1, x]H0
λ

induces an equivalence
PerĜ(X̃λ)→ PerH0

λ
(Vλ).

Define
cλ : X̃λ → Xλ

[h, x]H0
λ
7→ [h, x]Hλ .

Arguing as in Section 3.4, it follows that there is a sequence of exact functors

Rep(Aλ) PerĜ(Xλ) PerĜ(X̃λ)

PerHλ(Vλ) PerH0
λ
(Vλ)

E 7→EXλ [dimXλ]

equiv

(cλ)
∗

equiv

(cλ)∗

enjoying the properties of Lemma 3.4.1.

3.6. Langlands component groups are equivariant fundamental groups. —
Every simple object in PerHλ(Vλ) takes the form IC(C,L), where C is an Hλ-orbit in
Vλ and L is a simple equivariant local system on C. Thus, simple objects in PerHλ(Vλ)
are parametrized by pairs (C, ρ) where C is an Hλ-orbit in Vλ and ρ is an isomorphism
class of irreducible representations of the equivariant fundamental group AC of C. To
calculate that group, we may pick a base point x ∈ C so

(50) AC ∼= π1(C, x)H0
λ
.

We are left with a canonical bijection:

(51) PerHλ(Vλ)
simple

/iso ↔ {(C, γ) | Hλ-orbit C ⊆ Vλ, ρ ∈ Irrep(AC)}.

Lemma 3.6.1. — For any Langlands parameter φ : LF → LG,

ACφ = Aφ,

where Cφ is the Hλφ -orbit of xφ in Vλφ ; see Proposition 3.2.2.

Proof. — Recall from Section 2.3 that the component group for a Langlands pa-
rameter φ is given byAφ = π0(ZĜ(φ)) = ZĜ(φ)/ZĜ(φ)

0. Since λφ(WF ) ⊆ φ(LF ),
Aφ = π0(ZHλφ (φ)). On the other hand, the equivariant fundamental group of Cφ
is π1(Cφ, xφ)Hλφ = π0(ZHλφ (xφ)). From the proof of Proposition 3.2.2 we see that
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ZHλφ (xφ) = ZHλφ (φ)U , where U is a connected unipotent group. It follows that

π0(ZHλφ (xφ)) = π0(ZHλφ (φ)U) = π0(ZHλφ (φ)),

which concludes the proof.

The following proposition is one of the fundamental ideas in [Vog93]. Because our
set up is slightly different, however, we include a proof here.

Proposition 3.6.2. — Suppose G is quasi-split. The local Langlands correspondence
for pure rational forms determines a bijection between the set of isomorphism classes
of simple objects in PerHλ(Vλ) and those of Πpure,λ(G/F ) as defined in Section 3.1:

PerHλ(Vλ)
simple

/iso ↔ Πpure,λ(G/F ).

Proof. — We have already seen (35) that the local Langlands correspondence for pure
rational forms gives a bijection between Πpure,λ(G/F ) and

{([φ], ǫ) | [φ] ∈ Φλ(
LG), ǫ ∈ Irrep(Aφ)}

Proposition 3.2.2 gives a canonical bijection between Φλ(
LG) and the set of Hλ-orbits

in Vλ. When C ↔ [φ] under this bijection, Lemma 3.6.1, gives a bijection between
Irrep(AC) and Irrep(Aφ).

We introduce some convenient notation for use below. For [π, δ] ∈ Πλ(G/F ),
let P(π, δ) = IC(Cπ,δ,Lπ,δ) be a simple perverse sheaf in the isomorphism class
determined by [π, δ] using Proposition 3.6.2:

Πpure,λ(G/F ) → PerHλ(Vλ)
simple

/iso

[π, δ] 7→ P(π, δ) = IC(Cπ,δ,Lπ,δ)
Conversely, for a simple perverse sheaf P = IC(C,L) in PerHλ(Vλ), let χP be the

character of π0(Z(Ĝ)ΓF ) obtained by pullback along

(52) π0(Z(Ĝ)ΓF )→ π0(ZĜ(x))

from the representation of π0(ZĜ(x)) determined by the choice of a base point x ∈ C
and the equiviariant local system L on C. Let δP ∈ Z1(F,G) be a pure rational form
of G representing the class determined by χP under the Kottwitz isomorphism. Let
πP be an admissible representation of GδP (F ) such that [πP , δP ] matches P under
Proposition 3.6.2:

PerHλ(Vλ)
simple

/iso → Πpure,λ(G/F )

P 7→ [πP , δP ].

4. Reduction to unramified parameters

Let G be an arbitrary connected reductive algebraic group over a p-adic field F .

4.1. Unramification. — In this section we show that the study of PerĜ(Xλ) may
be reduced to the study of PerĜλ(Xλnr

) for a split connected reductive group Gλ and

an unramified infinitesimal parameter λnr : WF → LGλ. Moreover, we show how
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the tools developed in [Lus95c] may be brought to bear on PerĜλ
(Xλnr

). The group
Gλ that appears in Theorem 4.1.1 is sometimes an endoscopic group for G , but not
in general; nonetheless, the principle of functoriality applies here through a map of
L-groups rλ : LGλ → LG.

Theorem 4.1.1. — Let λ : WF → LG be an infinitesimal parameter.

(a) There is a connected reductive group Gλ, split over F , and an infinitesimal
parameter λnr :WF → LGλ for Gλ, trivial on IF , and an inclusion of L-groups
rλ : LGλ → LG such that the following diagram commutes

WF
LG

WF
LGλ,

λ

λnr

rλ

where WF →WF is trivial on IF and Fr 7→ Fr (chosen in Section 2.1).
(b) By equivariant pullback, the inclusion of L-groups rλ : LGλ → LG defines an

equivalence
PerĜ(X̃λ)→ PerĜλ

(Xλnr
)

where X̃λ is defined in Section 3.5, (49).
(c) There is a sequence of exact functors

Rep(Aλ) PerĜ(Xλ) PerĜλ
(Xλnr

)
E 7→EXλ [dimXλ] (cλ)

∗

(cλ)∗

enjoying the properties of Lemma 3.4.1, where Aλ is defined by (33).
(d) There is a connected complex reductive algebraic group Mλ, a co-character

ι : Gm →Mλ and an integer n such that

PerĜλ
(Xλnr

) ≡ PerMι
λ
(mλ,n),

where mλ,n is the weight-n space of Ad(ι) acting on mλ = LieMλ.

The proof of Theorem 4.1.1 will be given in Section 4.5.

4.2. Elliptic and hyperbolic semisimple elements in L-groups. — Recall
that a semisimple element x of a complex reductive group is H is called hyperbolic
(resp. elliptic) if for every torus D ⊂ H containing x and every rational character
χ : D → Gm(C) of D, χ(x) is a positive real number (resp. χ(x) has complex norm
1). An arbitrary semisimple element can be uniquely decomposed as a commuting
product of hyperbolic and elliptic semisimple elements. An element commutes with
x if and only if it commutes with its hyperbolic and elliptic parts separately.

Recall that an element g ∈ LG is semisimple if Int(g) is a semisimple automorphism

of Ĝ. Then g = f ⋊ w ∈ LG is semisimple if and only if f ′ ∈ Ĝ is semisimple where

(f ⋊ w)N = f ′ ⋊ wN and wN acts trivially on Ĝ.
The hyperbolic and elliptic parts of a semisimple g = f ⋊ Fr ∈ LG are defined as

follows. Let N be as above, so (f ⋊ Fr)N = f ′ ⋊ FrN and FrN acts trivially on Ĝ.

Then f ′ ∈ Ĝ is semisimple. Let s′ ∈ Ĝ be the hyperbolic part of f ′ and let t′ ∈ Ĝ be
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the elliptic part of f ′. Let s be the unique hyperbolic element of Ĝ such that sN = s′.
It is clear that s is independent of N . Set t = s−1f . We call s⋊ 1 the hyperbolic part
of f ⋊Fr and t⋊Fr the elliptic part of f ⋊w. Then Ad(s) ∈ Aut(ĝ) is the hyperbolic
part of the semisimple automorphism Ad(f ⋊ Fr) ∈ Aut(ĝ) and Ad(t⋊ Fr) ∈ Aut(ĝ)
is the elliptic part of the semisimple automorphism Ad(f ⋊ Fr) ∈ Aut(ĝ). Moreover,
Frs = t−1st, so

(s⋊ 1)(t⋊ Fr) = (t⋊ Fr)(s⋊ 1).

Lemma 4.2.1. — Write λ(Fr) = fλ ⋊ Fr; let sλ ⋊ 1 be the hyperbolic part of λ(Fr)
and let tλ ⋊ Fr be the elliptic part of λ(Fr). Then sλ ∈ H0

λ and Kλ is normalized by
fλ ⋊ Fr and by tλ ⋊ Fr.

Proof. — let I ′F be the kernel of ρ : ΓF → Aut(Ĝ) restricted to IF . Then I ′F is an

open subgroup of IF and I ′F is normalized by FrN in WF , with N as above. Set
I0F = λ−1(1 ⋊ I ′F ) ⊆ I ′F . By continuity of λ, I0F is an open subgroup of IF . Then

λ(FrN ) normalises λ(I0F ). Since λ(FrN ) also normalises λ(IF ), we see λ(FrN ) acts
on the finite group λ(IF )/λ(I

0
F ). In particular, replacing N by a larger integer if

necessary, it follows that λ(FrN ) acts on λ(IF )/λ(I
0
F ) trivially.

Recall the notation λ(Fr) = fλ ⋊ Fr and λ(FrN) = f ′ ⋊ FrN . We now show
f ′ ∈ ZĜ(λ(IF )) = Kλ. For any h⋊ w ∈ λ(IF ),

λ(FrN )(h⋊ w)(λ(FrN ))−1 = h⋊ ww′

for some w′ ∈ I0F . Since λ(FrN ) = f ′ ⋊ FrN = (1⋊ FrN )(f ′ × 1), we get

FrNf ′(h⋊ w)f ′−1Fr−N = h⋊ ww′.

This implies

f ′hw(f ′−1)⋊ w = Fr−N (h⋊ ww′)FrN = h⋊ Fr−Nww′FrN .

Therefore, f ′hw(f ′−1) = h and w = Fr−Nww′FrN . From the first equality, we can
conclude f ′(h⋊ w)f ′−1 = h⋊ w. Hence f ′ ∈ ZĜ(λ(IF )) = Kλ.

Since some power of f ′ will lie in ZĜ(λ(IF ))
0 = K0

λ, replacing N by a larger

integer if necessary, we may conclude that f ′ actually belongs to ZĜ(λ(IF ))
0 = K0

λ.

In particular, we can take both s′ and t′ in K0
λ.

Since λ(FrN ) = λ(Fr)−1λ(FrN )λ(Fr), we have

f ′ ⋊ FrN = (fλ ⋊ Fr)−1(f ′ ⋊ FrN )(fλ ⋊ Fr) =
(
(fλ ⋊ Fr)−1f ′(fλ ⋊ Fr)

)
⋊ FrN .

Thus, f ′ = λ(Fr)−1f ′λ(Fr). Since λ(Fr) normalises ZĜ(λ(IF ))
0 = K0

λ, we have

f ′ = λ(Fr)−1f ′λ(Fr) = (λ(Fr)−1s′λ(Fr))(λ(Fr)−1t′λ(Fr)),

where, as above, s′ is the hyperbolic part of f ′ and t′ is the elliptic part of f ′. Since

the decomposition of a semisimple element of Ĝ into hyperbolic and elliptic parts is
unique, we have

s′ = λ(Fr)−1s′λ(Fr) and t′ = λ(Fr)−1t′λ(Fr).

In particular, it now follows that s′ ∈ ZĜ(λ)0 = H0
λ. Since sNλ = s′, it follows that

sλ ∈ ZĜ(λ)0 = H0
λ, also.
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The Frobenius element Fr normalises IF , so λ(Fr) = fλ ⋊ Fr normalises λ(IF ) and
hence normalises Kλ as well. Since sλ ∈ H0

λ = ZĜ(λ)
0 ⊆ ZĜ(λ(IF )) = K0

λ, it follows
now that sλ normalises Kλ; likewise, tλ × Fr normalises Kλ.

4.3. Construction of the unramified parameter. — Define

(53) Jλ :=ZĜ(λ(IF )) ∩ ZĜ(tλ ⋊ Fr) = ZKλ(tλ ⋊ Fr).

Lemma 4.2.1 shows that Jλ is a complex reductive algebraic group. Recall the
definition of sλ and tλ from Lemma 4.2.1. It follows from Section 4.2 that sλ ∈ J0

λ

and tλ normalises J0
λ.

We now have the following complex reductive groups attached to λ ∈ R(LG):
Hλ ⊆ Jλ ⊆ Kλ ⊆ Ĝ.

Let Gλ be the split connected reductive algebraic group over F so that

(54) LGλ = J0
λ ×WF .

Define

(55) rλ : LGλ → LG by h× 1 7→ h⋊ 1 and 1× Fr 7→ tλ ⋊ Fr.

Then rλ : LGλ → LG is a homomorphism of L-groups. Using Lemma 4.2.1, we define
an unramified (i.e., trivial on IF ) homomorphism

(56)
λnr :WF −→ LGλ

Fr 7→ sλ × Fr.

Lemma 4.3.1. — Let λ : WF → LG be an infinitesimal parameter. Define the
parameter λnr :WF → LGλ as above. Then

Vλnr
= Vλ and Hλnr

= H0
λ.

Consequently,
PerHλnr

(Vλnr
) = PerH0

λ
(Vλ).

Proof. — Applying (36) to λnr :WF → LGλ gives

Hλnr
= ZJ0

λ
(λnr) = ZJ0

λ
(sλ) = H0

λ.

Applying (37) to λnr :WF → LGλ gives

Kλnr
= ZJ0

λ
(λnr|IF ) = J0

λ.

Applying (38) to λnr :WF → LGλ gives

Vλnr
= Vλnr

(LGλ) = {x ∈ LieZĜλ(λnr|IF ) | Ad(λnr(Fr))x = qF x}.

Since Ĝλ = J0
λ and λnr|IF = 1, and since Fr acts trivially on J0

λ in LGλ, we have

(57) Vλnr
= {x ∈ jλ | Ad(sλ)x = qF x}.

Then Vλ = Vλnr
because Ad(fλ ⋊ Fr)x = qx if and only if Ad(tλ ⋊ Fr)x = x and

Ad(sλ)x = qx.
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Lemma 4.3.1 tells us that the category PerH0
λ
(Vλ) determined by λ : WF → LG

can always be apprehended as the category for an unramified infinitesimal parameter
λnr :WF → LGλ. Note, however, that it is PerHλ(Vλ), not PerH0

λ
(Vλ) which is needed

to study Arthur packets of admissible representations of pure rational forms of G(F );
fortunately, Lemma 3.4.1 describes the relation between these two categories.

Remark 4.3.2. — Without defining G+
λ itself, let us set LG

+
λ :=Jλ×WF and define

λ+nr : WF → LG
+
λ by the composition of λnr and LGλ →֒ LG

+
λ . Then (54) may also

be used to define r+λ : LG
+
λ →֒ LG and extends rλ. Arguing as in the proof of

Lemma 4.3.1, it follows that

Vλ+
nr

= Vλ and Hλ+
nr

= Hλ,

so
PerH

λ
+
nr

(Vλ+
nr
) = PerHλ(Vλ).

We pursue this perspective elsewhere.

4.4. Construction of the cocharacter. — From Section 4.3, recall the definition

of sλ ∈ Ĝ and the fact that sλ lies in the identity component of the subgroup Jλ ⊆ Ĝ.
Decompose the Lie algebra jλ of Jλ according to Ad(sλ)-eigenvalues:

jλ =
⊕

ν∈C∗

jλ(ν), jλ(ν) := {x ∈ jλ | Ad(sλ)(x) = νx}.

Following [Lus95c], define

j
†
λ :=

⊕

r∈Z

jλ(q
r
F ).

Lemma 4.4.1. — There is a connected reductive algebraic subgroup Mλ of J0
λ and

a cocharacter ι : Gm −→Mλ such that

M ι
λ = Hλnr

and mλ = j
†
λ,

where mλ := LieMλ and an integer n so that, for every r ∈ Z,

mλ,rn = jλ(q
r
F ),

where mλ,rn := {x ∈ m | Ad(ι(t))x = trnx, ∀t ∈ Gm}. In particular,

Vλ = jλ(qF ) = mλ,n.

Proof. — Decompose the Lie algebra jλ of Jλ according to Ad(sλ)-eigenvalues:

jλ =
⊕

ν∈C∗

jλ(ν).

Fix a maximal torus S of J0
λ such that sλ ∈ S and denote the set of roots determined

by this choice by R(S, J0
λ). For α ∈ R(S, J0

λ), denote the root space in jλ by uα. Then

(58) jλ(ν) =
⊕

α∈R(S,J0
λ)

α(sλ)=ν

uα.
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Let 〈·, ·〉 be the natural pairing between X∗(S) and X∗(S). First, let us consider all
α ∈ R(S, J0

λ) such that α(sλ) are integral powers of q. For these roots we can choose
χ ∈ X∗(S) ⊗Z Q so that 〈α, χ〉 = r if α(sλ) = qr for some integer r. Let n be an
integer such that nχ ∈ X∗(S), and we set t = (nχ)(ζq1/n) ∈ S, where ζ is a primitive
n-th root of unity. Now for α ∈ R(S, J0

λ) such that α(sλ) = qr, we have

α(t) = α((nχ)(ζq1/n)) = α(χ(ζq1/n))n = (ζq1/n)rn = qr = α(sλ).

Next, consider those α ∈ R(S, J0
λ) such that α(sλ) are not integral powers of q. We

have two cases: if 〈α, χ〉 ∈ Z, then α(t) is an integral power of q; if 〈α, χ〉 /∈ Z,
then α(t) ∈ ζlR>0 for some 0 < l < n. Since sλ is hyperbolic, α(sλ) ∈ R>0

for all α ∈ R(S, J0
λ), so α(sλ) 6= α(t) in either case. Therefore, we can define

Mλ = ZJλ(sλt
−1)0and take ι = nχ.

4.5. Proof of Theorem 4.1.1. — The essential facts about the groups Kλ, Hλ,
Jλ and Mλ are summarized in the following diagram.

Ĝ

Kλ :=ZĜ(λ(IF ))

M0
λ =Mλ J0

λ Jλ :=ZKλ(tλ ⋊ Fr) π0(Jλ)

M ι
λ H0

λ Hλ = ZJλ(sλ) π0(Hλ)

From the definitions of Gλ (54), λnr (56) and rλ : LGλ → LG (55), we have

(59) rλ(λnr(Fr)) = rλ(sλ × Fr) = (sλ ⋊ 1)(tλ ⋊ Fr) = fλ ⋊ Fr = λ(Fr).

Now, Theorem 4.1.1 follows from a direct application of Lemmas 3.4.1 and 4.4.1, as
in the diagram below.

Rep(Aλ) PerĜ(Xλ) PerĜλ
(Xλnr

)

Rep(π0(Hλ)) PerHλ(Vλ) PerH0
λ
(Vλ)

PerMι
λ
(mλ,n)

equiv

(cλ)
∗

(cλ)∗

equiv

forget

4.6. Further properties of Vogan varieties. — From (58) in the proof of The-
orem 4.1.1 we get a very concrete description of Vλ as a variety, for any λ ∈ R(LG):

Vλ ∼= Ad, for d = |{α ∈ R(S, J0
λ) | α(sλ) = qF }|.
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Proposition 4.6.1. — The space Vλ is stratified into Hλ-orbits, of which there are
finitely many, with a unique open orbit.

Proof. — With Proposition 4.4.1 in hand, this follows immediately from [Lus95c,
Proposition 3.5] and [Lus95c, Section 3.6].

A different proof is given in [Vog93, Proposition 4.5].

Proposition 4.6.2. — Every Hλ-orbit in Vλ is a conical variety.

Proof. — By Proposition 4.4.1, it suffices to prove that every M ι
λ-orbit C in mλ,n is

a conical variety. Arguing as in the proof of [GR10, Lemma 2.1], for x ∈ C, we can
find a homomorphism ϕ : SL(2,C)→Mλ such that for t ∈ C∗

ϕ

(
t 0
0 t−1

)
∈M ι

λ and dϕ

(
0 1
0 0

)
= x.

Then

Ad

(
ϕ

(
t 0
0 t−1

))
(x) = dϕ

(
0 t2

0 0

)
= t2x,

so t2x ∈ C.

5. Arthur parameters and the conormal bundle

The goal of Section 5 is to show that every Arthur parameter ψ ∈ Qλ(LG) with
infinitesimal parameter λ may be apprehended as a regular conormal vector to the
associated stratum at an associated point, that is ξψ ∈ T ∗Cψ,xψ(Vλ)reg.

In the rest of this section, G is an arbitrary connected reductive linear algebraic
group over the p-adic field F unless noted otherwise.

5.1. Regular conormal vectors. — For λ ∈ R(LG) and every Hλ-orbit C ⊆ Vλ,
let T ∗C(Vλ)reg ⊂ T ∗C(Vλ) be the subvariety defined by

(60) T ∗C(Vλ)reg :=T ∗C(Vλ) \
⋃

C(C1

T ∗C1
(Vλ).

Also define
T ∗Hλ(Vλ)reg :=

⋃

C

T ∗C(Vλ)reg,

the union taken over all Hλ-orbits C in Vλ. Then T ∗Hλ(Vλ)reg is open subvariety of
T ∗Hλ(Vλ) and each T ∗C(Vλ)reg is a component in T ∗Hλ(Vλ)reg.

We may compose (14) and (34):

(61)
Q(LG) → P (LG) → R(LG)

ψ 7→ φψ 7→ λφψ .

To simplify notation, we set λψ :=λφψ . We will refer to λψ as the infinitesimal
parameter of ψ. Using Proposition 3.2.2, define

xψ :=xφψ ∈ Vλψ
and let Cψ ⊆ Vλψ be the Hλ-orbit of xψ ∈ Vλψ .
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Proposition 5.1.1. — Let ψ : LF × SL(2,C) → LG be an Arthur parameter. Let
λψ :WF → LG be its infinitesimal parameter. Then ψ determines a regular conormal
vector

ξψ ∈ T ∗Cψ,xψ(Vλ)reg,
with the property that the Hλ-orbit of (xψ , ξψ) in T ∗Cψ(Vλ) is open and dense in

T ∗Cψ(Vλ)reg. The equivariant fundamental group of this orbit is Aψ.

The proof of Proposition 5.1.1 will be given in Section 5.8.

5.2. Cotangent space to the Vogan variety. — Consider

(62) tVλ := {x ∈ kλ | Ad(λ(Fr))(x) = q−1F x},
which clearly comes equipped with an action of Hλ just as Vλ comes equipped with
an action of Hλ. Compare tVλ with Vλ defined in (38). In fact, the variety tVλ has
already appeared: see the proof of Proposition 3.2.2. We note

tVλ = kλ(q
−1
F ) = jλ(q

−1
F ) = mλ,−n,

where k and mn are defined in Sections 3.2 and 4.4, respectively.
For φ : LF → LG, we can define

(63)

Pλ(
LG) −→ tVλ,

φ 7→ xφ :=dϕ

(
0 0
1 0

)
,

where ϕ :=φ◦|SL(2,C) : SL(2,C)→ Ĝ. This map satisfies all the properties of the map

Pλ(
LG)→ Vλ(

LG) in Proposition 3.2.2, from which it follows that there is a canonical
bijection between Hλ-orbits in Vλ and Hλ-orbits in tVλ, so that the following diagram
commutes.

Pλ(
LG)/Hλ Pλ(

LG)/Hλ

Vλ/Hλ
tVλ/Hλ

∼=

Proposition 5.2.1. — There is an Hλ-equivariant isomorphism

T ∗(Vλ) ≃ Vλ × tVλ,

and consequently,

T ∗(Vλ) ∼= jλ(qF )⊕ jλ(q
−1
F ) = mλ,n ⊕mλ,−n.

Proof. — As Vλ is an affine Hλ-space there is a standardHλ-equivariant isomorphism
T ∗(Vλ) ≃ Vλ × V ∗λ , so it suffices to exhibit an Hλ-equivariant isomorphism

V ∗λ
∼= tVλ.

To do this, let Jλ be the reductive group defined in (53) and write jλ for LieJλ, as in
Section 4.3. From Proposition 4.4.1, we have

Vλ = jλ(qF ) and hλ = jλ(1) and tVλ = jλ(q
−1
F ).
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As Jλ is reductive, its Lie algebra decomposes into a direct sum of its centre and a
semisimple Lie algebra, jλ ≃ Z(jλ)⊕[jλ, jλ]. We choose any non-degenerate symmetric
bilinear form on Z(jλ) and extend to a bilinear form on jλ using the Cartan-Killing
form, while insisting that the direct sum decomposition above is orthogonal, that
is, the components in the direct sum are pairwise perpendicular. The result is a
non-degenerate, symmetric, Jλ-invariant bilinear pairing

( | ) : jλ × jλ → A1.

Now, if jλ(ν) and jλ(ν
′) are two Ad(sλ)-weight spaces, then the invariance of the

pairing implies that ( jλ(ν) | jλ(ν′) ) 6= 0 if and only if ν′ = ν−1. Since the pairing is
non-degenerate this gives an ZJλ(sλ) = Hλ-equivariant isomorphism

V ∗λ = jλ(qF )
∗ ∼= jλ(q

−1
F ) = tVλ.

A similar argument using the cocharacter ι : Gm →Mλ and the graded Lie algebra

mλ = · · · ⊕mλ,2n ⊕ (mλ,n ⊕mλ,0 ⊕mλ,−n)⊕mλ,−2n ⊕ · · ·
= · · · ⊕mλ,2n ⊕ (Vλ ⊕ hλ ⊕ tVλ)⊕mλ,−2n ⊕ · · ·

produces an M ι
λ = H0

λ-equivariant isomorphism

(64) V ∗λ = m∗λ,n
∼= mλ,−n = tVλ.

This allows us to view T ∗(Vλ) as a subspace of mλ, even with Hλ-action, and gives
Hλ-equivariant isomorphisms

T ∗(Vλ) ∼= jλ(qF )⊕ jλ(q
−1
F ) = mλ,n ⊕mλ,−n,

as desired.

In the remainder of the paper we identify tVλ with V ∗λ , using Proposition 5.2.1.

5.3. Conormal bundle to the Vogan variety. —

Proposition 5.3.1. — Let C ⊆ Vλ be an Hλ-orbit in Vλ; then

T ∗C(Vλ) = {(x, ξ) ∈ T ∗(Vλ) | x ∈ C, [x, ξ] = 0} ,
where [ , ] denotes the Lie bracket on jλ and where we use Proposition 5.2.1 to identify
T ∗(Vλ) ∼= jλ(qF )⊕ jλ(q

−1
F ). Consequently,

T ∗Hλ(Vλ) = {(x, ξ) ∈ T ∗(Vλ) | [x, ξ] = 0} .

Proof. — The map hλ → Tx(C) given by X 7→ [x,X ] is a surjection. So for any
ξ ∈ jλ(q

−1
F ), we have ξ ∈ T ∗C,x(Vλ) if and only if 0 = ( ξ | [x,X ] ) = ( [ξ, x] |X ) for

all X ∈ hλ. As we saw in the proof of Proposition 5.2.1, the pairing restricts non-
degenerately to hλ, so this is also equivalent to require [x, ξ] = 0.

Corollary 5.3.2. — T ∗Hλ(Vλ) →֒ ( · | · )−1(0).

Proof. — If (x, ξ) ∈ Vλ × V ∗λ lies in T ∗Hλ(Vλ) then [x, ξ] = 0. Choose an sl2-triple
(x, y, z) such that y ∈ V ∗λ , and z ∈ hλ. Then,

(x | ξ ) = 1

2
( [z, x] | ξ ) = 1

2
( z | [x, ξ] ) = 0.
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5.4. Orbit duality. — Consider the Hλ-equivariant isomorphism

(65)
T ∗(Vλ)→ T ∗(V ∗λ )

(x, ξ) 7→ (ξ, x),

where we use the form ( · | · ) to identify the dual to V ∗λ with Vλ. Just as everyHλ-orbit
C ⊂ Vλ determines the conormal bundle

T ∗C(Vλ) = {(x, ξ) ∈ Vλ × V ∗λ | x ∈ C, [x, ξ] = 0} ,
every Hλ-orbit B ⊂ V ∗λ determines a conormal bundle in T ∗(V ∗λ ):

T ∗B(V
∗
λ ) = {(ξ, x) ∈ V ∗λ × Vλ | ξ ∈ B, [ξ, x] = 0} .

Lemma 5.4.1. — For every Hλ-orbit C in Vλ there is a unique Hλ-orbit C
∗ in V ∗λ

so that (65) restricts to an isomorphism

T ∗C(Vλ)
∼= T ∗C∗(V ∗λ ).

The rule C 7→ C∗ is a bijection from Hλ-orbits in Vλ to Hλ-orbits in V ∗λ .

Proof. — This is a well-known result. See [Pja75, Corollary 2] for the case when Hλ

is connected. The result extends easily to the case when Hλ is not connected.

The orbit C∗ is called the dual orbit of C ⊆ Vλ; likewise, the dual orbit of B ⊆ V ∗λ
is denoted by B∗.

Lemma 5.4.2. — If (x, ξ) ∈ T ∗C(Vλ)reg then ξ ∈ C∗, so

T ∗C(Vλ)reg ⊆ {(x, ξ) ∈ C × C∗ | [x, ξ] = 0}.

Proof. — Since (x, ξ) ∈ T ∗C(Vλ)reg, then (x, ξ) is not contained in any other closures
of conormal bundles except for that of C. On the other hand, (ξ, x) ∈ T ∗Bξ(V

∗
λ )

where Bξ is the Hλ -orbit of ξ in V ∗λ „ so T ∗C(Vλ)
∼= T ∗Bξ(V

∗
λ ). Hence Bξ = C∗, i.e.,

ξ ∈ C∗.

Proposition 5.4.3. — If (x, ξ) ∈ T ∗C(Vλ)reg then (x, ξ) ∈ C ×C∗ and [x, ξ] = 0 and
(x | ξ ) = 0.

Proof. — Combine Lemma 5.3.2 with Lemma 5.4.2.

We remark that (x, ξ) ∈ C×C∗ implies neither [x, ξ] = 0 nor (x | ξ ) = 0 in general.
Although transposition in jλ is notHλ-equivariant, is does induce another canonical

bijection
C 7→ tC and B 7→ tB

between Hλ-orbits in Vλ and Hλ-orbits in V ∗λ , and vice versa. Unlike the bijection of
Lemma 5.4.1, this bijection preserves equivariant fundamental groups (50):

AC ∼= A tC and AB ∼= A tB.

For C ⊆ Vλ (resp, B ⊆ V ∗λ ) we refer to tC (resp. tB) as the transposed orbit of C
(resp. B). Composing orbit transposition with orbit duality defines an involution

(66) C 7→ Ĉ := tC∗



40 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

on the set of Hλ-orbits in Vλ.

5.5. Strongly regular conormal vectors. — We say that (x, ξ) ∈ T ∗C(Vλ) is
strongly regular if its Hλ-orbit is open and dense in T ∗C(Vλ). We write T ∗C(Vλ)sreg for
the strongly regular part of T ∗C(Vλ)reg. We set

(67) T ∗Hλ(Vλ)sreg :=
⋃

C

T ∗C(Vλ)sreg.

Proposition 5.5.1. —
T ∗Hλ(Vλ)sreg ⊆ T ∗Hλ(Vλ)reg

and if (x, ξ) ∈ T ∗C(Vλ) is strongly regular then its Hλ-orbit is T ∗C(Vλ)sreg.

Proof. — First we show T ∗C(Vλ)sreg ⊆ T ∗C(Vλ)reg. From the definition of T ∗C(Vλ)reg
(60) it is clear that it is open and dense in T ∗C(Vλ). Fix (x, ξ) ∈ T ∗C(Vλ) and let

OHλ(x, ξ) denote the Hλ-orbit of (x, ξ). If (x, ξ) is not regular, then (x, ξ) ∈ T ∗C1
(Vλ)

for some C1 6= C with C ⊂ C̄1, so all of OHλ(x, ξ) and its closure also does not
intersect T ∗C(Vλ)reg. Suppose, for a contradiction, that (x, ξ) is strongly regular also.
Then the closure of OHλ(x, ξ) is T ∗C(Vλ), which certainly does intersect T ∗C(Vλ)reg.
So, if (x, ξ) is not regular, then it is not strongly regular.

Now suppose T ∗C,x(Vλ)sreg is not empty, then it is enough to show T ∗C,x(Vλ)sreg
forms a single ZHλ(x)-orbit. Note

T ∗C,x(Vλ)sreg = {ξ ∈ T ∗C,x(Vλ) | [Lie(ZHλ(x)), ξ] = T ∗C,x(Vλ)}
which is open, dense and connected in T ∗C,x(Vλ). Moreover, ZHλ(x)-orbits in

T ∗C,x(Vλ)sreg are open, and hence they are also closed in T ∗C,x(Vλ)sreg. By the

connectedness of T ∗C,x(Vλ)sreg, we can conclude it is a single ZHλ(x)-orbit.

The equivariant fundamental group of T ∗C(Vλ)sreg will be denoted by AT∗
C(Vλ)sreg .

Since Hλ acts transitively on T ∗C(Vλ)sreg,

(68) AT∗
C(Vλ)sreg

∼= π0(ZHλ(x, ξ)) = ZHλ(x, ξ)/ZHλ(x, ξ)
0,

for every (x, ξ) ∈ T ∗C(Vλ)sreg. Consequently, each (x, ξ) ∈ T ∗C(Vλ)sreg determines an
equivalence

LocHλ(T
∗
C(Vλ)sreg)→ Rep(AT∗

C(Vλ)sreg).

5.6. From Arthur parameters to strongly regular conormal vectors. — For
ψ ∈ Q(LG), define

ψ0 :=ψ0|SL(2,C)×SL(2,C) : SL(2,C)× SL(2,C)→ Ĝ

and

ψ1 :=ψ0|SL(2,C)×1 : SL(2,C)→ Ĝ and ψ2 :=ψ0|1×SL(2,C) : SL(2,C)→ Ĝ.

Set

(69) xψ := dψ1

(
0 1
0 0

)
∈ ĝ yψ := dψ2

(
0 1
0 0

)
∈ ĝ and ξψ :=dψ2

(
0 0
1 0

)
∈ ĝ.
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It follows easily from these definitions that

xψ, yψ ∈ Vλψ and ξψ ∈ V ∗λψ
and

(xψ , ξψ) ∈ T ∗Cψ(Vλ).

Proposition 5.6.1. — For any ψ ∈ Q(LG),

(xψ , ξψ) ∈ T ∗Hλψ (Vλψ )sreg.

Proof. — Set λ = λψ . Define fλ, sλ, tλ ∈ Ĝ as in Section 4.3. Then

sλ ⋊ 1 = ψ(1, dFr, dFr) and tλ × Fr = ψ(Fr, 1, 1).

Recall λnr :WF → J0
λ from Section 4.3. By Proposition 4.4.1,

Vλ = Vλnr
= jλ,2.

Since the image of ψ0 : SL(2,C)× SL(2,C)→ Ĝ lies in J0
λ, we may define

ψnr :WF × SL(2,C)× SL(2,C)→ J0
λ

such that its restriction to WF is trivial and its restriction to SL(2,C) × SL(2,C) is
ψ0. Let

ιψ : Gm −→ J0
λ

be the cocharacter obtained by composing

Gm →WF × SL(2,C)× SL(2,C), z 7→ 1×
(
z 0
0 z−1

)
×
(
z 0
0 z−1

)

with of ψnr : LF × SL(2,C)→ J0
λ. Then

ιψ(q
1/2
F ) = λnr(Fr).

Recall Hλ ⊆ Jλ ⊆ Kλ ⊆ Ĝ from Sections 3.2 and 4.3. For the rest of the proof
we set J = Jλ. We must show that the orbit OZHλ (xψ)(ξψ) is open and dense in

T ∗Cψ,xψ(Vλ), where Cψ = OHλ(xψ). With Lemma 4.6.1 in hand, it is enough to show

the tangent space to the orbit OZHλ (xψ)(ξψ) at ξψ is isomorphic to T ∗Cψ,xψ(Vλ); in

other words, it is enough to show

[LieZHλ(xψ), ξψ ] = {ξ ∈ j−2 | [xψ, ξ] = 0}.
The adjoint action of SL(2,C) × SL(2,C) on j through ψnr gives two commuting
representations of SL(2,C), which induce the weight decomposition

jn =
⊕

r+s=n

jr,s(70)

where r, s ∈ Z. Note Lie(Hλ)) = j0. So it is enough to show

[j0 ∩ Lie(ZĜ(xψ)), ξψ ] = j−2 ∩ Lie(ZĜ(xψ)).(71)
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For this we can consider the following diagram in case r + s = 0.

jr,s jr+2,s

jr,s−2 jr+2,s−2

ad(xψ)

ad(ξψ) ad(ξψ)

ad(xψ)

It is easy to see

LHS(71) =
⊕

r+s=0

ad(ξψ)
(
ker(ad(xψ)|jr,s)

)

RHS(71) =
⊕

r+s=0

ker(ad(xψ)|jr,s−2)

By sl2-representation theory, ad(xψ) in the diagram are injective for r < 0 and
surjective for r > 0. So we only need to consider r > 0 and hence s 6 0. In this case,
the two instances of ad(ξψ) in the diagram above are surjective by sl2-representation
theory again.

It is obvious that LHS(71) ⊆ RHS(71). For the other direction, let us choose
x ∈ jr,s−2 such that [xψ, x] = 0. So x is primitive for the action of the first sl2,
and it generates an irreducible representation V . Let x̃ be a preimage of x in gr,s
and W be the representation of the first sl2 generated by x̃. Then ad(ξψ) induces
a morphism of sl2-representations from W to V . By the semisimplicity of W , this
morphism admits a splitting and we can denote the image of x by ξ. It is clear that
ξ ∈ jr,s and [xψ , ξ] = 0. This finishes the proof.

Corollary 5.6.2. — Let ψ :WF ×SL(2,C)×SL(2,C)→ LG be an Arthur parameter
with infinitesimal parameter λ. If Cψ ⊆ Vλ is the Hλ-orbit of xψ, then

Ĉψ = Cψ̂ ,

where Ĉψ = tC∗ψ (66) and where the map ψ̂ : WF × SL(2,C) × SL(2,C) → LG is

defined by ψ̂(w, x, y) :=ψ(w, y, x).

5.7. Arthur component groups are equivariant fundamental groups. — Re-
call the definition of T ∗Cψ(Vλ)sreg from Section 5.5 as well as the notation AT∗

Cψ
(Vλ)sreg

for its equivariant fundamental group. Also recall Aψ := π0(ZĜ(ψ)) from Section 2.4.

Proposition 5.7.1. —
AT∗

Cψ
(Vλ)sreg = Aψ.

Proof. — We use the notation from the proof of Proposition 5.6.1 and set tψ := tλψ .
It is clear that ZĜ(ψ) = ZJ(ψnr) = ZJ(ψ1) ∩ ZJ(ψ2). By Lemma 4.3.1, we also have

ZĜ(λ)(xψ ,ξψ) = ZJ(λnr) ∩ ZJ(xψ) ∩ ZJ(ξψ).
First we would like to compute the right hand side of the above identity. Note

ZJ(λnr) ∩ ZJ(xψ) = (ZJ(ψ1) ∩ ZJ(λnr)) · U
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where U is the unipotent radical of the left hand side. Moreover,

ZJ(ψ1) ∩ ZJ(λnr) = ZJ(ψ1) ∩ ZJ(tψ)
and

Lie(U) ⊆
⊕

r+s=0
r>0

jr,s

in the notation of (70). For u ∈ U , we have

Ad(u)(ξψ) ∈ ξψ +
⊕

r+s=−2
s<−2

jr,s.

Suppose Ad(lu) stabilises ξψ for l ∈ ZJ(ψ1)∩ZJ (tψ) and u ∈ U . Since Ad(l) preserves
jr,s, we have

ξψ = Ad(lu)(ξψ) ∈ Ad(l)(ξψ) +
⊕

r+s=−2
s<−2

jr,s

Note ξψ ∈ j0,−2. It follows ξψ = Ad(l)(ξψ). Hence ξψ = Ad(u)(ξψ). As a result,

ZJ(λnr) ∩ ZJ(xψ) ∩ ZJ(ξψ) = (ZJ (ψ1) ∩ ZJ(tψ) ∩ ZJ(ξψ)) · (U ∩ ZJ(ξψ)).
Since U ∩ ZJ(ξψ) is connected, we only need to show

ZJ(ψ1) ∩ ZJ(tψ) ∩ ZJ(ξψ) = ZJ(ψ1) ∩ ZJ(ψ2).

Take any g ∈ ZJ(ψ1) ∩ZJ(tψ) ∩ZJ(ξψ), it suffices to show Ad(g) stabilises yψ. Note

[yψ, ξψ ] = dψ2(ln(|Fr|)),
and

[Ad(g)(yψ), ξψ ] = [Ad(g)(yψ),Ad(g)ξψ ] = Ad(g)(dψ2(ln(|Fr|))) = dψ2(ln(|Fr|))
Since [·, ξψ] is injective on j0,2 and Ad(g)(yψ) ∈ j0,2, it follows that Ad(g)(yψ) = yψ.
This finishes the proof.

5.8. Proof of Proposition 5.1.1. — Proposition 5.1.1 is now a direct consequence
of Propositions 5.5.1, 5.6.1 and 5.7.1.

5.9. Equivariant Local systems. — We close Section 5 with a practical tool for
understanding local systems on strata C ⊆ Vλ, on T ∗C(Vλ)sreg, and on C∗ ⊆ V ∗λ . Pick a
base point (x, ξ) ∈ T ∗C(Vλ)sreg. Recalling the structure of T ∗C(Vλ)reg from Lemma 5.4.2
and by using that T ∗C(Vλ)sreg ⊆ T ∗C(Vλ)reg by Proposition 5.5.1. The projections

C T ∗C(Vλ)sreg C∗

induce homomorphisms of fundamental groups:

AC AT∗
C(Vλ)sreg AC∗

ZHλ(x)/ZHλ(x)
0 ZHλ(x, ξ)/ZHλ(x, ξ)

0 ZHλ(ξ)/ZHλ(ξ)
0.
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The horizontal homomorphisms are surjective by an application of [ABV92, Lemma
24.6]. This can be used to enumerate all the simple local systems on Hλ-orbits in Vλ
and T ∗Hλ(Vλ)sreg and V ∗λ .

6. Microlocal vanishing cycles of perverse sheaves

The goal of Section 6 is to introduce the functor appearing in(10) and to establish
some of its properties. We begin by stating the main application of Theorem 6.10.1,
whose proof will occupy the rest of this section.

Corollary 6.0.1. — Let G be a quasi-split connected reductive algebraic group over
a p-adic field F . Let ψ ∈ Qλ(LG) be an Arthur parameter and let λ :WF → LG be its
infinitesimal parameter. Vanishing cycles define an exact functor

NEvψ : PerHλ(Vλ)→ Rep(Aψ)

which induces a function

PerHλ(Vλ)
simple

/iso → Rep(Aψ)/iso

such that the composition

Πpure,λ(G/F ) PerHλ(Vλ)
simple

/iso Rep(Aψ)/iso
[π,δ] 7→P(π,δ) NEvψ

enjoys the following properties, for every [π, δ] ∈ Πpure,λ(G/F ):

(a) NEvψ P(π, δ) = 0 unless Cψ ≤ Cφ, where Cψ is defined in Section 5.1, φ is the
Langlands parameter for (π, δ) and Cφ is given by Proposition 3.6.2.

(b) The dimension of the representation NEvψ P(π, δ) of Aψ is

rank
(
RΦξψP(π, δ)

)
xψ
,

where (xψ , ξψ) ∈ T ∗Cψ(Vλ)sreg is given by Proposition 5.1.1 and RΦξψ is the

vanishing cycles functor determined ξψ.

(c) If Cψ = Cφ (equivalently, if φψ is Ĝ-conjugate to φ) then

NEvψ P(π, δ) = p∗ψ(ρπ,δ)

where ρ(π,δ) is the representation of Aφ given by Proposition 3.6.2 and where
the map pψ : Aψ → Aφ is the canonical group homomorphism of Section 5.9; in
particular,

rankNEvψ P(π, δ) = rank ρπ,δ.

To prove Corollary 6.0.1 we make a study of the vanishing cycles of the equivariant
perverse sheaves on Vλ with respect to integral models for Vλ determined by regular
covectors (x, ξ) ∈ T ∗Hλ(Vλ)reg, especially those coming from Arthur parameters using
Proposition 5.6.1.

In the rest of this section, unless noted otherwise, G is an arbitrary connected
reductive algebraic group over a p-adic field F .
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6.1. Background on vanishing cycles. — Although we will use [DK73, Exposés
XIII, XIV] freely, we begin by recalling a few essential facts and setting some notation.
Let R :=C[[t]] and K :=C((t)). Set S = Spec(R) and η = Spec(K) and s = Spec(C).
Observe that S is a trait with generic fibre η and special fibre s.

η S s
j i

Because S is an equal characteristic trait the morphism s → S admits canonical
section corresponding to C→ C[[t]].

Let η̄ be a geometric point of S localized at η; thus, η̄ is simply a morphism
Spec(K̄)→ η → S, where K̄ is a separable closure of K. Then Gal(η̄/η) ∼= Ẑ. Let R̄
be the integral closure of R in K̄; note that R̄ has residue field C. Set S̄ = Spec(R̄).

For any morphism X → S we have the cartesian diagram

(72)

X̄η̄ X̄ X̄s

Xη X Xs

η̄ S̄ s̄

η S s

bXη

jX̄

bX bXs

iX̄

jX iX

jS̄

bη bS

iS̄

bs

j i

where X̄ = X ×S S̄, X̄η̄ = X̄ ×S̄ η̄ and X̄s = X̄ ×S̄ s̄. We remark that X̄s 6= Xs,
generally. From [DK73, Exposé XIII] we recall the nearby cycles functor

RΨXη : D(Xη)→ D(Xs ×s η);
see [DK73, Section 1.2], especially the remark after [DK73, Construction 1.2.4] for
the meaning of the topos Xs ×s η. In particular, we recall that, for any Fη ∈ D(Xη),
the object RΨXηFη in D(Xs ×s η) is the sheaf

RΨXFη := (iX̄)∗(jX̄)∗(bXη )
∗Fη

on Xs̄ equipped with an action of Gal(η̄/η) obtained by transport of structure from
the canonical action of Gal(η̄/η) on (bXη )

∗Fη.
The vanishing cycles functor

RΦX : D(X)→ D(Xs ×s S)
is the cone of the canonical natural transformation i∗

X̄
b∗X → RΨXη j

∗
X of functors from

D(X) to D(Xs ×s S) and thus appears as the summit in the following distinguished
triangle [DK73, Exposé XIII, (2.1.2.4)] in D(Xs ×s S), for F ∈ D(X):

(73)

RΦXF

i∗
X̄
b∗XF RΨXηj

∗
Xη
F .

(1)
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See [DK73, Exposé XIII, Section 1.2], especially [DK73, Exposé XIII, Construction
1.2.4] for the meaning of the topos Xs ×s S.

We will make free use of other properties of RΨXη and RΦX established in [DK73,
Exposés XIII, XIV], such as smooth base change [DK73, Exposé XIII, (2.1.7.1)] and
proper base change [DK73, Exposé XIII, (2.1.7.2)].

6.2. Calculating vanishing cycles. — We denote the ℓ-adic constant sheaf by 1.
In this section we calculate the vanishing cycles RΦX1X of the constant sheaf 1X for
a short list of S-schemes X . While elementary, these calculations will be used in the
proof of Theorem 6.7.5 and will also play a role in the examples appearing in Part II.

In all our applications of vanishing cycles we begin with map of varieties f : U → A1

over C and then let fS : X → S be the base change of f along S → A1; thus, in
particular, X = U ×A1 S. Assuming U = Spec(A) is affine for a moment, then the
coordinate ring for X is

OX(X) = A⊗C[t] C[[t]] ∼= A[[t]]/(f − t),
where A1 = Spec(C[t]) and where we identify f with its image in A. Note that the
special fibre of X is

Xs = f−1(0);

note also that this may not be reduced. We use the notation

RΦfF :=RΦXFX
where FX is the pullback of F ∈ Dbc(U) along X → U . Note that RΦfF is a sheaf on
the special fibre X̄s of X̄ and that X̄s may not coincide with f−1(0).

Lemma 6.2.1. — If 0 : U → A1 is the map defined on coordinate rings by t 7→ 0,
where A1 = Spec(C[t]), then, for every F ∈ Dbc(U),

RΦ0F = F
with obvious monodromy.

Proof. — It follows directly from definitions that RΨ0F = 0, so RΦ0F = F is a
consequence of (73).

Lemma 6.2.2. — Let x : A1 → A1 be the map defined on coordinate rings by t 7→ x.
Then

RΦxL = 0

for every local system L on A1. More generally, if f : U → A1 is smooth and LU is
a local system on U , then

RΦfL = 0.

Proof. — It follows directly from the definition of RΨXη that RΨXηL = L|X̄s for
X = Spec(C[x][[t]]/(x − t)). Thus, RΦxL = 0, using (73). The second sentence is
now a consequence of the first by smooth base change. See also [DK73, Exposé XIII,
Reformulation 2.1.5].
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Lemma 6.2.3. — Let x2 : A1 → A1 be the map defined on coordinate rings by
t 7→ x2. Then

RΦx2
1 = 1s,

with quadratic monodromy. More generally, if f : U → A1 is smooth then

RΦf2
1 = 1f=0.

with quadratic monodromy coming from the cover associated to
√
f .

Proof. — We first point out that the second claim follows immediately from the first
by smooth base change.

Let X → S be the base change of x2 : A1 → A1 along S → A1. More explicitly
we have X = Spec(R[x]/(x2 − t)) and X → S is given on coordinate rings by
R→ R[x]/(x2 − t), where R = C[[t]]. Then

X̄ = X̄+ ∪ X̄− and X̄+ ∩ X̄− = X̄s,

with X̄± ∼= S̄; note also that Xs = f−1(0) = Spec(C[x]/(x2)) while X̄s = Xred
s = s.

Consequently,

X̄η̄ = Spec(K̄[x]/(x2 − t))
= Spec(K̄[x]/(x− t1/2)⊕ K̄[x]/(x+ t1/2))

= X̄+
η̄ ⊔ X̄−η̄ ,

with X̄±η̄ ∼= η̄, where the Galois group Gal(η̄/η) acts by interchanging these two
components.

We will use (73) to compute RΦx2
1 :=RΦX1. First, note that

i∗X̄b
∗
X1X = i∗X̄1X̄ = 1Xs̄ .

The action of Gal(η̄/η) on 1X̄s is trivial. Next, we find RΨX1X .

RΨX1X = i∗X̄(jX̄)∗b
∗
Xηj

∗
X1X

= i∗X̄(jX̄)∗1X̄η̄

= i∗X̄(j
+
X̄
)∗1X̄+

η̄
⊕ i∗X̄(j−

X̄
)∗1X̄−

η̄
,

where j±
X̄

: X̄±η̄ → X̄ is the composition of the component X̄±η̄ → X̄η̄ and the generic

fibre map jX̄ : X̄η̄ → X̄. Since j±
X̄

: X̄±η̄ → X̄ is an open immersion and Xs̄ is on the

boundary of X̄±η̄ in X̄, we have

i∗X̄(j±
X̄
)∗1X̄±

η̄
= 1X̄s .

Therefore,
RΨX1X = 1X̄s ⊕ 1X̄s .

Note that the monodromy action on RΨX1X switches these two summands. Let

RΨX1X ∼= 1

+
X̄s
⊕ 1−

X̄s

be the eigenspace decomposition of RΨX1X according to this action, so Gal(η̄/η)
acts trivially on 1

+
X̄s

while Gal(η̄/η) acts on 1

−
X̄s

through the quadratic character

Gal(
√
η/η)→ {±1}. The canonical natural transformation i∗

X̄
b∗X → RΨXη j

∗
X , which
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induces the map at the base of (73), is compatible with monodromy, so

i∗X̄b
∗
X1X → RΨX1X

is the isomorphism of 1X̄s onto 1+
X̄s

.

1X̄s → 1

+
X̄s
⊕ 1−

X̄s
.

Since RΦX1X is the cone of this arrow, we have

RΦX1X = 1

−
X̄s
,

as claimed.

Lemma 6.2.4. — Set A2
u = Spec(C[x, u]u) and A1 = Spec(C[t]). Let x2u : A2

u → A1

be the map defined by t 7→ x2u on coordinate rings. Then

RΦx2u1 = LA1
u

with quadratic monodromy, where A1
u = Spec(C[u]u) and where LA1

u
is the local system

for the quadratic character of the fundamental group of A1
u = Spec(C[u]u). More

generally, if (f, g) : U → A2
u is smooth then

RΦf2g1 = Lf=0

where Lf=0 is the local system for the quadratic character associated to the cover com-
ing from

√
g and quadratic monodromy coming from the cover associated to adjoining√

f .

Proof. — As before, the second claim follows from the first by smooth base change.
Consider the map a : A2

u → A2
u defined on coordinate rings by x 7→ x2 and u 7→ u.

Define b : A2
u → A2

u on coordinate rings by x 7→ x and u 7→ u2. Define c : A2
u → A2

u

by x 7→ x2u−1 and u 7→ u. The following diagram commutes,

A2
u

A2
u A2

u A2
u

A2
u,

b
d

a

a
c

b

where d : A2
u → A2

u is defined by x 7→ xu and u 7→ u2.
Define f = A2

u → A1 by t 7→ xu where, A1 = Spec(C[t]). Then f ◦ a = x2u,
f ◦ b = xu2 and f ◦ c = x2; also, f ◦ b ◦ a = x2u2. By base change along S → A1, we
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get the following commuting diagram of S-schemes

Xd

Xa Xc Xb

X .

b′S
dS

a′S

aS
cS

bS

Over the generic fibre, these maps are all Galois quadratic. However, after base
change along S̄ → S and restriction to special fibres, the maps induced by a and c
become isomorphisms, while b and d remain quadratic. Here we use the sequence of
equalities X̄a,s = X̄c,s = X̄s = Spec(C[u]u). Observe that Xa → S is the pullback of
x2u : A2

u → A1 along S → A1. Then

(74) RΦx2u1 = RΦXa1.

By proper base change,
ās,∗RΦXa1 = RΦXa∗1.

Since ās is an isomorphism, this gives

RΦXa1
∼= RΦXa∗1.

Let E be the local system on A1
x := Spec(C[x]x) defined by the non-trivial character

of the covering A1
x → A1

x given on coordinate rings by x 7→ x2. Then

a∗1 = a∗(1⊠ 1) = (1⊠ 1)⊕ (E♮ ⊠ 1),

where E♮ is the extension by zero of E from A1
x to A1. Here, and below, we write 1

for the constant sheaf on A1 and also on A1
u. By the exactness of RΦX ,

RΦXa∗1 = RΦX(1⊠ 1)⊕ RΦX(E♮ ⊠ 1).

By Lemma 6.2.2, RΦX(1⊠ 1) = 0. Thus,

RΦXa∗1 = RΦX(E♮ ⊠ 1).

Our goal, therefore, is to calculate RΦX(E♮ ⊠ 1).
To determine RΦX(E♮ ⊠ 1), first we find b̄s,∗ās,∗RΦXd1 in two ways. On the one

hand,

b̄s,∗ās,∗RΦXd1 = b̄s,∗ās,∗1 by Lemma 6.2.3
= b̄s,∗1 since ās is an isomorphism
= (1⊠ 1)⊕ (1⊠ L) by the decomposition theorem.
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On the other hand,

b̄s,∗ās,∗RΦXd1
= b̄s,∗RΦXba∗1 by proper base change
= b̄s,∗RΦXb

(
(1⊠ 1)⊕ (E♮ ⊠ 1)

)
by the decomposition theorem

= b̄s,∗
(
RΦXb(1⊠ 1)⊕ RΦXc(E♮ ⊠ 1)

)
by exactness of RΦXc

= b̄s,∗RΦXb(E♮ ⊠ 1) by Lemma 6.2.2
= RΦXb∗(E♮ ⊠ 1) by proper base change
= RΦX

(
(E♮ ⊠ 1)⊕ (E♮ ⊠ L)

)
by the decomposition theorem

= RΦX(E♮ ⊠ 1)⊕ RΦX(E♮ ⊠ L) by exactness of RΦX .

So,

(75) RΦX(E♮ ⊠ 1)⊕ RΦX(E♮ ⊠ L) = (1⊠ 1)⊕ (1⊠ L).
We now find RΦX(E♮ ⊠ L) by computing c̄s,∗RΦXc1 in two ways. On the one hand,

c̄s,∗RΦXc1 = c̄s,∗1 by Lemma 6.2.3
= 1 since c̄s is an isomorphism.

On the other hand,

c̄s,∗RΦXc1 = RΦXc∗1 by proper base change
= RΦX

(
(1⊠ 1)⊕ (E♮ ⊠ L)

)
by the decomposition theorem

= RΦX(E♮ ⊠ L) by Lemma 6.2.2.

So,

(76) RΦX(E♮ ⊠ L) = 1.

Combining (74), (75) and (76) it now follows that

RΦx2u1 = RΦXa1 = RΦX(E♮ ⊠ 1) = 1⊠ L.
This completes the proof of Lemma 6.2.4

Set A2e
u1···ue = Spec(C[x1, . . . , xe, u1, . . . , ue]u1···ue) and let Aeu1···ue be the subvariety

cut out by the equations x1 = · · · = xe = 0.

Proposition 6.2.5. — Consider the function

f : A2e
u1···ue → A1 = Spec(C[t]) given by

e∑

i=1

uix
2
i ←[ t,

Then
RΦf1 = z!L[1− e],

where z : Aeu1···ue → A2e
u1···ue is the closed immersion and where L is the local system

on Aeu1···ue for the character of the fundamental group of Aeu1···ue given by the product

of the quadratic characters of each factor A1
ui = Spec(C[ui]ui).

Proof. — By definition,
RΦf1 = RΦX1X ,
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for

X = Spec(C[x1, . . . , xe, u1, . . . , ue]u1···ue [[t]]/(

e∑

i=1

uix
2
i − t))

with the obvious structure map X → S. Set Xi = Spec(C[xi, ui]ui [[t]]). By
Lemma 6.2.4,

RΦXi1Xi = Li,
where Li is the local system for the quadratic character of the fundamental group
of X̄i,s = Spec(C[ui]ui), for each i = 1, . . . , e. It follows from the Sebastiani-Thom
isomorphism (see [Ill17] and [Mas01]) that

RΦX [−1]1X ∼= z! (RΦX1 [−1]1X1 ⊠ · · ·⊠ RΦXe [−1]1Xe) ,
where z : Z →֒ X̄s is the closed subvariety Spec(C[u1, . . . , ue]u1···ue). In other words,

RΦX1X ∼= z!

(
LX̄1,s

⊠ · · ·⊠ LX̄e,s
)
[1− e].

This concludes the proof of Proposition 6.2.5

Corollary 6.2.6. — Let xy : A2 → A1 be the map defined on coordinate rings by
t 7→ xy, where A2 = Spec(C[x, y]). Then

RΦxy1 = 1s

6.3. Brylinski’s functor Ev. — Let f : T ∗(Vλ)→ A1 be the s-morphism obtained
by restriction from the non-degenerate, symmetric Jλ-invariant bilinear form ( | ) of
Section 5.2. Let Xλ = T ∗(Vλ)×A1 S and let fS : Xλ → S be base change of f along
S → A1.

For any ξ0 ∈ V ∗λ , define fξ0 : Vλ → A1 by fξ0(x) := f(x, ξ0). Let fξ0,S : Xξ0 → S
be the base change of fξ0 : Vλ → A1 along S → A1, so Xξ0 :=Vλ ×A1 S. The special
fibre of Xξ0 → S is denoted by Xξ0,s and the generic fibre by Xξ0,η; note that

Xξ0,s = {x ∈ Vλ | (x | ξ0 ) = 0}.
We define

RΦfξ0 : DHλ(Vλ)→ DZHλ (ξ0)
(f−1ξ0 (0)×s S)

by the following diagram,

DHλ(Vλ) DZHλ (ξ0)
(f−1ξ (0)×s S)

DZHλ (ξ0)
(Vλ) DZHλ (ξ0)×sS

(Xξ0)

forget

RΦfξ0

base change

RΦXξ0

where base change refers to pull-back along XB → Vλ.
In [Bry86, Notation 1.14], Brylinski remarks without proof that there is a functor

Ev : D(V )→ D(T ∗H(V )reg) with the property

(77) (EvF)(x,ξ) =
(
RΦfξF

)
x
,

for (x, ξ) ∈ T ∗(V )reg. Some properties Ev are described in [Bry86, Remarque 1.13],
[Bry86, Théorème 1.9] and [Bry86, Proposition 1.15], using results attributed to
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[Kas83, Théorème 3.2.5]. Sadly, [Kas83, Théorème 3.2.5] does not exist in the
published version of the original notes, and we have not been able to procure the
original notes, so we have been obliged to build Ev ourselves and establish its main
properties here. In this section we describe Ev and put it in a form which will be useful
for calculations. Establishing its main properties will occupy the rest of Section 6.

For any Hλ-orbit B ⊆ V ∗λ , consider the locally closed subvariety Vλ ×B ⊆ T ∗(Vλ)
and let fB : Vλ × B → A1 be the restriction of f : T ∗(Vλ) → A1 to Vλ × B. Let
fB,S : XB → S be the base change of fB along S → A1. Then the special fibre of XB

is the s-scheme
XB,s = {(x, ξ) ∈ Vλ ×B | (x | ξ ) = 0}.

We write

(78) RΦfB : D(Vλ ×B)→ D(f−1B (0)×s S),
for the composition of the functor D(Vλ × B) → D(XB) induced by pullback along
XB → Vλ ×B and the vanishing cycles functor

(79) RΦXB : D(XB)→ D(f−1B (0)×s S).
Now, as an s-scheme, Vλ × B comes equipped with an Hλ-action. Applying base

change along S → s gives an action of Hλ ×s S on (Vλ × B)S . Because fB is Hλ-
invariant, this defines an action of Hλ ×s S on {(x, ξ, t) ∈ (Vλ × B)S | f(x, ξ) = t}.
But this is precisely XB so Hλ×s S acts on XB in the category of S-schemes and we
have the exact functor

(80) DHλ(Vλ ×B)→ DHλ×sS(XB).

See [BL94, Section 2] for the equivariant derived category DH(X). Combining this
with the vanishing cycles functors above defines an exact functor

(81) RΦfB : DHλ×sS(Vλ ×B)→ DHλ(f
−1
B (0)×s S).

We may now revisit Brylinski’s observation [Bry86, Notation 1.14] and give the
main definition for Section 6.

Definition 1. — For any Hλ-orbit C ⊆ Vλ, let

(82) EvC : DHλ(Vλ)→ DHλ(T
∗
C(Vλ)reg ×s S)

be the functor defined by the diagram

(83)

DHλ(Vλ) DHλ(T
∗
C(Vλ)reg ×s S)

DHλ(Vλ × C∗) DHλ×sS(XC∗) DHλ(f
−1
C∗ (0)×s S),

( · )⊠1C∗

EvC

base change

RΦXC∗

restriction

where:

(i) ( · )⊠1C∗ : DHλ(Vλ)→ DHλ(Vλ×C∗) is the pullback along the projection map
Vλ × C∗ → Vλ;

(ii) DHλ(Vλ × C∗))→ DHλ×sS(XC∗) is (80) in the case B = C∗;
(iii) RΦXC∗ : DHλ×sS(XC∗)→ DHλ(f

−1
C∗ (0)×s S) is (79) in the case B = C∗; and
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(iv) DHλ(f
−1
C∗ (0) ×s S) → DHλ(T

∗
C(Vλ)reg ×s S) is obtained by pullback along the

inclusion T ∗C(Vλ)reg →֒ f−1C∗ (0), using Proposition 5.4.3.

Since the Lagrangian varieties T ∗C(V )reg are components of T ∗H(V )reg, as C runs over
H-orbits in V , we may assemble the functors EvC to define

(84) Ev : DHλ(Vλ)→ DHλ(T
∗
H(Vλ)reg ×s S).

We refer to this as the microlocal vanishing cycles functor.

Although it plays a role in our calculations in Part II, our notation here will
generally hide the action of inertia.

6.4. Stalks. — We begin our study of the properties of Ev by showing that it is
indeed the functor that Brylinski promises in [Bry86, Notation 1.14].

Proposition 6.4.1. — The functor

Ev : DHλ(Vλ)→ DHλ(T
∗
H(Vλ)reg ×s S)

is exact and for every F ∈ DHλ(Vλ) and every (x0, ξ0) ∈ T ∗H(Vλ)reg, there is a
canonical isomorphism

(EvF)(x0,ξ0)
∼= (RΦfξ0F)x0

compatible with the actions of ZH(x0, ξ0) and Gal(η̄/η).

Proof. — With reference to diagram (83), we see that EvC is exact since it is defined
as the composition of four exact functors. Since the Lagrangian varieties T ∗C(V )reg
are components of T ∗H(V )reg, Ev is also exact.

The S-morphism

iξ0 : Xξ0 → XB

x 7→ (x, ξ0)

is equivariant for the ZHλ(ξ0)×s S-action on Xξ0 and the Hλ×s S-action on XB. By
Lemma 6.4.2, below, this induces an equivalence

i∗ξ0 : DHλ×sS(XB)→ DZHλ (ξ0)×sS
(Xξ0).

Consider the following commuting diagram, for ξ0 ∈ C∗:

DHλ×sη(f
−1
C∗ (η)) DHλ×sS(XC∗) DHλ(f

−1
C∗ (0))

DZHλ (ξ0)×sη
(f−1ξ0 (η)) DZHλ (ξ0)×sS

(Xξ0) DZHλ (ξ0)s
(f−1ξ0 (0)).

i∗ξ0,ηequiv.

(jC∗,S)∗

i∗ξ0,Sequiv.

(iC∗,S)
∗

i∗ξ0,sequiv.

(jξ0,S)∗ (iξ0,S)
∗

When combined with base change along S̄ → S, it follows that

RΨfC∗ i
∗
ξ0,η = i∗ξ0,s RΨfξ0 .
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We find this at the heart of the following commuting diagram, where (x0, ξ0) ∈ XC∗,s.

DHλ(Vλ) DHλ(Vλ × C∗)

DZHλ (ξ0)×sη
(f−1ξ0 (η)) DHλ×sη(f

−1
C∗ (η))

DZHλ (ξ0)
(f−1ξ0 (0)) DHλ(f

−1
C∗ (0))

DZHλ (x0,ξ0)({(x0, ξ0)}) DH(T ∗C(Vλ)sreg)

p∗C∗

RΨfξ0

i∗ξ0,η

equiv.

RΨfC∗

i∗ξ0,s

equiv.

Thus,

(85) (RΨfC∗ (F ⊠ 1C∗))(x0,ξ0)
∼= (RΨfξ0F)x0 ,

compatible with ZHλ(x0, ξ0)-actions. On the other hand,
(
i∗XC∗,s

(F ⊠ 1C∗)
)
(x0,ξ0)

= (F ⊠ 1C∗)(x0,ξ0)
= (i∗ξ0F)x0 ,

as ZHλ(x0, ξ0)-spaces. Using (73), it follows that

(86) (RΦfC∗ (F ⊠ 1C∗))(x0,ξ0)
∼= (RΦfξ0F)x0 ,

compatible with the natural ZHλ(x0, ξ0)-action.

Lemma 6.4.2. — For every ξ0 ∈ B
XB
∼= (Hλ ×s S)×(ZHλ (ξ0)×sS) Xξ0

in S-schemes and the closed embedding

iξ0 : Xξ0 → XB

x 7→ (x, ξ0)

induces an equivalence

i∗ξ0 : DHλ×sS(XB)→ DZHλ (ξ0)×sS
(Xξ0).

Proof. — First we must show that (Hλ ×s S)×(ZHλ (ξ0)×sS)Xξ0 exists in S-schemes.

To do that, it will be helpful to prove: for every δ ∈ A1 and ξ0 ∈ B there is an
Hλ-isomorphism

f−1B (δ) ∼= Hλ ×ZHλ (ξ0) f
−1
ξ0

(δ)

in s-schemes, where Hλ × f−1ξ0 (δ) → Hλ ×ZHλ (ξ0) f
−1
ξ0

(δ) is an ZHλ(ξ0)-torsor in C-

varieties. Since ZHλ(ξ0) is a closed subgroup of Hλ, the quotient Hλ → Hλ/ZHλ(ξ0)
exists in C-varieties. Consider the monomorphism

Hλ × f−1ξ0 (δ)→ (Hλ/ZHλ(ξ0))× T ∗(Vλ)
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given by (h, x) 7→ (hZHλ(ξ0), h · (x, ξ0)). Note that f−1ξ0 (δ) is a closed subvariety of

Vλ. The promised ZHλ(ξ0)-quotient Hλ ×ZHλ (x0) f
−1
ξ0

(δ) is this morphism restricted
to the image:

Hλ × f−1ξ0 (δ)→ {(hZHλ(ξ0), h · (x, ξ0)) ∈ (Hλ/ZHλ(ξ0))×Vλ ×B | h−1 · x ∈ f−1ξ0 (δ)}.
Following standard practice, we use the notation (h, x) 7→ [h, x]ZHλ (ξ0) for this map.
Now, projection to the second coordinate

Hλ ×ZHλ (ξ0) f
−1
ξ0

(δ)→ f−1B (δ)

is given by [h, x]ZHλ (ξ0) 7→ h · (x, ξ0), which is the promised isomorphism. This shows

that the ZHλ(ξ0)-torsor Hλ × f−1ξ0 (δ) → Hλ ×ZHλ (ξ0) f
−1
ξ0

(δ) exists in s-schemes and
also that the map

Hλ ×ZHλ (ξ0) f
−1
ξ0

(δ)→ T ∗(Vλ), [h, x]ZHλ (ξ0) 7→ h · (x, ξ0),
is an Hλ-isomorphism onto f−1B (δ) ⊆ T ∗(Vλ).

Applying pull-back along the flat morphism S → s to ZHλ(ξ0) → Hλ →
Hλ/ZHλ(ξ0) determines the cokernel of ZHλ(ξ0) ×s S → Hλ ×s S and also shows
that the local trivialization of Hλ → Hλ/ZHλ(ξ0) determines a local trivialization
of Hλ ×s S → (Hλ ×s S)/(ZHλ(ξ0) ×s S). Now we may argue as above to see that
(Hλ×s S)×(ZHλ (ξ0)×sS)

Xξ0 → T ∗(Vλ)×s S, defined by [h, x]ZHλ (ξ0)×sS 7→ h · (x, ξ0),
is an isomorphism onto XB over S.

The last part of the lemma now follows immediately by equivariant descent, arguing
as in [BL94, Section 2.6.2], for instance.

6.5. Support. —

Proposition 6.5.1. — Let C ⊆ Vλ be an Hλ-orbit. If F ∈ DHλ(Vλ) then EvC F = 0
unless C ⊆ suppF .

Proof. — Set F = suppF and note that F is a union of Hλ-orbits. Let iF : F →֒ Vλ
be inclusion. Then

F = (iF )!(iF )
∗F .

Since iF is proper, we may apply Lemma 6.5.2, below, to this case with W = F and
π = iF and gC∗ = f |F×C∗ . Then π′ = iF × idC∗ and

g−1C∗(0) = {(x, ξ) ∈ F × C∗ | (x | ξ ) = 0}
and

(W × C∗)π-reg = (F × C∗) ∩ T ∗C(V )reg = T ∗C(V )reg.

Thus,
EvC F = EvC(iF )!(iF )

∗F
= (RΦgC∗ ((iF )

∗F ⊠ 1C∗))|T∗
C (Vλ)reg ,

by Lemma 6.5.2. The support of (iF )
∗F⊠1C∗ is contained in F ×C∗, so the support

of
RΦgC∗ ((iF )

∗F ⊠ 1C∗)
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is contained in g−1C∗(0) ∩ (F × C∗) so the support of EvC F is contained in

T ∗C(Vλ)reg ∩ (F × C∗).
Since T ∗C(Vλ)reg ⊆ C × C∗, this is empty unless C ⊆ F .

Besides its use in Proposition 6.5.1, above, the following result is key to many of
the calculations in Part II.

Lemma 6.5.2. — Suppose π : W → Vλ is proper with fibres of dimension n.
Suppose Hλ acts on W and π :W → Vλ is equivariant. Then

EvC π!E = (π′′s )!
(
(RΦgC∗E ⊠ 1C∗)|(W×C∗)π-reg

)
,

where π′ :=π× idC∗, π′s is its restriction to special fibres, gC∗ := fC∗ ◦ π′, and π′′s and
(W × C∗)π-reg are defined by the cartesian diagrams below.

W W × C∗ g−1C∗(0) (W × C∗)π-reg

Vλ Vλ × C∗ f−1C∗ (0) T ∗C(Vλ)reg

S s

π

p′C∗

π′ gC∗ π′
s π′′

s

pC∗

fC∗

Proof. — Suppose E ∈ DHλ(W ). Then π!E ∈ DHλ(Vλ). Let pC∗ : Vλ × C∗ → Vλ
be projection. Then, by repeated application of proper base change [DK73, Exposé
XIV, 2.1.7.1],

EvC π!E = (RΦfC∗p
∗
C∗π!E)|T∗

C(Vλ)reg

= (RΦfC∗ (π
′)!(p

′
C∗)∗E)|T∗

C (Vλ)reg

= ((π′s)!RΦgC∗ (p
′
C∗)∗E)|T∗

C(Vλ)reg

= (π′′s )!
(
(RΦgC∗ (E ⊠ 1C∗))|(W×C∗)π-reg

)
.

6.6. Open orbit. —

Lemma 6.6.1. — For every H-orbit C ⊆ V and every H-equivariant local system
L on C,

EvC IC(C,L) =
(
RΦf |C×C∗ (L⊠ 1C∗)

)
T∗
C(V )reg

[dimC].

Proof. — By the definition of EvC given in (83),

EvC IC(C,L) =
(
RΦf∗

C
(IC(C,L) ⊠ 1C∗)

)
T∗
C(V )reg

.

Using Proposition 5.4.3 and proper base change for C̄ →֒ V as in Lemma 6.5.2 gives
(
RΦf∗

C
(IC(C,L) ⊠ 1C∗)

)
T∗
C(V )reg

=
(
RΦf |C̄×C∗

(L♯[dimC]⊠ 1C∗)
)
T∗
C(V )reg

,
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using the notation L♯ = IC(C,L)|C̄ [− dimC]. Since C ⊆ V is locally closed, it is
relatively open in its closure. By smooth base change for C →֒ C̄,(

RΦf |C̄×C∗
(L♯ ⊠ 1C∗)

)
T∗
C(V )reg

=
(
RΦf |C×C∗ (L⊠ 1C∗)

)
T∗
C(V )reg

.

This proves the lemma.

Proposition 6.6.2. — Let C ⊆ V be an H-orbit.

(a) For any (x, ξ) ∈ T ∗C(V )reg,

(EvC IC(C))(x,ξ) =
(
RΦξ|C1C

)
x
[dimC],

as representations of ZH(x, ξ).
(b) For any H-equivariant local system L on C,

EvC IC(C,L) = EvC IC(C)⊗ (L⊠ 1C∗) |T∗
C(V )reg .

Proof. — By Lemma 6.6.1,

EvC IC(C,L) =
(
RΦf |C×C∗ (L⊠ 1C∗)

)
T∗
C(V )reg

[dimC].

Taking the case L = 1C and passing to stalks using Proposition 6.4.1 gives

(EvC IC(C))(x,ξ) =
(
RΦξ|C1C

)
x
[dimC],

for every (x, ξ) ∈ T ∗C(V )reg. This proves (a).
To simplify notation slightly, set E :=L⊠1C∗ . It follows from Lemma 6.6.3, below,

that
RΨf |C×C∗E = E|f |−1

C×C∗ (0)
⊗ RΨf |C×C∗1C×C∗ .

To see this, let X̄ = X ×S S̄ play the role of X in Lemma 6.6.3, let Xη̄ play the role
of U , so j̄ plays the role of j, take H = 1X̄ and G = E . It now follows from (73) that

RΦf |C×C∗ (E) = E|f |−1
C×C∗ (0)

⊗ RΦf |C×C∗1C×C∗ ,

since
E|f |−1

C×C∗ (0)
= E|f |−1

C×C∗ (0)
⊗ 1f |−1

C×C∗ (0)
.

Using Proposition 5.4.3 again and restricting from f |−1C×C∗(0) to T ∗C(V )reg now gives
(
RΦf |C×C∗E

)
|T∗
C(V )reg = E|T∗

C(V )reg ⊗
(
RΦf |C×C∗1C×C∗

)
|T∗
C(V )reg

Using Lemma 6.6.1 again, this proves (b).

Lemma 6.6.3. — Let j : U →֒ X be an open immersion. Let G and H be local
systems on X trivialized by a finite etale cover of X. F = j∗H. Then the canonical
morphism

j∗F ⊗ G → j∗(F ⊗ j∗G)
is an isomorphism.

Proof. — The canonical morphism above comes from the unit 1 → j∗j
∗ of the

adjunction for the pair (j∗, j∗) the exactness of j∗, and the co-unit j∗j∗ → 1:

j∗F ⊗ G → j∗j
∗(j∗F ⊗ G) ∼= j∗(j

∗j∗F ⊗ j∗G)→ j∗(F ⊗ j∗G).
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To show that this is an isomorphism it is sufficient to show that this induces an
isomorphism on stalks. Note that any sheaf homomorphism obtained from the unit
1 → j∗j

∗ is a monomorphism while any sheaf homomorphism obtained from the
co-unit j∗j∗ → 1 is an isomorphism, so the canonical morphism is injective.

Without loss of generality, we may assume X is connected.
First we show that the lemma is true for constant sheaves. Set G = 1

m
X and

H = 1

n
X so F = 1

n
U . The stalks of the domain of the canonical morphism at x ∈ U

are (j∗1
n
U⊗1mX)x = (j∗1

n
U )x⊗1m = H•(j−1(x),1n)⊗1m = 1

nm[0] while the stalks of
the codomain are (j∗(1

n
U ⊗ j∗1mX))x = (j∗(1

n
U ⊗ 1mU ))x = H•(j−1(x),1nm) = 1

nm[0].
The case x 6∈ U is trivial.

Now let π : X̃ → X be a finite etale cover that trivializes G. Then the canonical
morphism j∗F ⊗ G → j∗(F ⊗ j∗G) induces

(87) π∗(j∗F ⊗ G)→ π∗j∗(F ⊗ j∗G).
Note that (87) is injective on stalks. Let jπ : Ũ → X̃ be the pullback of j along π

and let πj : Ũ → U be the pullback of π along j. Note that jπ is an open immersion
and πj is again a finite etale cover. The local system j∗G is trivialized by πj since

π∗j j
∗G = (j ◦ πj)∗G = (π ◦ jπ)∗G = (jπ)

∗π∗G = (jπ)
∗
1

m
X̃

= 1

m
Ũ
,

where m = rankG; likewise F is trivialized by πj . By the exactness of π∗ and proper
base change,

π∗(j∗F ⊗ G) = π∗j∗F ⊗ π∗G = (jπ)∗π
∗
jF ⊗ 1mX̃ = (jπ)∗1

n
X̃
⊗ 1m

X̃

where n = rankF . Likewise,

π∗j∗(F ⊗ j∗G) = (jπ)∗π
∗
j (F ⊗ j∗G) = (jπ)∗ (1

n
X ⊗ j∗π1Ũ ) .

This reduces the general case to the case of constant sheaves, already proved.

6.7. Purity and Rank on the open orbit. — In this section we show that, for
every H-orbit C ⊆ V , the object EvC IC(C) in DH(T ∗C(V )reg) is cohomologically
concentrated in dimension dimC∗ − dim V − 1, where it is a rank-1 constructible
sheaf; see Theorem 6.7.5.

Recall f : T ∗(Vλ) → A1 from Section 6.3. Having fixed C, in this section we use
the notation ΛC :=T ∗C(V ) ∩ (C × C∗) and set g := f |C×C∗. We also set e = eC =
dimC + dimC∗ − dim V , the codimension of ΛC in C × C∗ and refer to this as the
eccentricity of C.

Lemma 6.7.1. — The singular locus of f |C×C∗ : C × C∗ → A1 contains ΛC .

Proof. — Suppose (x, ξ) ∈ ΛC ; we must show that dg(x,ξ) : T(x,ξ)(C ×C∗)→ T0(A
1)

is trivial, where g : C × C∗ → A1 is the restriction of f to C × C∗. By Lemma 5.3.2,
ξ ∈ T ∗C,x(V ), we have 〈y, ξ〉x = 0 for all y ∈ Tx(C), where 〈 , 〉x is the pairing on

Tx(V ) × T ∗x (V ). Similarly, x ∈ T ∗C∗,ξ(V
∗), so 〈x, ν〉ξ = 0 for any ν ∈ Tξ(C∗), where

〈 , 〉ξ is the pairing on T ∗ξ (V
∗)× Tξ(V ∗). Since dg(x,ξ)(y, ν) = 〈y, ξ〉x + 〈x, ν〉ξ = 0, it

now follows that dg(x,ξ) : T(x,ξ)(C × C∗)→ T0(A
1) is trivial.
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We now make a study of f |C×C∗ → A1 at regular points (x, ξ) ∈ T ∗C(V )reg. Let
I be the ideal sheaf for the closed subvariety ΛC in C × C∗. Using the regularity of
(x, ξ) ∈ T ∗C(V )reg, we may choose an open affine neighbourhood U of (x, ξ) in C×C∗
such that U ∩ ΛC is an open affine neighbourhood of (x, ξ) in ΛC . The sequence

0→ I(U)→ OC×C∗(U)→ OΛC (U ∩ ΛC)→ 0

is exact. Let ÔC×C∗/ΛC (U) be the completion of OC×C∗(U) with respect to the ideal
I(U); then

(88) ÔC×C∗/ΛC (U) ∼= OΛC (U ∩ ΛC)[[z1, . . . , ze]]

where e is the codimension of ΛC in C×C∗; see for instance, [AM69, Theorem 11.22

and Remark 2]. Recall g := f |C×C∗ . We denote the image of g in ÔC×C∗/ΛC (U) by
ĝU . Using multindex notation, ĝU may be written in the form

ĝU =
∑

I

aIz
I ,

with I = (i1, . . . , ie) where ij ∈ N; here, aI = aI ∈ OΛC (U ∩ ΛC).
Again using the regularity of (x, ξ), the completion of OΛC at (x, ξ) is

ÔΛC ,(x,ξ)
∼= C[[y1, . . . , yd]]

where d = dimΛC and

(89) ÔC×C∗,(x,ξ)
∼= ÔΛC ,(x,ξ)[[z1, . . . , ze]].

Note that this defines a splitting of the exact sequence

0→ Î(x,ξ) → ÔC×C∗,(x,ξ) → ÔΛC ,(x,ξ) → 0.

Let ĝ(x,ξ) be the image of f |C×C∗ in ÔC×C∗,(x,ξ). Then

(90) ĝ(x,ξ) =
∑

|I|≥2

âI(y)z
I

where âI(y) ∈ ÔΛC ,(x,ξ) is the image of aI under OΛC (U ∩ ΛC)→ ÔΛC ,(x,ξ).

Set |I| := i1 + · · ·+ ie. By Lemma 5.3.2, f |C×C∗ : C ×C∗ → A1 vanishes on ΛC so
âI(y) = 0 for |I| = 0. By Lemma 6.7.1, f |C×C∗ : C × C∗ → A1 is singular along ΛC
so âI(y) = 0 for all |I| = 1. Consequently,

(91) ĝ(x,ξ) =
∑

|I|≥2

âI(y)z
I .

Lemma 6.7.2. — If (x, ξ) ∈ T ∗C(V )reg then the rank of the Hessian for the function
f |C×C∗ : C × C∗ → S at (x, ξ) is most dimC + dimC∗ − dimV .

Proof. — As above, set g := f |C×C∗ and e := dimC+dimC∗−dimV . First, observe
that the Hessian for g at (x, ξ) is determined by the image ĝ(x,ξ) of g under the map

OC×C∗(C × C∗)→ ÔC×C∗,(x,ξ):

H(g)(x,ξ) = H(ĝ(x,ξ))0.
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Recall from (90) that we may write ĝ(x,ξ) in the form

ĝ(x,ξ) =
∑

|I|≥2

âI(y)z
I .

We now break the Hessian for ĝ(x,ξ) at 0 into blocks:

H(ĝ(x,ξ))0 =

(
A B
tB A′

)
,

where A and A′ are the matrices of partial derivatives

Aij =
∂2

∂yi ∂yj


∑

|I|≥2

âI(y)z
I


∣∣

(0,0)
,

for 1 ≤ i, j ≤ d, and

A′ij =
∂2

∂zi ∂zj


∑

|I|≥2

âI(y)z
I


∣∣

(0,0)
,

for 1 ≤ i, j ≤ e, and where B is the matrix of mixed partial derivatives

Bij =
∂2

∂yi ∂zj


∑

|I|≥2

âI(y)z
I


∣∣

(0,0)

for 1 ≤ i ≤ d and 1 ≤ j ≤ e. Now

Aij =
∑

|I|≥2

(
∂2

∂yi ∂yj
âI(y)

)
zI
∣∣
(0,0)

= 0

because zI |0 = 0 for all |I| ≥ 2, and

Bij =
∑

|I|≥2

(
∂âI(y)

∂yi

∣∣
0

)(
∂zI

∂zj

∣∣
0

)
= 0,

because ∂zI

∂zj

∣∣
0
= 0 for all |I| ≥ 2. Therefore,

rankH(ĝ(x,ξ))0 = rankA′.

Since
rankA′ ≤ e = dimC + dimC∗ − dimV,

this concludes the proof of Lemma 6.7.2.

Lemma 6.7.3. — If (x, ξ) ∈ T ∗C(V )reg then the rank of the Hessian for the function
f |C×C∗ : C × C∗ → A1 at (x, ξ) is least dimC + dimC∗ − dim V .

Proof. — In this proof we use the analytic site. Consider the covering

H ×H → C × C∗
(h, h′) 7→ (Ad(h)(x),Ad(h′)(ξ))
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After passing to a neighbourhood of (1, 1), pullback through the exponential map
exp : h→ H to define

G : h× h → C × C∗
(z, z′) 7→ (Ad(exp(z))(x),Ad(exp(z′))(x)).

Then
rankH(g)(x,ξ) = rankH(ĝ(x,ξ))0 = rankH(G)(0,0),

where H(G)(0,0) is the Hessian of G at (0, 0). Recall that

Ad(exp(z))(x) = x+ [z, x] +
1

2
[z, [z, x]] + · · ·+ 1

n!
[z, [z, . . . , [z, x] · · · ]] + · · ·

in the formal neighbourhood of 0 ∈ h; likewise for Ad(exp(z′)(ξ). Define Z(z) and
Z ′(z′) by

Ad(exp(z))(x) = x+ [z, x] + Z(z) and Ad(exp(z′))(ξ) = ξ + [z′, ξ] + Z ′(z′).

Then

G(z, z′) = (x | [z′, ξ] ) + ( [z, x] | ξ )
+(Z(z) | ξ ) + ( [z, x] | [z′, ξ] ) + (x |Z ′(z′) )
+( [z, x] |Z ′(z′) ) + (Z(z) |Z ′(z′) ) + (Z(z) | [z′, ξ] )

Since the second-order part of G(z, z′) is (Z(z) | ξ )+( [z, x] | [z′, ξ] )+(x |Z ′(z′) ), the
Hessian of G at (0, 0) takes the form

H(G)(0,0) =
(
M N
tN M ′

)
,

where M and M ′ are the matrices of partial derivatives

Mij =
∂2

∂zi ∂zj
(Z(z) | ξ )

∣∣
(0,0)

, and M ′ij =
∂2

∂z′i ∂z
′
j

(x |Z ′(z′) )
∣∣
(0,0)

,

and where N is the matrix of mixed partial derivatives

Nij =
∂2

∂zi ∂z′j
( [z, x] | [z′, ξ] )

∣∣
(0,0)

.

Thus,
rankH(G)(0,0) ≥ rankN.

In fact, the matrix N is the matrix for the bilinear form

h× h → A1

(z, z′) 7→ ( [z, x] | [z′, ξ] ).
Since

( [z, x] | [z′, ξ] ) = ( [ξ, [z, x]] | z′ ),
the rank of N is dim[ξ, [h, x]].

We now show that dim[ξ, [h, x]] is dimC + dimC∗ − dim V . First, note that

[h, x] = Tx(C) and ker[ξ, ·]|V = T ∗C∗,ξ(V
∗),

so
dim[ξ, [h, x]] = dimTx(C)− dimT ∗C∗,ξ(V

∗) = dimC − dimT ∗C∗,ξ(V
∗).
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Since (x, ξ) is regular, T ∗C∗,ξ(V
∗)∩ (C ×{ξ}) = {(y, ξ) ∈ C×{ξ} | [y, ξ] = 0} contains

an open neighbourhood of (x, ξ) in T ∗C∗,ξ(V
∗) = {(y, ξ) ∈ V ×{ξ} | [y, ξ] = 0}. Hence

T ∗C∗,ξ(V
∗) ⊆ Tx(C) and

dimT ∗C∗,ξ(V
∗) = dimV − dimTξ(C

∗) = dimV − dimC∗.

Therefore,
dim[ξ, [h, x]] = dimC − (dimV − dimC∗),

which concludes the proof of Lemma 6.7.3.

We remark that [ξ, [h, x]] is also the image of the map T(x,ξ)(C × C∗) → h given
by (y, ν) 7→ [x, ν] + [y, ξ], so the proof of Lemma 6.7.3 also shows that

T(x,ξ)(ΛC) =
{
(y, ν) ∈ T(x,ξ)(C × C∗) | [x, ν] + [y, ξ] = 0

}

for (x, ξ) ∈ T ∗C(V )reg.

Lemma 6.7.4. — Recall the definition of ÔC×C∗/ΛC (U) from (88). The open affine
U ⊂ C × C∗ may be chosen so that there is an isomorphism

ÔC×C∗/ΛC (U) ∼= OΛC (U ∩ ΛC)[[x1, . . . , xe]],

such that the image of f |C×C∗ : C × C∗ → A1 in ÔC×C∗/ΛC (U) is

u1x
2
1 + · · ·+ uex

2
e

for u1, . . . , ue ∈ OΛC (U ∩ ΛC). Here, e = dimC + dimC∗ − dim V .

Proof. — We have seen that we may choose U and arrange so that the image of

the function g : C × C∗ → A1 in ÔC×C∗/ΛC (U) = OΛC (U ∩ ΛC)[[z1, . . . , ze]] will

have the form ĝU =
∑
|I|≥2 aIz

I . Set A = OΛC (U ∩ ΛC)[[z2, . . . , ze]] and let m be

the ideal in A generated by z2, . . . , ze. Write g(x,ξ) =
∑∞

n=0 bnz
n
1 . Then b1 ∈ m

and b2 ∈ A∗. Make the substitution z1 = w1 + x to give ĝ(x,ξ) =
∑∞

n=0 cnw
n
1 for

cn ∈ A[[x]]. Importantly, c1(x) = b1 + 2b2x + · · · so c′1(x) ∈ A∗ (formal derivative).
Since we know that c1(x) ≡ 2b2(x) + · · · mod m, we know c1(x) has a root x + m

in A/m. By the extension of Hensel’s lemma to formal power series, c1(x) = 0 has
a solution in A, call it h1 ∈ A. Now the linear substitution z1 7→ x1 + h1 sends
OΛC (U ∩ ΛC)[[z1, . . . , ze]] to OΛC (U ∩ ΛC)[[x1, z2 . . . , ze]] so that the image of ĝ(x,ξ)
to takes the form b0 + b2x

2
1 + b3x

3
1 + · · · = b0 + u1x

2
1. As an element of A[[x1]], now

g(x,ξ) has no linear term in x1 and u1 ∈ A[[x1]]∗. Continuing inductively concludes
the proof of Lemma 6.7.4.

Theorem 6.7.5. — For every Hλ-orbit C ⊆ Vλ and for all (x, ξ) ∈ T ∗C(V )reg,

(EvC IC(C))(x,ξ) ∼= L(x,ξ)[dimC + 1− eC ]
where eC = dimC + dimC∗ − dim V and L(x,ξ) the stalk of a local system for a
quadratic character, described in the proof, of an etale neighbourhood of (x, ξ) in
T ∗C(V )reg. In particular

rankEvC IC(C) = 1.
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Proof. — By Lemma 6.6.1,

EvC IC(C) =
(
RΦf |C×C∗1C×C∗

)
T∗
C(V )reg

[dimC].

Let U be an open affine neighbourhood of (x, ξ) in C × C∗ and recall the definition

ÔC×C∗/ΛC (U) from (88). Recall u1, . . . , ue ∈ OΛC (U ∩ ΛC) from Lemma 6.7.4. Set
U ′ = Uu1···ue ; this is again an open affine neighbourhood of (x, ξ) in C × C∗. Let

j : Spec(ÔC×C∗/ΛC (U
′))→ C × C∗

be the map induced by OC×C∗(U)→ ÔC×C∗/ΛC (U
′). Then

(
RΦf |C×C∗1C×C∗

)
(x,ξ)

= j∗
(
RΦf |C×C∗1C×C∗

)
0

By Lemma 6.7.4, there is an isomorphism

ÔC×C∗/ΛC (U
′) ∼= OΛC (U

′ ∩ ΛC)[[x1, . . . , xe]]

where d = dim V and e = dimC + dimC∗ − dimV , such that the image of f |C×C∗

in ÔC×C∗/ΛC (U
′) is u1x

2
1 + · · · + uex

2
e. Note that by our choice of U ′, we now have

u1, . . . , ue ∈ OΛC (U
′ ∩ ΛC)

∗. By smooth base change,

j∗
(
RΦf |C×C∗1C×C∗

)
0
=
(
RΦu1x2

1+···+uex
2
e
1

)
0
.

By definition,
RΦu1x2

1+···+uex
2
e
1 = RΦX1X

where

X = Spec(OΛC (U
′ ∩ ΛC)[[t]][x1, . . . , xe]]/(u1x

2
1 + · · ·+ uex

2
e − t)).

Write X = Y ×S Z with

Y = Spec(OΛC (U
′ ∩ ΛC)[[t]])

and

Z = Spec(C[x1, . . . , xe, u1, . . . , ue, ]u1···ue [[t]]/(u1x
2
1 + · · ·+ uex

2
e − t)).

Now, by smooth base change, the Sebastiani-Thom isomorphism, and Lemma 6.2.1,

RΦX1X = 1Ȳs ⊠ RΦZ1Z .

Using Proposition 6.2.5, it now follows that

(EvC IC(C))(x,ξ) = (RΦZ1X)0 [dimC] ∼= L0[dimC + 1− e]
where L is the rank-1 local system described in Proposition 6.2.5. This concludes the
proof of Theorem 6.7.5.

6.8. Perversity. — We now show that when shifted by the appropriate degree, the
functor EvC takes perverse sheaves to perverse sheaves.

Proposition 6.8.1. — Let C ⊆ Vλ be an Hλ-orbit. If P ∈ PerHλ(Vλ) then

EvC P [dimC∗ − 1] ∈ PerHλ(T
∗
C(V )reg).
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Proof. — From (83) recall that Ev[dimC∗− 1] : DHλ(Vλ)→ DH(T ∗C(V )reg) is defined
by

Ev[dimC∗ − 1]P = (RΦfC∗ [−1] (P ⊠ 1C∗ [dimC∗])) |T∗
C(V )reg .

Since C∗ is smooth, 1C∗ [dimC∗] is perverse, so P ⊠ 1C∗ [dimC∗] is a perverse sheaf
on Vλ×C∗; see also [BBD82, 4.2.4]. The restriction of P⊠1C∗ [dimC∗] from Vλ×C∗
to the open ( | )−1(A1

×) is also perverse. It follows from [BBD82, Proposition 4.4.2]
that RΦfC∗ [−1](P ⊠ 1C∗ [dimC∗]) is perverse; see also [Bry86, Théorème 1.2]. It is
also Hλ-equivariant by transport of structure. The functor

RΦfC∗ [−1] (( · )⊠ 1C∗ [dimC∗]) : DHλ(Vλ)→ DH(f−1C∗ (0))

takes equivariant perverse sheaves to equivariant perverse sheaves.
By Lemma 6.8.2 for every P ∈ PerH(V ) the support of RΦfC∗ (P ⊠ 1C∗) is con-

tained in
{(x, ξ) ∈ V × C∗ | [x, ξ] = 0}.

Thus, the restriction of the perverse sheaf RΦfC∗ [−1](P ⊠ 1C∗ [dimC∗]) from

{(x, ξ) ∈ V × C∗ | (x | ξ ) = 0}
to

{(x, ξ) ∈ V × C∗ | [x, ξ] = 0}
is again perverse. Since T ∗C(Vλ)reg is open in {(x, ξ) ∈ V × C∗ | [x, ξ] = 0}, it follows
from [BBD82, Section 1.4] that the restriction

EvC P [dimC∗ − 1] = (RΦfC∗ [−1](P ⊠ 1C∗ [dimC∗])) |T∗
C(Vλ)reg

is perverse. This proves 6.8.1.

Lemma 6.8.2. — For every P ∈ PerH(V ), the support of RΦfC∗ (P ⊠ 1C∗) is
contained in {(x, ξ) ∈ V × C∗ | [x, ξ] = 0}.
Proof. — Since RΦfC∗ is exact, we may assume P is simple: set P = IC(C0,L0),
where C0 ⊆ V is an H-orbit and L0 is a simple H-equivariant local system on
C0. By Proposition 6.5.1, the support of RΦfC∗ (P ⊠ 1C∗) is contained in C0. Let

π : C̃0 → C0 be a proper morphism with C̃0 smooth over s such that IC(C0,L0)
appears, up to shift, in π∗ IC(C̃0). Now, define π′ := π × idC∗ : C̃0 × C∗ → C0 × C∗
and g := fC∗ ◦π′ : C̃0×C∗ → S. To simplify notation somewhat, we set Y = C̃0×C∗
for the remainder of this proof. Arguing as in the proof of Lemma 6.5.2 using proper
base change [DK73, Exposé XIV, 2.1.7.1], it follows that

π′∗RΦg1Y = RΦfC∗π∗1Y .

Then RΦfC∗ (IC(C0,L0)⊠ 1C∗) is a summand of this sheaf, up to shift.
It follows from Lemma 6.2.2, that the support of RΦg1Y is contained in the

singular locus of Y . Thus, to prove the lemma it is sufficient to show that the

singular locus of Y is contained in {(x̃, ξ) ∈ C̃0 × C∗ | [π(x̃), ξ] = 0}. Accordingly,
suppose y = (x̃, ξ) ∈ Y is singular. Since Y is smooth over s, there exists an
open neighbourhood U ⊂ Y containing y and a closed embedding U → An such
that dġy ∈ T ∗U,y(A

n) for an extension ġ of g|U to an open neighbourhood of U in

An; see [Gai, Theorem 3.1.2], for instance. Observe that the stalk T ∗U,y(A
n) of the
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conormal bundle T ∗U (A
n) is precisely the complex vector space of dhy for h ∈ I(U).

Without loss of generality, we may take the embedding U → An to be of the form
y 7→ (z, π′(y)), or equivalently (x̃, ξ) 7→ (z, π(x̃), ξ), where x̃ 7→ (z, π(x̃)) is an affine

embedding of C̃. Observe that C∗ ⊆ V ∗ comes with an affine embedding. Now

I(Y ) = I(C̃0×C∗) ∼= I(C̃0)⊕I(C∗) in the coordinate ring of An and the projection of
dġy ∈ T ∗y (An) onto I(C∗) is d(π(x̃) | · )ξ. Thus, d(π(x̃) | · )ξ ∈ T ∗C∗,ξ(V

∗). Identifying
the dual of V ∗ with V , as in Section 5.4, gives

T ∗C∗,ξ(V
∗) ∼= {x ∈ V | [x, ξ] = 0}.

Thus, the singular locus of Y is contained in

π′−1({(x, ξ) ∈ C̃0 × C∗ | [x, ξ] = 0}) = {(x̃, ξ) ∈ C̃0 × C∗ | [π(x̃), ξ] = 0}.
Thus, the support of RΦg1Y is contained in this variety. Since

(π′∗RΦg1Y )(x,ξ) = H•(π−1(x)× {ξ},RΦg1Y ),
it now follows that the support of π′∗RΦg1Y = RΦfC∗π∗1Y is contained in the subset
{(x, ξ) ∈ C0 × C∗ | [x, ξ] = 0}. Since RΦfC∗ (IC(C0,L0) ⊠ 1C∗) is a summand
of RΦfC∗π∗1Y , its support too is contained in {(x, ξ) ∈ C0 × C∗ | [x, ξ] = 0}, as
claimed.

Using Proposition 6.8.1, we now define

(92) pEvC := EvC [dimC∗ − 1] : PerH(V )→ PerH(T ∗C(V )reg).

Also define

(93) pEv : PerH(V )→ PerH(T ∗H(V )reg)

by
( pEvP)|T∗

C(V )reg = pEvC P .

6.9. Local systems on the strongly regular conormal bundle. — Recall the
definition of T ∗C(V )sreg ⊆ T ∗C(V )reg from Section 5.5.

Proposition 6.9.1. — Suppose T ∗C(V )sreg is non-empty. If P ∈ PerH(V ) then the
restriction of pEvC P to T ∗C(V )sreg is a local system concentrated in degree dimV .

Proof. — By Proposition 6.8.1, we have that pEvC P is an H-equivariant perverse
sheaf on T ∗C(V )sreg. From Section 5.5 we see that T ∗C(V )sreg ⊆ T ∗C(V )reg is open.
Then the restriction of pEvC P to T ∗C(V )sreg is an H-equivariant perverse sheaf, by
[BBD82, Proposition 4.4.2], and thus a direct sum of simple perverse sheaves. Simple
perverse sheaves on T ∗C(V )sreg are perverse extensions of simple H-equivariant local
systems on H-orbits in T ∗C(V )sreg. By Proposition 5.5.1, T ∗C(V )sreg is a single H-
orbit, so the restriction of pEvC P to T ∗C(V )sreg is an H-equivariant local system
on T ∗C(V )sreg in degree dimT ∗C(V )sreg. Since we assume T ∗C(V )sreg is non-empty,
dimT ∗C(V )sreg = dimT ∗C(V )reg. Thus, the restriction of pEvC P to T ∗C(V )sreg is
concentrated in degree dim T ∗C(V )reg = dimT ∗C(V ) = dimV .

Using Proposition 6.9.1, we now have an exact functor

(94) EvsC := pEvC [− dimV ]|T∗
C(V )sreg : PerH(V )→ LocH(T ∗C(V )sreg),
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for each H-orbit C ⊆ V . Putting these together defines

(95) Evs : PerH(V )→ LocH(T ∗H(V )sreg)

so that
EvsP|T∗

C(V )sreg = EvsC P .
Any attempt to understand the exact functor

(96) Evs : PerH(V )→ LocH(T ∗H(V )sreg)

naturally begins with the local system T ∈ LocH(T ∗H(V )sreg) defined by

(97) T |T∗
C(V )sreg := TC := EvsC IC(C) ∈ LocH(T ∗C(V )sreg).

It follows from Proposition 6.6.2, Part (a) that for every (x, ξ) ∈ T ∗C(V )sreg,

TC,(x,ξ) =
(
RΦξ|C [−1]1C

)
x
[eC ],

as representations of ZH(x, ξ), where

(98) eC := dimC + dimC∗ − dimV.

By Proposition 6.6.2, Part (b)

(99) EvsC IC(C,L) = TC ⊗ (L⊠ 1C∗) |T∗
C(V )sreg ,

for every H-equivariant local system L on C.
By Proposition 5.6.1, every Arthur parameter ψ ∈ Qλ(LG) determines a base point

(xψ , ξψ) ∈ T ∗Cψ(V )sreg. By Proposition 5.7.1, the equivariant fundamental group

of T ∗Cψ(V )sreg is Aψ . Thus, the base point (xψ , ξψ) ∈ T ∗Cψ(V )sreg determines an

equivalence of categories

(100) LocH(T ∗Cψ(V )sreg)→ Rep(Aψ).

Combining (94) and (100) defines an exact functor

(101) Evψ : PerH(V )→ Rep(Aψ).

For instance

(102) Tψ := Evψ IC(Cψ)
is the representation of Aψ corresponding to TCψ , under the equivalence (100), so
Proposition 6.6.2, Part (a) shows how to calculate this representation of Aψ.

More generally, for every stratum C ⊆ V , the microlocal fundamental group Amic
C

of C is the equivariant fundamental group of a generic H-orbit in T ∗C(V )reg, which
may be chosen using [ABV92, Lemma 24.3(f)], for example. In this way, every
sufficiently regular (x, ξ) ∈ T ∗C(V )reg determines an exact functor

(103) Ev(x,ξ) : PerH(V )→ Rep(Amic
C ).

This generalizes (101), since Aψ is the microlocal fundamental group of Cψ .

6.10. Normalization of Ev. — We normalize Ev by the following definition.

Definition 2. — Let

NEvC : DH(V )→ DH(T ∗C(V )reg),
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be the functor defined by

NEvC := (EvC IC(C))∨ ⊗ EvC ,

where (EvC IC(C))∨ = Hom
(
EvC IC(C),1T∗

C (V )reg

)
; here and below we use the left

derived tensor product. Likewise define

NEv : DH(V )→ DH(T ∗H(V )reg)

so that
NEvC F = (NEvF) |T∗

C(V )reg .

We refer to NEv as the normalised microlocal vanishing cycles functor.

Supposing T ∗C(V )sreg is non-empty, we will mainly be concerned with this functor
after restriction from T ∗C(V )reg to T ∗C(V )sreg:

(104) NEvsC F := (NEvC F) |T∗
C(V )sreg)

Then

(105) NEvsC = T ∨C ⊗ EvsC

where TC is given in (97) and T ∨C is its dual local system.

Theorem 6.10.1. — Let λ : WF → LG be an infinitesimal parameter. Suppose
T ∗C(V )sreg is non-empty.

(a) The functor NEvsC : PerHλ(Vλ)→ LocH(T ∗C(V )sreg) is exact.
(b) If P ∈ PerHλ(Vλ) then NEvsC P = 0 unless C ⊆ suppP.
(c) If P ∈ PerHλ(Vλ) then

rank(NEvsC P) = rank(RΦξP)x,
for every (x, ξ) ∈ T ∗C(V )sreg.

(d) For every Hλ-equivariant local system L on C,

NEvsC IC(C,L) = (L⊠ 1C∗) |T∗
C(Vλ)sreg ;

in particular,
rankNEvsC IC(C,L) = rankL.

Proof. — By first part of Proposition 6.4.1, EvC is exact. Since restriction from
T ∗C(V )reg to T ∗C(V )sreg is also exact, so is EvsC . Since NEvsC is obtained by tensoring
EvsC with T ∨C , NEvsC is also exact. NEvsC produces local systems by Proposition 6.9.1.
This proves Part (a). Part (b) is a consequence of Proposition 6.5.1 and the definition
of NEvsC and the fact that rankT ∨C = 1 by Theorem 6.7.5. Part (c) follows from
the second part of Proposition 6.4.1, using Theorem 6.7.5. Part (d) follows from
Proposition 6.6.2, Part (b) and the isomorphism T ∨C ⊗ TC ∼= 1T∗

C(V )sreg , again using
Theorem 6.7.5.

Note that the functor

EvsC : PerHλ(Vλ)→ LocH(T ∗C(V )sreg)
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satisfies the conditions appearing in Theorem 6.10.1 except the first part of Theo-
rem 6.10.1, Part (d) since, for every Hλ-equivariant local system L on C,

EvsC IC(C,L) = TC ⊗ (L⊠ 1C∗) |T∗
C(Vλ)sreg .

Moreover, the rank-1 local system TC is in general not trivial as a representation of
the equivariant fundamental group Amic

C of T ∗C(Vλ)sreg.
If ψ ∈ Qλ(

LG) is an Arthur parameter with infinitesimal parameter λ, then
T ∗Cψ(Vλ)sreg is non-empty by Proposition 5.6.1. In this case we use the equivalence

(100) and replace EvsCψ with the functor Evψ, the local system TCψ with the repre-
sentation Tψ of Aψ , and define

(106) NEvψ :=T ∨ψ ⊗ Evψ .

This is the functor appearing in (10).
Corollary 6.0.1 is simply a rephrasing of Theorem 6.10.1 using Proposition 3.6.2.

7. Arthur packets and ABV-packets

In this section we articulate the conjectures which, taken together, lie at the heart
of the concept of p-adic ABV-packets. In this section, G is a quasi-split connected
reductive linear algebraic group over F . When referring to work of Arthur, we will
further assume G is a split symplectic or special orthogonal group.

7.1. ABV-packets. — We fix an admissible homomorphism λ : WF → LG and
recall the Vogan variety Vλ from Section 3. As above, set Hλ :=ZĜ(λ).

From Proposition 3.6.2 recall that the local Langlands correspondence for pure
rational forms determines a canonical bijection between isomorphism classes of simple
objects in PerHλ(Vλ) and Πpure,λ(G/F ):

PerHλ(Vλ)
simple

/iso ↔ Πpure,λ(G/F ).

Recall that we use the notation P(π, δ) for a simple Hλ-equivariant perverse sheaf
on Vλ matching a representation (π, δ) of a pure rational form of G under this
correspondence.

Definition 3. — For any Hλ-orbit C in Vλ, the ABV-packet for C is

(107) ΠABV
pure,C(G/F ) := {[π, δ] ∈ Πpure,λ(G/F ) | EvC P(π, δ) 6= 0}.

If C = Cφ for a Langlands parameter φ, we sometimes use the notation

ΠABV
pure,φ(G/F ) :=ΠABV

pure,Cφ
(G/F ).

7.2. Virtual representations attached to ABV-packets. — From Section 2.11
recall the definition of the virtual representation

ηψ =
∑

[π,δ]∈Πpure,ψ(G/F )

〈aψ, [π, δ]〉ψ e(δ) [π, δ],

based on Arthur’s work.
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Definition 4. — Let ψ be an Arthur parameter for G with infinitesimal parameter
λ :WF → LG. Consider the virtual representation

ηEvψ := (−1)dimCψ
∑

[π,δ]∈ΠABV
pure,Cψ

(G/F )

(−1)dim suppP(π,δ) rankEvψ P(π, δ) e(δ) [π, δ],

where Evψ : PerHλ(Vλ)→ Rep(Aψ) is defined in (101). Recall from Section 2.11 that
e(δ) is the Kottwitz sign attached to the pure rational form δ ∈ Z1(F,G).

Let λ be the infinitesimal parameter of ψ. Then, using (92), (101), (98) and
Proposition 6.4.1, we have

(−1)dimCψ−dim suppP(π,δ) rankEvψ P(π, δ)
= rank (Evψ P(π, δ)[dimCψ − dimCπ,δ])

= rank
(
pEvCψ P(π, δ)[dimCψ − dimVλ − dimCπ,δ]

)
(xψ,ξψ)

= rank
(
EvCψ P(π, δ)[−1 + dimC∗ψ + dimCψ − dimVλ − dimCπ,δ]

)
(xψ,ξψ)

= rank
(
EvCψ P(π, δ)[−1 + eCψ − dimCπ,δ]

)
(xψ,ξψ)

= rank
(
RΦξψ [−1]P(π, δ)[− dimCπ,δ][eCψ ]

)
xψ

= rank
(
RΦξψ [−1]L♯π,δ[eCψ ]

)
xψ
,

where, with reference to Proposition 3.6.2, we set

L♯π,δ = P(π, δ)[− dimCπ,δ] = IC(Cπ,δ,Lπ,δ)[− dimCπ,δ].

So, Definition 4 may also be written in the form

(108) ηEvψ =
∑

[π,δ]∈ΠABV
pure,Cψ

(G/F )

rank
(
RΦξψ [−1]L♯π,δ[eCψ ]

)
xψ
e(δ) [π, δ].

Definition 5. — Let ψ be an Arthur parameter for G with infinitesimal parameter
λ :WF → LG. For any s ∈ ZĜ(ψ), consider the virtual representation

ηNEvψ,s := (−1)dimCψ
∑

[π,δ]∈ΠABV
pure,Cψ

(G/F )

(−1)dim suppP(π,δ) traceas NEvψ P(π, δ) e(δ) [π, δ],

where as is the image of s in Aψ and where NEvψ : PerHλ(Vλ) → Rep(Aψ) is defined
in (106). Also set ηNEvψ := ηNEvψ,1.

7.3. Main conjecture. — Recall the definition of Πpure,ψ(G/F ) from Section 2.10.
Recall the definitions of ηψ and ηψ,s from Section 2.11.

Conjecture 1. — Let G be a quasi-split symplectic or special orthogonal p-adic
group. Let ψ : LF × SL(2,C)→ LG be an Arthur parameter. Then

(a) Pure Arthur packets are ABV-packets:

Πpure,ψ(G/F ) = ΠABV
pure,φψ(G/F ).
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(b) Arthur’s stable distributions are calculated by Ev:

ηψ = ηEvψ .

(c) Endoscopic transfer of Arthur’s stable distributions are calculated by NEv:

ηψ,s = ηNEvψ,s,

for every semisimple s ∈ ZĜ(ψ).

By Proposition 6.4.1, Conjecture 1(a) is equivalent to the claim: for all [π, δ] ∈
Πpure,λ(G/F ),

[π, δ] ∈ Πpure,ψ(G/F ) if and only if
(
RΦξψP(π, δ)

)
xψ
6= 0.

Assuming Conjecture 1(a), and with reference to (25), Conjecture 1(b) is equivalent
to: for all [π, δ] ∈ Πpure,ψ(G/F ),

〈aψ, [π, δ]〉ψ = rank
(
RΦξψ [−1]L♯π,δ[eCψ ]

)
xψ
,

which is to say,

〈aψ, [π, δ]〉ψ = (−1)dimCψ−dim suppP(π,δ) rankEvψ P(π, δ).
Likewise, assuming Conjecture 1(a), Conjecture 1(c), is equivalent to the claim: for
every [π, δ] ∈ Πpure,ψ(G/F ) and for every semisimple s ∈ ZĜ(ψ),
(109) 〈asaψ, [π, δ]〉ψ = (−1)dimCψ−dimC[π,δ] traceas (NEvψ P(π, δ)) ,
where aψ ∈ Aψ is defined in Section 2.11 and as is the image of s in Aψ. Thus,
Conjecture 1 promises a new way to calculate the character 〈as, [π, δ]〉ψ when π is

an admissible representation of Gδ(F ) for a pure rational form δ of G, and when
the complete Langlands parameter for (π, δ) is known; this fact is illustrated with
examples in Part II. Conjecture 1 also suggests how to define the character for
Langlands parameters that are not of Arthur type. We also show several examples of
that in Part II.

Assuming Conjecture 1(a), it follows that Conjecture 1(c) implies Conjecture 1(b).
To see this, recall (106) that NEvψ = T ∨ψ ⊗ Evψ, so

(110) ηNEvψ,s =
(
tracea−1

s
Tψ
)
ηEvψ,s,

where

ηEvψ,s := (−1)dimCψ
∑

[π,δ]∈ΠABV
pure,Cψ

(G/F )

(−1)dim suppP(π,δ) traceas (Evψ P(π, δ)) e(δ) [π, δ].

Taking s = 1, this gives

ηNEvψ = ηNEvψ,1 = (trace1 Tψ) ηEvψ,1 = (rankTψ) ηEvψ .
Using Theorem 6.7.5, this becomes

(111) ηNEvψ = ηEvψ .

So, Conjecture 1(c) gives ηψ,s = ηNEvψ,s which implies ηψ = ηNEvψ = ηEvψ , whence

Conjecture 1(b).
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Conjecture 1 may be expressed using the pairing of Grothendieck groups

(112) 〈 · , · 〉 : KΠpure,λ(G/F )× KPerHλ(Vλ)→ Z

introduced in [Vog93, (8.11′)(a)] (see also [ABV92, Theorem 1.24]) which is defined
on Πpure,λ(G/F ) and isomorphism classes of simple objects in PerHλ(Vλ) by

〈[π, δ],P〉 =
{
e(P)(−1)dim supp(P), if P = P(π, δ)
0, otherwise,

where e(P) is the Kottwitz sign of the group GδP for the pure rational form δP of G
determined by P , as in Section 2.7. Conjecture 1(a) and (b) together are equivalent
to:

(113) 〈ηψ ,P〉 = (−1)dimCψ rankEvψ P ,
for all P ∈ KPerHλ(Vλ). In its entirely, Conjecture 1 is equivalent to:

(114) 〈ηψ,s,P〉 = (−1)dimCψ traceas(NEvψ P),
for every semisimple s ∈ ZĜ(ψ) and for every P ∈ PerHλ(Vλ).

7.4. Arthur perverse sheaves. — The pairing (112) may be used to attach to ψ
an equivariant perverse sheaf Aψ on Vλ, defined up to isomorphism, from which the
virtual representation ηEvψ is easily recovered:

(115) Aψ :=
⊕

P∈PerHλ (Vλ)
simple

/iso

(rankEvψ P) P .

Then
ηNEvψ = (−1)dimCψ

∑

[π,δ]∈Πpure,λ(G/F )

〈[π, δ],Aψ〉 [π, δ].

If we assume Conjecture 1(a) for a moment, this gives

ηψ = (−1)dimCψ
∑

[π,δ]∈Πpure,λ(G/F )

〈[π, δ],Aψ〉 [π, δ].

By Proposition 6.5.1, the summation appearing in the definition of Aψ (115) can

be taken the over simple P ∈ PerHλ(Vλ) supported by Cψ:

Aψ =
⊕

P∈PerHλ (Vλ)
simple

/iso
, supp(P)⊆Cψ

(rankEvψ P) P .

Taking the cases when P = IC(Cψ,L), consider the summand pure packet perverse
sheaf

(116) Bψ :=
⊕

L∈LocHλ (Cψ)
simple

/iso

(
rankEvCψ IC(Cψ ,L)

)
IC(Cψ,L)
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where the sum runs over all simple Hλ-equivariant local systems L on Cψ . By (99),
rankEvψ IC(Cψ ,L) = rank(L), so

Bψ =
⊕

L∈LocHλ (Cψ)
simple

/iso

(rankL) IC(Cψ,L).

The simple perverse sheaves appearing in Bψ correspond exactly to the irreducible
admissible representations in the pure Langlands packet Πpure,φψ(G/F ), where φψ is
the Langlands parameter matching ψ under Proposition 3.2.2.

The perverse sheaf

(117) Cψ :=
⊕

IC(C,L)∈PerHλ (Vλ)
simple

/iso
, C�Cψ

(rankEvψ IC(C,L)) IC(C,L)

is called the coronal perverse sheaf for Cψ , where the sum is taken over all C ⊂ Cψ
with C 6= Cψ and over all simple Hλ-equivariant local systems L on C. So

(118) Aψ = Bψ ⊕ Cψ.

7.5. A basis for strongly stable virtual representations. — Definition 3 of
ΠABV

pure,C applies to all strata C ⊆ Vλ, not just those attached to Arthur parameters.
But in Section 7.3, we only made conjectures related to ABV-packets of the form
ΠABV

pure,Cψ
, for some Arthur parameter ψ with infinitesimal parameter λ. However,

Definitions 4 and 5 extend from Arthur parameters ψ with infinitesimal parameter λ
to all strata C in Vλ as long as T ∗C(V )sreg is non-empty, as follows.

Definition 6. — Let λ : WF → LG be an infinitesimal parameter. Let C ⊆ Vλ
be an Hλ-orbit such that T ∗C(Vλ)sreg is non-empty. Suppose s ∈ ZH(x, ξ) for some
(x, ξ) ∈ T ∗C(V )sreg. Set

ηNEvC,s := (−1)dimC
∑

[π,δ]∈ΠABV
pure,C(G/F )

(−1)dim suppP(π,δ) traceas NEvsC P(π, δ) e(δ) [π, δ],

where as is the image of s in A(x,ξ) = π0(ZH(x, ξ)). Likewise define ηEvC,s. Set

ηNEvC := ηNEvC,1 and ηEvC := ηEvC,1.

It is easy to show that the definition of ηNEvC,s is independent of the choice of (x, ξ).

Conjecture 2, below, is an adaptation of [Vog93, Conjecture 8.15′]. It suggests how
to extend the definition of Arthur packets from Langlands parameters of Arthur type
to all Langlands parameters and also how to find the associated stable distributions.

Conjecture 2. — Let G be a quasi-split connected reductive linear algebraic group
over F . For any λ ∈ Λ(LG) (Section 3.1) and any stratum C ⊆ Vλ, T ∗C(Vλ)sreg is non-
empty and the virtual representation ηNEvC is strongly stable in the sense of [Vog93,
1.6]. Moreover,

{ηNEvC | Hλ-orbits C ⊆ Vλ}
is a basis for the Grothendieck group of strongly stable virtual representations with
infinitesimal character λ.
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It should be noted that strongly stable virtual representations of G produce stable
virtual representations, and thus stable distributions, of all the groups Gδ(F ) as δ
ranges over pure rational forms of G. It should also be noted that in Conjecture 2
we dropped the hypothesis that G is a quasi-split symplectic or special orthogonal
p-adic group, which appeared in Conjecture 1, and replaced it with the hypothesis
that G is any quasi-split connected reductive linear algebraic group over F . The
scope of Conjecture 2 is therefore very broad, as it refers to all pure inner forms of
all quasi-split connected reductive p-adic groups.

In Part II we gather evidence for Conjectures 1 and 2 by verifying them for 38
admissible representations of 12 p-adic groups.

7.6. Remarks on stratified Morse theory and microlocalisation. — In the
discussion after [ABV92, Theorem 24.8], one finds some words about the relation
between stratified Morse theory, microlocalisation and the vanishing cycles functor;
these words are clarified considerably in [Sch03]. As our goal in this article was
to establish the properties of NEv needed to make precise definitions and testable
conjectures about (what we call) ABV-packets and their associated distributions, we
did not find it necessary here to discuss the relation between stratified Morse theory,
microlocalisation and vanishing cycles in any serious way. Even for the calculations
in Part II, that is unnecessary. We expect, however, that progress toward proving
the Conjectures in this article and in [Vog93] in full generality would be aided by an
ability to pass between these three perspectives, rigourously.

With this in mind, we offer some words of caution. The definitive reference for
stratified Morse theory is, of course, [GM88]. Vanishing cycles appear only once
in this book, in a remark in an appendix [GM88, 6.A.2]: “Then, the Morse group
Aiξ(F) is canonically isomorphic to the vanishing cycles RiΦ(F)p of [DK73].” In

[GM88, 6.A.1] we see how to calculate the Morse group, using normal Morse data
according to the formula Aiξ(F) = Hi(J,K;F), where the pair (J,K) is the normal

Morse data corresponding to any smooth function f : M → R such that df(p) = ξ.
In the proof of [ABV92, Theorem 24.8] we see that the stalks of Qmic

C (F) are Morse
groups, or more precisely, Qmic

C (F)i(x,ξ) = Hi−dimC(J,K;F) for (x, ξ) ∈ T ∗C(V )reg. In

this article we show that the stalks of EvC(F) are given by vanishing cycles, or more
precisely, (EvC F)(x,ξ) = (RΦξF)x for (x, ξ) ∈ T ∗C(V )reg. For this reason, one might
expect that, after invoking [DK73, Exposé XIV, Théorème 2.8] to pass from the
algebraic description of RΦ based on [DK73, Exposé XIII] to the analytic version of
RΦ given in [DK73, Exposé XIV], perhaps Qmic

C (F) coincides with EvC F [− dimC].
But that is false, and not just because something has gone awry with the shifts. The
difference between the functor Qmic

C and the appropriately shifted analytic version
of Ev is easy to miss, because they do produce sheaves with the same support and
rank: rankQmic

C (F)i(x,ξ) = rankEvi−dimC
(x,ξ) (F [eC − 1]) for all (x, ξ) ∈ T ∗C(V )reg and

for all i ∈ Z. However, as spaces with an action of ZH(x, ξ), these stalks are not
equal, which means that the sheaves produced by Qmic

C and the sheaves produced
by EvC [−1 + eC − dimC] are different as equivariant sheaves. Even using microlocal
Euler characteristics, one cannot see this issue.



74 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

This discrepancy is entirely responsible for introducing the functor NEv in this
article, in Definition 2. To bring EvC and Qmic

C into alignment, we use an idea from
stratified Morse theory. The local system TC := EvsC IC(C) is designed play the role
of tangential Morse data. Examples in Part II show that the local system TC is not
trivial in general. Recall that NEvs is formed by twisting Evs by the dual of this non-
trivial sheaf: NEvsC := T ∨C ⊗ EvsC . Since rankTC = 1 by Theorem 6.7.5, the stalks of
NEvsC F satisfy the relation

(119) (EvsC F)(x,ξ) = (RΦξ[−1]1C)x[eC ]⊗ (NEvsC F)(x,ξ).
This relation is designed to mirror [GM88, Section 3.7. The Main Theorem], given
colloquially there as

Local Morse data ∼= (Tangential Morse data)× (Normal Morse data).

Schürmann has shown how to interpret this in the language of vanishing cycles, in
certain contexts; see especially [Sch03, Theorem 5.4.1 (5.87)].

We suspect, therefore, that it may be possible to express the stalks of NEvsC F
using normal slices, as we now explain. Suppose G is split, the infinitesimal parameter

λ : WF → LG is unramified and λ(Fr) = sλ × Fr, where sλ ∈ Ĝ is elliptic. Observe
that Section 4, especially Theorem 4.1.1, shows how the general case can be reduced
to this case. With reference to the exponential function for jλ, set z := log sλ. Then
z ∈ jλ,0 = hλ. For every x ∈ Vλ = jλ,2, there is a unique ξx ∈ V ∗λ = jλ,−2 such that
(x, ξx, z) is an SL(2)-triple in jλ. Then x+ker ad ξx is a transverse slice to the Jλ-orbit
of x in jλ [Slo80, Section 7.4] and its intersection with Vλ,

Sℓx :=x+ {y ∈ Vλ | [y, ξx] = 0},
is a transverse slice to the Hλ-orbit C of x at x. Suppose ξ ∈ T ∗C,x(Vλ)sreg. Then we
expect

(120) (NEvsC F)(x,ξ) =
(
RΦξ|Sℓx [−1](F|Sℓx)

)
x
[− dimC],

for F ∈ DHλ(Vλ), in which case (119) becomes

(RΦξ[−1]F)x[eC − dimC]

= (RΦξ[−1]1C)x[eC ]⊗
(
RΦξ|Sℓx [−1](F|Sℓx)

)
x
[− dimC],

or equivalently,

(121) (RΦξ[−1]F)x = (RΦξ[−1]1C)x ⊗
(
RΦξ|Sℓx [−1](F|Sℓx)

)
x
.

That is exactly what one finds in [Sch03, Theorem 5.4.1 (5.87)]. Moreover, all the
examples in Part II conform to expectation (120). We believe, therefore, that NEvs

coincides with Qmic.
Expectation (120) would also, in principle, allow us to use [Gin86, Proposition

6.19] and [Gin86, Proposition 7.7.1] to identify rankNEvs with the microlocal Euler
characteristic. However, the proofs of those two results from [Gin86] rely in the
general case on [Bry86] and the relevant result there makes use of [Kas83, Théorème
3.2.5]. As we remarked in Section 6.3, [Kas83, Théorème 3.2.5] does not exist in the
published version of the original notes, and we have not been able to procure the
original notes, so using this approach would oblige us to use a result for which we
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cannot find a complete proof in the literature. That is another reason why we have
built Ev from scratch and established its main properties by hand in Section 6.

PART II. EXAMPLES

Each example follows essentially the same four-part plan, explained in some detail
in Section 8 and outlined here.

After fixing a connected reductive group G over a p-adic field F and an infinites-
imal parameter λ : WF → LG, we enumerate all admissible representations π of all
pure rational forms of G with infinitesimal parameter λ. We partition these admis-
sible representations into L-packets and show how Aubert duality operates on the
representations. Then, for each L-packet of Arthur type, we find the Arthur packet
that contains it. We calculate a twisting character which measures the difference be-
tween Arthur’s parametrization of representations in an Arthur packet with Mœglin’s
parametrization. We find the coefficients in the invariant distributions

(122) ΘGψ,s =
∑

π∈Πψ(G(F ))

〈s sψ, π〉ψ traceπ

that arise from stable distributions attached to Arthur packets for endoscopic groups
for G(F ) in [Art13, Theorem 1.5.1]. We also calculate the virtual representations
ηψ,s using Arthur’s work. See Section 8.1 for more detail on this part of the examples.

In the second part of each example, called Vanishing cycles of perverse sheaves,
we set up all the tools needed to calculate 〈ssψ, π〉ψ, and its generalisation to pure

rational forms of G, geometrically. We find the stratified variety Vλ attached to λ
and study the category PerZĜ(λ)(Vλ) of equivariant perverse sheaves on Vλ. We show
how this category decomposes into summand categories, called the cuspidal support
decomposition of PerZĜ(λ)(Vλ). Then we calculate the functor

(123) Evψ : PerZĜ(λ)(Vλ)→ Rep(Aψ)

on simple objects, using properties of vanishing cycles; NEv is defined in Section 6 and
recalled in Section 8.2.6. The results of these calculations – one for each example –
are presented in Sections 9.2.3, 10.2.5, 11.2.5, 12.2.5, 13.2.5 and 14.2.6. Section 8.2
includes an overview of how we made these calculations. We also show how the Fourier
transform interacts with the functor NEv.

In the third part we connect the two sides of this story, as treated above. To begin,
we find Vogan’s bijection between: admissible representations of split p-adic groups
and their pure rational forms with fixed infinitesimal parameter λ : WF → LG, as
recalled in Section 8.1; and simple equivariant perverse sheaves on Vλ, as recalled in
Section 8.2. With this bijection in hand, and the calculation of Ev from Section 8.2,
we easily find the ABV-packets ΠABV

pure,φ and associated virtual representations ηNEvφ,s .



76 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

By referring back to Section 8.1, we easily see

(124) ηψ,s = ηNEvφψ,s

for all Arthur parameters ψ with infinitesimal parameter λ, thus confirming Conjec-
ture 1 in the examples. This implies (12) and also implies

(125) Πpure,ψ = ΠABV
pure,φψ

for every Arthur parameter with infinitesimal parameter λ. We also verify the
Kazhdan-Lusztig conjecture in each example, which allows us to verify Conjecture 2
in our examples. We show how the twisting characters χψ from Section 8.1.5 relate to
the twisting local system Tψ introduced in Section 6.9 and recalled in Section 8.2.8.
While (125) shows that every Arthur packet is an ABV-packet, the converse is not
true; in this article we find four examples of ABV-packets that are not Arthur packets.
See Section 8.3 for more detail on this part of the examples.

In the fourth part, we show how to calculate endoscopic transfer, geometrically.
Specifically, when G admits an elliptic endoscopic group G′ and an infinitesimal

parameter λ′ : WF → LG
′

such that λ = ǫ ◦ λ′ with ǫ : LG
′ → LG, we show how

the transfer of stable distributions attached to Arthur parameter for G′ to G may be
apprehended through the restriction of equivariant perverse sheaves from Vλ to Vλ′ .
To see this, for each simple P ∈ PerHλ(Vλ), we calculate every term in the identity

(126) tracea′s NEvψ′ P|V ′ = (−1)dimC−dimC′

traceas NEvψ P ,
where ψ′ ∈ T ∗C′(V ′)reg with image ψ ∈ T ∗C(V )reg, where the semisimple s ∈ Ĝ is part
of the endoscopic data of G′, as is the image of s in Aψ and a′s is the image of s in
A′ψ. See Section 8.4 for more detail on this part of the examples.

Although do not show every calculation in every example, in Section 8 we explain
the ideas needed and then illustrate them as they appear in the examples.

8. Template for the examples

Here we explain the plan for all the examples. We have tried to make the examples
(Sections 9 through 14) as brief as possible, by making repeated reference back to this
section.

In each example we begin by choosing G from the following list of split algebraic
groups over a p-adic field F : in order, we take G to be SL(2), SO(3), PGL(4), SO(5),
SO(5) again, and finally, SO(7). In each case we find Z1(F,G), and thus all pure
rational forms of G, and relate these to the inner forms of G using the maps

H1(F,G)→ H1(F,Gad)→ H1(F,Aut(G)).

Every pure rational form δ ∈ Z1(F,G) determines a rational form Gδ of G, often also
called a pure rational form of G. The examples that we consider illustrate the fact
that the maps above are neither injective nor surjective, in general. In each case we
also fix an infinitesimal parameter

λ :WF → LG.
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We consider two infinitesimal parameters λ for SO(5), but otherwise choose one λ for
each group in the list, above.

Having fixed G and λ :WF → LG, we consider the conjectures from Section 7. We
prove these conjectures by brute force calculation in these examples. However, our
real our goal here is to show how to use results from Part I to calculate the stable
distributions in Arthur’s local result [Art13, Theorem 1.5.1] and also how to calculate
the coefficients that appear when these stable distributions are transferred to certain
endoscopic groups. As a consequence, we give complete examples of [Art13, Theorem
1.5.1] and explain how to use geometry to make the calculations.

8.1. Arthur packets. — We enumerate all admissible representations π of all pure
rational forms δ of G with a shared infinitesimal parameter λ. We show how these
representations fall into L-packets, indexed by Langlands parameters φ with infinites-
imal parameter λ. Then if φ is of Arthur type, we find corresponding the Arthur
packet. We find the stable distributions attached to these L-packets, and also all the
invariant distributions obtained from these representations by endoscopy.

8.1.1. Parameters. — We find all Langlands parameters φ : LF → LG such that

φ(w, dw) = λ(w), where dw ∈ SL(2) is defined by dw = diag(|w|1/2, |w|−1/2), as in
Section 2.5. As in Section 2.3, we write Pλ(

LG) for these Langlands parameters and
Φλ(G/F ) for the isomorphism classes of these Langlands parameters under ZĜ(λ)-
conjugation.

Then we find all Arthur parameters ψ : LF × SL(2,C) → LG such that
ψ(w, dw , dw) = λ(w). As in Section 2.4, the set of Arthur parameters that arise in
this way is denoted by Qλ(

LG). Although the map Qλ(
LG)→ Pλ(

LG) is injective, it
is not surjective in general.

8.1.2. Admissible representations and their pure L-packets. — Now we can list all
representations (π, δ) of all pure rational forms of G, in the sense of [Vog93], with
infinitesimal parameter λ. This means that for every pure rational form δ ∈ Z1(F,G),
we find all irreducible admissible representations π of the rational form Gδ attached to
G, such that the Langlands parameter φ for π lies in Pλ(

LG). These representations
are not tempered in most of the cases considered in this article. When the pure
rational form δ is clear from context, we may write π for (π, δ).

We arrange these admissible representations into L-packets and into pure L-packets.
For this, we must find the component group

Aφ :=ZĜ(φ)/ZĜ(φ)
0,

for each φ ∈ Pλ(
LG). According to the pure Langlands correspondence [Vog93],

equivalence classes of irreducible representations of pure rational forms of G with
infinitesimal parameter λ are indexed by the set

Ξλ(
LG) :=

{
(φ, ρ) | φ ∈ Pλ(LG)/ZĜ(λ), ρ ∈ Irrep(Aφ)

}
.

By abuse of notation, we write π(φ, ρ) for an irreducible admissible representation
of G(F ) corresponding to a pair (φ, ρ) above. Each ρ ∈ Irrep(Aφ) determines the
class of a pure rational form, denoted by δρ ∈ Z1(F,G), so the L-packet for φ and a



78 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

rational form Gδ is

Πφ(Gδ(F )) = {[π(φ, ρ)] | φ ∈ Pλ(LG), ρ ∈ Irrep(Aφ), [δρ] = [δ] ∈ H1(F,G)}.
We find these L-packets, for all φ ∈ Pλ(LG) and all δ ∈ Z1(F,G), in our examples.
We also find the pure L-packets:

Πpure,φ(G/F ) = {[π(φ, ρ), δρ] | φ ∈ Pλ(LG), ρ ∈ Irrep(Aφ)},
for all φ ∈ Pλ(LG). To simplify notation slightly, we often write π(φ, ρ) for the pair
(π(φ, ρ), δρ).

8.1.3. Multiplicity matrix. — To describe the representations with infinitesimal pa-
rameter λ we present the multiplicity mrep((φ, ρ), (φ

′, ρ′)) of π(φ, ρ) in the standard
module M(φ, ρ) so that in the Grothendieck group of admissible representations gen-
erated by Πpure,λ(G/F ) we have

M(φ′, ρ′) ≡
∑

(φ,ρ)

mrep((φ, ρ), (φ
′, ρ′)) π(φ, ρ),

where the sum is taken over all φ ∈ Pλ(LG) and all ρ ∈ Irrep(Aφ).
The idea of computing the multiplicities in the standard modules is to compare the

Jacquet modules of the standard modules with those of irreducible representations.
To be more precise, one can always make some guesses of what should be inside the
standard modules by looking at the corresponding inducing representations. Then one
can further argue that they are really there. To see there is nothing else, it is enough to
show that the Jacquet modules of the standard modules have been exhausted by these
representations. We give a sample calculation using this strategy in Section 14.1.3.

8.1.4. Arthur packets. — Recall Qλ(
LG) from Section 8.1.1. For each ψ ∈ Qλ(LG)

we show how the admissible representations above are grouped into Arthur packets

Πψ(Gδ(F ))

for rational forms δ of G. Of course, Πψ(Gδ(F )) contains the L-packet Πφψ (Gδ(F ));
our interest is in the representations in Πψ(Gδ(F )) that are not contained in
Πφψ(Gδ(F )); we referred to these as coronal representations in Section 7.4. In fact,
we further recall the adaptation of Arthur packets to pure rational forms and find
the pure Arthur packets

Πpure,ψ(G/F )

themselves.
Arthur’s main local result for quasisplit classical groups is expressed in terms of a

map

(127)
Πψ(G(F )) → Ŝψ ,

π 7→ 〈· , π〉ψ
where Sψ = ZĜ(ψ)/ZĜ(ψ)

0 Z(Ĝ)ΓF . As we saw in Section 2, this is easily rephrased
in terms of a map

(128) Πψ(G(F ))→ Irrep(Aψ),
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where
Aψ = ZĜ(ψ)/ZĜ(ψ)

0.

We find this map in our examples. In fact, using [Art13, Chapter 9], we find the
conjectured extension

(129) Πpure,ψ(G/F )→ Irrep(Aψ)

which includes the non-quasi-split pure rational forms of G, as discussed in Section 2.

8.1.5. Aubert duality. — Aubert involution preserves the infinitesimal parameter λ
and so defines an involution on KΠλ(Gδ(F )), for every pure ration form δ for G.
For π ∈ Πλ(Gδ(F )) we use the notation π̂ for the admissible representation such that
(−1)a(π)π̂ is the Aubert dual of π in KΠλ(Gδ(F )). When restricted to Arthur packets,
Aubert duality defines a bijection

Πψ(Gδ(F )) → Πψ̂(Gδ(F ))

π 7→ π̂,

where ψ̂(w, x, y) :=ψ(w, y, x). We display this bijection in our examples.
Although the component groups Aψ and Aψ̂ are isomorphic, a comparison of the

characters 〈 · , π〉ψ and 〈 · , π̂〉ψ̂ shows that they do not coincide, in general. Accord-

ingly, their ratio defines a character χψ of Aψ such that

(130) 〈s, π̂〉ψ̂ = χψ(s)〈s, π〉ψ,
for s ∈ ZĜ(ψ) where, as usual, we use the map ZĜ(ψ) → Aψ . In our examples, this
character χψ of Aψ is given by

(131) χψ = ǫ
M/W
ψ ǫ

M/W

ψ̂
,

where ǫ
M/W
ψ is the character of Aψ appearing in [Xu17, Theorem 8.9]. As explained

in [Xu, Introduction], the character ǫ
M/W
ψ measures the difference between Mœglin’s

parametrization of representations in Πψ by Aψ and Arthur’s parametrization of
representations in Πψ by Aψ. We compute the character χψ in our examples; it is
non-trivial in Sections 13.1.5 and 14.1.5 only.

8.1.6. Stable distributions and endoscopy. — Armed with (128), we easily find the
coefficients in the stable invariant distribution

(132) ΘGψ =
∑

π∈Πψ(G(F ))

〈sψ , π〉ψ traceπ,

where sψ denotes the image of the non-trivial central element in SL(2) inAψ . Likewise,
for s ∈ ZĜ(ψ) we compute

(133) ΘGψ,s =
∑

π∈Πψ(G(F ))

〈ssψ, π〉ψ traceπ.
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Arthur’s work shows that Θψ,s is the Langlands-Shelstad transfer of the invariant
distribution

(134) ΘG
′

ψ′ =
∑

π′∈Πψ′ (G′(F ))

〈sψ′ , π′〉ψ′ traceπ
′,

from the endoscopic group G′ attached to s, where ψ′ : LF × SL(2) → LG′ factors
through LG′ → LG thus defining ψ′ : LF×SL(2)→ LG′. In our examples, we illustrate

this fact by choosing a particular s ∈ Ĝ and computing Θψ′ .
In order to illuminate Conjecture 1 we use (129) to exhibit the virtual representa-

tions

(135) ηψ =
∑

[π,δ]∈Πpure,ψ(G/F )

e(δ)〈sψ , [π, δ]〉ψ [π, δ]

and

(136) ηψ,s =
∑

[π,δ]∈Πpure,ψ(G/F )

e(δ)〈ssψ , [π, δ]〉ψ [π, δ]

for s ∈ ZĜ(ψ), as defined in Section 7. Likewise we find

(137) ηψ′ =
∑

[π′,δ′]∈Πpure,ψ′ (G′/F )

e(δ′)〈sψ′ , [π′, δ′]〉ψ′ [π
′, δ′]

with s and ψ′ as above.

8.2. Vanishing cycles of perverse sheaves. — Having reviewed Arthur packets
and transfer coefficients for the chosen G and λ : WF → LG, we now turn to geometry.
In this section we introduce the geometric tools needed to demonstrate Conjecture 1
and calculate the coefficients 〈ssψ, [π, δ]〉ψ appearing above. This is done by a brute

force calculation of the exact functor
pEv : PerH(V )→ PerH(T ∗H(V )reg),

defined in Section 6, on simple objects, following a strategy that we now explain.

8.2.1. Vogan variety. — We find the variety V :=Vλ attached to the infinitesimal
parameter λ : WF → LG, the action of H :=Hλ :=ZĜ(λ) on V , and the stratification
of V into H-orbits. If λ is not unramified, we use Theorem 4.1.1 to replace the action
Hλ×Vλ → Vλ with Hλnr

×Vλnr
→ Vλnr

where λnr :WF → LGλ is the "unramification"
of λ : WF → LG. We may now assume λ is unramified and λ(Fr) is elliptic semisimple

in Ĝ.
For classical groups, the variety V admits a description which is quite convenient

for calculations, as we now explain.
First consider the case G = GL(n). The variety V can be decomposed as a finite

direct product of varieties according to

V ∼= Hom(E0, E1)×Hom(E1, E2)× · · ·Hom(Er−1, Er),

where each Ei is an eigenspace for λ(Fr) with eigenvalue λi. We may then denote el-
ements of V , i.e., quiver representations, by v = (vi,i+1)i, for vi,i+1 ∈ Hom(Ei, Ei+1).
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Then
H ∼= GL(E0)×GL(E1)× · · · ×GL(Er)

acting on Hom(E0, E1)×Hom(E1, E2)×· · ·Hom(Er−1, Er) by hi ·vi,i+1 = vi,i+1 ◦h−1i
and hi · vi−1,i = hi ◦ vi−1,i and hi · vj,j+1 = vj,j+1 for j 6= i, i − 1. The H-orbit of
v ∈ V is fully characterized by the collection of integers

rij := rank(vj−1,j ◦ · · · ◦ vi,i+1).

One derives a natural set of inequalities which describes admissible collections of
ranks. The partial order of adjacency is identical to the partial ordering on the
symbols (rij)ij .

We next note, that in general, passing between G, its derived group, its adjoint
form or its simply connected form (or effectively any other associated form), has no
impact on the variety V nor on the type of the group H . It does however tend to alter
significantly the center of the group H . Though this will not impact the collection
of orbits of H in V , it will tend to have a significant impact on the equivariant
fundamental groups, and hence the set of equivariant local systems which must be
considered.

Passing from the case when the derived group of G is of type An to the classical
forms of Bn, Cn or Dn simply results in an identification of the λi eigenspace of λ(Fr)
with the dual of the λ−1i eigenspace. There are essentially two cases to consider: either
Ei = E∗r−i. or no two of E0, . . . , Er are dual. In the later case, V is isomorphic to one
arising from an inclusion of a subgroup of type An and one can freely study the variety
by passing to this subgroup. In the former case, there are essentially four sub-cases
depending on if we are inside an orthogonal or symplectic group and if r is even or odd.
In either case the variety we are studying is the one where vi,i+1 = vtr−i−1,r−i and

the group acting factors through hi = htr−i. These equations impose further, obvious,
restrictions on the set of admissible collections of ranks/nullities, but otherwise the
collection of strata is still indexed by the set of admissible vectors (rij)ij and the
adjacency relations do not change.

For simplicity of exposition one can describe these varieties which occur when G
is of type Bn as one of

Hom(E0, E1)×Hom(E1, E2)× · · ·Hom(Eℓ−1, Eℓ)× Sym2(E∗ℓ )

with the group acting being GL(Ei) at every factor or

Hom(E0, E1)×Hom(E1, E2)× · · ·Hom(Eℓ−1, Eℓ)

Where the group acts by GL(Ei) on every factor except Eℓ where the group is Sp(Eℓ).
When G is of type Cn or Dn they are

Hom(E0, E1)×Hom(E1, E2)× · · ·Hom(Eℓ−1, Eℓ)×Alt2(E∗ℓ )

with the group acting being GL(Ei) at every factor.

Hom(E0, E1)×Hom(E1, E2)× · · ·Hom(Eℓ−1, Eℓ),

where the group acts by GL(Ei) on every factor except Eℓ where the group is O(Eℓ).
In all of these cases, ℓ is either r/2 or (r + 1)/2, and the combinatorial data which
describes the strata is still the collection of ranks ri,j for 0 ≤ i < j ≤ r.
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8.2.2. Orbit duality. — As we saw in Section 5, the cotangent bundle T ∗(V ) is
equipped with two important functions: the natural pairing ( · | · ) : T ∗(V ) → A1

which coincides with the restriction of the Killing form on jλ; and [ · , · ] : T ∗(V )→ h

which coincides with the restriction of the Lie bracket on jλ. In particular, for every
H-orbit C in V ,

T ∗C(V ) = {(x, ξ) ∈ T ∗(V ) | x ∈ C, [x, ξ] = 0}.
In the examples, we present the duality between H-orbits C in V and H-orbits C∗

in V ∗, defined by the property that they have isomorphic conormal bundles

T ∗C(V ) ∼= T ∗C∗(V ∗)

under T ∗(V ) → T ∗(V ∗) given by (x, ξ) 7→ (ξ, x), where we identify V ∗∗ with V
using ( · | · ). In fact, this duality between H-orbits in V and H-orbits in V ∗ is also
characterized by the following statement:

(138) T ∗C(V )reg ⊆ C × C∗,
where

T ∗C(V )reg :=T ∗C(V ) \ ∪
C(C′

T ∗C′(V ).

In the examples we present all this information by describing the conormal bundle

T ∗H(V ) := ∪
C
T ∗C(V ),

where the union is taken over all H-orbits C in V and the union is taken in T ∗(V ).
We also describe the regular conormal bundle

T ∗H(V )reg := ∪
C
T ∗C(V )reg.

From this, one simply restricts the bundle maps T ∗(V ) → V and T ∗(V ) → V ∗ to
T ∗C(V )reg to recover C and its dual orbit C∗.

8.2.3. Equivariant perverse sheaves. — The next step is to find all simple objects
in the category PerH(V ) of H-equivariant perverse sheaves on V . Again, we use
Theorem 4.1.1 to reduce to the case when λ is unramified and λ(Fr) is hyperbolic.

It is convenient to begin by enumerating all equivariant local systems L on all
H-orbits C in V . This is done by picking a base point x ∈ C and computing the
equivariant fundamental group

Ax := π0(ZH(x)) ∼= π1(C, x)ZH (x)0 .

Since the isomorphism type of this group is independent of the choice of base point,
this group is commonly denoted by AC . For the groups G that we consider here, the
fundamental group AC is always abelian, but this is not true in general. In any case,
the choice of x ∈ C determines an equivalence

Rep(AC)→ LocH(C).

It is now easy to enumerate all simple objects in category PerH(V ):

PerH(V )simple

/iso =
{
IC(C,L) | H-orbit C ⊆ V, L ∈ LocH(V )simple

/iso

}
.
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We will need to compute the equivariant perverse sheaves IC(C,L) themselves, or
rather, their image in the Grothendieck group

PerH(V )→ KPerH(V ) = KD
b
c,H(V ).

For every H-orbit C in V and every H-equivariant local system L on V , consider the
shifted standard sheaf

S(C,L) := jC ! L[dimC],

where jC : C →֒ Vλ is inclusion. Then, in KPerHλ(Vλ) we have

IC(C,L) ≡
∑

(C′,L′)

mgeo((C
′,L′), (C,L)) S(C′,L′)

and mgeo((C,L), (C,L)) = 1 and mgeo((C
′,L′), (C,L)) = 0 unless C′ ≤ C. We refer

to the matrix mgeo as the geometric multiplicity matrix. Set

L♯ :=IC(C,L)[− dimC] and L♮ :=S(C,L)[− dimC].

Then, in KPerHλ(Vλ),

L♯ ≡
∑

(C′,L′)

(−1)dimC−dimC′

mgeo((C
′,L′), (C,L)) L′♮.

A purity result of Lusztig shows that L♯ is cohomologically concentrated in even
degrees, so

m′geo((C
′,L′), (C,L)) := (−1)dimC−dimC′

mgeo((C
′,L′), (C,L))

is a non-negative integer. We refer to the matrix m′geo as the normalised geometric
multiplicity matrix.

We compute the normalised geometric multiplicity matrix m′geo in each example in
this article. In Sections 9.2.2 and 11.2.2 we use Theorem 4.1.1 to make this calculation.
In Sections 10.2.2, 12.2.2, 13.2.3 and 14.2.3 we give examples of the following strategy.
For each stratum C ⊆ V and each local system L on C, we construct a proper cover

π : C̃ → C such that C̃ is smooth and IC(C,L) appears in π!1C̃ [dim C̃]. We can

explicitly describe the fibres of π over each stratum in C and typically arrange things
so that the cover is semi-small, though this is not essential. We then find all the other

simple perverse sheaves IC(C′,L′), for C′ ≤ C, appearing in π!1C̃ [dim C̃], using the
Decomposition Theorem. By doing this for C and all strata on the boundary of C,
we can describe IC(C,L). Note that this process is performed inductively on dimC,
as well as on rank(π!1C̃)|C .

8.2.4. Cuspidal support decomposition and Fourier transform. — Category PerH(V )

decomposes into a direct sum of full subcategories indexed by cuspidal pairs for Ĝ, or
more correctly, cuspidal local systems on cuspidal pairs [Lus95b, Proposition 8.16].
We refer to this as the cuspidal support decomposition of PerH(V ):

PerH(V ) =
⊕

(L,O,E)

PerH(V )L,C,E ,
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where the sum is taken over all cuspidal Levi subgroups L of Ĝ, and all cuspidal local

systems E on nilpotent orbitsO ⊂ LieL, up to Ĝ-conjugation. In the cases we consider
there is only one (O, E) for every cuspidal Levi L, so we abbreviate PerH(V )L,C,E to
PerH(V )L. In each example we partition the simple objects in PerH(V ) according to
this decomposition. Simple objects in PerH(V )L are characterized by the property
that they appear in the semisimple complex formed by parabolic induction along
Vogan varieties from the cuspidal local system on LieL ∩ V ; see [Lus95c].

The cuspidal support decomposition of PerH(V ) offers insight into the blocks that
appearing within the geometric multiplicity matrix. It is also quite helpful for finding
the proper covers appearing in Section 8.2.3.

We also compute the Fourier transform

Ft : PerH(V )→ PerH(V ∗)

on all simple objects. This functor is compatible with the cuspidal support decompo-
sition in the sense that Ft restricts to PerH(V )L → PerH(V ∗)L.

8.2.5. Local systems on the regular conormal bundle. — In preparation for the cal-
culation of Ev : PerH(V ) → PerH(T ∗H(V )reg), we must describe local systems on
H-orbits T ∗C(V )sreg and also show how local systems relate to the pullback of local
systems along the bundle maps T ∗C(V )sreg → C and T ∗C(V )sreg → C∗. For this we pick
a base point (x, ξ) ∈ T ∗C(Vλ)sreg and compute the equivariant fundamental groups

A(x,ξ) = π0(ZH(x, ξ))) = π1(T
∗
C(V )sreg, (x, ξ))ZH (x,ξ)0 .

The isomorphism type of A(x,ξ) is independent of the choice of base point; it is

precisely the microlocal fundamental group of C, denoted by Amic
C . So the choice

of base point determines an equivalence

Rep(Amic
C )→ LocH(T ∗C(V )sreg).

We use this to enumerate the simple objects in LocH(T ∗C(V )sreg) and then to describe
the functors

LocH(C) LocH(T ∗C(V )sreg) LocH(C∗)

obtained by pullback the along the projections

C T ∗C(V )sreg C∗,

by way of the induced homomorphisms of equivariant fundamental groups.

Ax A(x,ξ) Aξ.

8.2.6. Vanishing cycles of perverse sheaves. — Here we present the results of apply-
ing the functor

pEv : PerH(V )→ PerH(T ∗H(V )sreg)

to simple objects in PerH(V ). Recall from Section 6 that pEv = ⊕C′
pEvC′ , where

pEvC′ : PerH(V )→ PerH(T ∗C′(V )reg).

is defined by
pEvC(F) = RΦ(·|·)[−1](F ⊠ 1C∗)|T∗

C(V )reg [dimC∗],
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where (·|·) : T ∗(V )→ A1 appeared in Section 8.2.2. Recall also from Section 6 that

( pEvF)(x,ξ) = (RΦξ[−1]F)x[dimC∗],

for all (x, ξ) ∈ T ∗H(V )reg.
We present the results of our calculations in a table which offers two perspectives

on pEv. Then recall that if IC(C,L) is simple, then pEvC′ IC(C,L)[− dim V ] is a
local system on T ∗C′(V )reg and this local system is determined by its restriction
EvsC′ IC(C,L) to the H-orbit T ∗C′(V )sreg. Our tables record pEv IC(C,L) in form
⊕C′IC(O′, E ′), where O′ :=T ∗C′(V )sreg. To describe each E ′, we use the base points
(x′, ξ′) ∈ T ∗C′(V )sreg to view EvsC′ IC(C,L) as a representation of the equivariant
fundamental group A(x′,ξ′) of T ∗C′(V )sreg. The second part of the table records the
characters of the representations Ev(x′,ξ′) IC(C,L) of A(x′,ξ′), as C′ ranges over all
strata in V and as IC(C,L) ranges over all simple objects in PerH(V ).

By Proposition 6.5.1 we know that pEvC′ P = 0 unless C′ ⊆ suppIC(C,L), which
is to say, unless C′ ≤ C. Proposition 6.6.2 shows that in the case C′ = C, we get

EvsC IC(C,L) = TC ⊗ (p∗L)|T∗
C(V )sreg ,

where p : T ∗C(V ) → C is the restriction of the bundle map T ∗(V ) → V and where
TC is the local system defined in Section 6.9. The local systems (p∗L)|T∗

C(V )sreg were
described in Section 8.2.5 and they are worked out in the corresponding sections in
each example. The work that remains to calculate pEv IC(C,L), therefore, is the cases
EvC′ IC(C,L) for C′ < C.

To calculate pEvC′ IC(C,L) for C′ < C we use Lemma 6.5.2. We describe our

method in some detail here. From Section 8.2.3 we recall a proper map π : C̃ → C

from a smooth variety C̃ chosen so that IC(C,L) appears in π!1C̃ [dim C̃]. Using
proper base change and the exactness of Ev, Proposition 6.4.1, we find EvC′ IC(C,L)
by computing

(139)
(
π′′s ! RΦ(· | ·)◦(π×idC′∗ )(1C̃×C′∗)

)
|T∗

C′ (V )reg ,

where π′′s is defined in Section 6.5. Since C̃ × C′∗ is smooth and 1C̃×C′∗ is a local
system, the vanishing cycles

(140) RΦ(· | ·)◦(π×idC′∗)
(1C̃×C′∗)

is a skyscraper sheaf on the singular locus of (· | ·) ◦ (π × idC′∗) on C̃ × C′∗. This
singular locus is easy to find using the Jacobian condition for smoothness, because of
the explicit nature of π and because we have already found equations for C′∗ in V ∗.
The map π′′s restricts to a proper map from this singular locus onto T ∗C(V ). In fact, this
map is finite over T ∗C′(V )reg; this is a post-hoc consequence of the fact that the fibres
of π′′s are closed and the stalks of the vanishing cycles functor are concentrated in a
single degree. After restricting (140) to the preimage of T ∗C′(V )reg under π× idC′∗ , we
use the Decomposition Theorem to explicitly describe (139). While it is typically very
easy to compute the rank of the resulting local system, determining the representation
of the fundamental group that describes the local system is considerably more subtle
as it depends on the local structure of the singularities. We give examples of these
calculations in Sections 10.2.5, 12.2.5, 13.2.5 and 14.2.6.
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We observe that many of these calculations may be simplified considerably by
a judicious use of the formula (141) from Section 8.2.8 and formula (154) from
Section 8.4.

8.2.7. Normalization of Ev and the twisting local system. — Having calculated pEv :
PerH(V ) → PerH(T ∗H(V )reg) in Section 8.2.6, here we calculate the normalization of
Ev, as given in Definition 2. In the process, we make explicit the rank-one local system
T on T ∗H(V )sreg defined in (97) .

8.2.8. Fourier transform and vanishing cycles. — In this section we predict how the
Fourier transform interacts with vanishing cycles, or more precisely, with the functor
Ev and its dual Ev∗ : PerH(V ∗)→ PerH(T ∗H(V

∗)reg), where the latter is defined exactly
as above but with V replaced by V ∗. We believe that there is a local system T Ft on
T ∗H(V )reg such that

a∗
(
T Ft ⊗ pEv

)
= pEv

∗
Ft,

where a : T ∗(V )→ T ∗(V ∗) is the isomorphism a(x, ξ) = (ξ,−x) and where we identify
the dual of V ∗ with V using ( · | · ). In our examples this local system T Ft coincides
with the local system T which we introduced in (97). We show this by verifying the
formula

(141) a∗
pNEvC = pEvC∗ Ft,

for all strata C ⊆ V , in our examples. The rank-one local system T is non-trivial in
Sections 13.2.7 and 14.2.8, only.

8.2.9. Arthur sheaves. — In the examples we close each version of Section 8.2 by
displaying the Arthur sheaves AC that appeared in Section 7.4, for each stratum
C ⊆ V . These equivariant perverse sheaves are defined, up to isomorphism, by

AC :=
∑

P∈PerH(V )simple

/iso

(rankEvC P) P

We also remark that

(142) FtAC = AC∗ .

8.3. ABV-packets. — Having calculated the vanishing cycles of perverse sheaves
on Vogan varieties in Section 8.2, it is a simple matter now to find the ABV-packets
for all Langlands parameters with given infinitesimal parameter. In this section we
also see that the Arthur packets described in the examples are indeed ABV-packets.
But the real object of the conjectures from Section 7 are the characters 〈 · , π〉ψ of Aψ
that appear in Arthur’s main local result, and their generalisations to pure rational
forms of G. In this part of each example we show

〈s, π〉ψ = traceas NEvCψ P(π)
for s ∈ ZĜ(ψ) with image as ∈ Aψ, and verify Conjecture 1 and Conjecture 2.

8.3.1. Admissible representations versus equivariant perverse sheaves. — As shown
in Proposition 3.2.2 every Langlands parameter φ ∈ Pλ(

LG) determines a point



ARTHUR PACKETS FOR p-ADIC GROUPS BY WAY OF VANISHING CYCLES 87

xφ ∈ V and every x ∈ V arises in this way. The function φ 7→ xφ is also H-
equivariant, so it induces a bijection between Φλ(

LG) and the set of H-orbits in V .
We write Cφ for the H-orbit of xφ. There is a canonical isomorphism of groups

(143) Aφ ∼= ACφ ,

where Aφ = π0(ZĜ(φ)) is the component group appearing in the pure Langlands
correspondence. Consequently, there is a natural bijection between pairs (φ, ρ), where
ρ is a representation of Aφ, and pairs (Cφ,Lρ), where Lρ is the equivariant local system
matching ρ under the isomorphism above. This, in turn, determines a bijection

(144)
Πpure,λ(G/F ) → PerHλ(Vλ)

simple

/iso

(π, δ) 7→ P(π, δ)
8.3.2. ABV-packets. — Using this bijection, we determine the ABV-packets for all
Langlands parameters with infinitesimal parameter λ, in each example, using the
definition

(145) ΠABV
pure,φ(G/F ) := {[π, δ] ∈ Πpure,λ(G/F ) | EvCφ P(π, δ) 6= 0}.

By restricting our attention to Langlands parameters of Arthur type, we readily verify
that all Arthur packets for all admissible representations with infinitesimal parameter
λ are ABV-packets:

(146) ΠABV
pure,φψ(G/F ) = Πpure,ψ(G/F ).

Having verified (146) in the examples, we turn to Conjecture 1, which begins with
the canonical isomorphism

Aψ ∼= Amic
Cψ
,

where ψ is an Arthur parameter and where Cψ :=Cφψ . Right away, this isomorphism
tells us that the character 〈 · , π〉ψ of Aψ appearing in Arthur’s main local result may

be interpreted as an equivariant local system on T ∗Cψ(V )sreg. How does the admissible

representation π of G(F ) determine that local system? That question is answered by
Conjecture 1: for every s ∈ ZĜ(ψ) and for every admissible representation π of G(F ),

(147) 〈ssψ, π〉ψ = (−1)dimCψ−dimCπ traceas NEvCψ P(π),
where as is the image of s ∈ ZĜ(ψ) in Aψ and where Cπ is the stratum in V attached
to the Langlands parameter of π. In other words, the equivariant local system on
T ∗Cψ(V )sreg determined by the admissible representation π of G(F ) is NEvCψ P(π).

Having calculated the left-hand side of (147) in Section 8.1 and right-hand side
in Section 8.2, we can prove Conjecture 1 in our examples by simply comparing the
results of those calculations. In fact we confirm more in the examples, by showing
that

(148) ηψ,s = ηNEvψ,s,

for every Arthur parameter ψ with infinitesimal parameter λ and for every s ∈ ZĜ(ψ).
Here, ηNEvψ,s is defined in Section 7:

(149) ηNEvψ,s =
∑

[π,δ]∈Πpure,λ(G/F )

e(δ)(−1)dimCψ−Cπ traceas EvCψ P(π, δ) [π, δ].
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8.3.3. Kazhdan-Lusztig conjecture. — Recall in Section 7.3 that we have defined a
pairing

〈 · , · 〉 : KΠpure,λ(G/F )× KPerHλ(Vλ)→ Z

such that for any (φ, ρ), (φ′, ρ′) ∈ Ξλ(
LG)

〈π(φ, ρ),P(φ′, ρ′)〉 = (−1)dimCφe(φ, ρ)δ(φ,ρ),(φ′,ρ′)

where e(φ, ρ) is the Kottwitz sign of Gδ determined by (φ, ρ). Kazhdan-Lusztig
conjecture predicts that

〈M(φ, ρ),P(φ′, ρ′)〉 = e(φ, ρ)δ(φ,ρ),(φ′,ρ′)

for any (φ, ρ), (φ′, ρ′) ∈ Ξλ(
LG). We verify the Kazhdan-Lusztig conjecture in our

examples. This is done by comparing the multiplicity matrix mrep from Section 8.1.3
with the normalised geometric multiplicity matrix m′geo from Section 8.2.3:

tmrep = m′geo.

As a consequence, we can verify Conjecture 2 in our examples following the argu-
ment below. Let KCΠpure,λ(G/F )

st be the subspace of strongly stable virtual repre-
sentations in KCΠpure,λ(G/F ) := KΠpure,λ(G/F )⊗Z C. It has a natural basis

ηφ :=
∑

ρ:(φ,ρ)∈Ξλ(LG)

dim(ρ)e(φ, ρ)M(φ, ρ)

parametrized by φ ∈ Pλ(LG)/Hλ. After identifying KCΠpure,λ(G/F ) with

KCPerHλ(Vλ)
∗ = HomZ(KPerHλ(Vλ),C),

through the pairing above, we would like to characterize KCΠpure,λ(G/F )
st in

KCPerHλ(Vλ)
∗. By the Kazhdan-Lusztig conjecture,

〈ηφ,P〉 = χloc
Cφ

(P) :=
∑

ρ:(φ,ρ)∈Ξλ(LG)

(−1)dimCφmgeo(S(Cφ,Lρ),P),

for any P ∈ KPerHλ(Vλ). Therefore, KCΠpure,λ(G/F )
st is spanned by χloc

Cφ
(·) for

φ ∈ Pλ(LG)/Hλ in KCPerHλ(Vλ)
∗. On the other hand, by Ginzburg, Kashiwara and

Dubson [BDK81] [Kas73], we know that for any φ ∈ Pλ(LG) and P ∈ KPerHλ(Vλ),

χmicCφ
(P) := rankEvCφ(P) =

∑

φ′∈Pλ(LG)/Hλ

c(Cφ, Cφ′)χlocCφ′ (P),

where c(Cφ, Cφ′) satisfies the following properties: c(Cφ, Cφ) = (−1)dimCφ ; and
c(Cφ, Cφ′) 6= 0 only if C̄φ′ ⊇ Cφ. The coefficients c(Cφ, Cφ′) are related to the local
Euler obstructions defined by MacPherson. In particular, it measures the singularity
of the closure of Cφ′ at its boundary stratum Cφ. As a consequence, we see the set
of χmicCφ

(·) for φ ∈ Pλ(LG)/Hλ forms another basis for KΠpure,λ(G/F )
st
C . Finally, it is

easy to see that for any φ ∈ Pλ(LG) and P ∈ KPerHλ(Vλ)

〈ηNEvCφ
,P〉 = (−1)dimCφχmicCφ

(P).
So the set of ηNEvCφ

for φ ∈ Pλ(LG)/Hλ also forms a basis for KΠpure,λ(G/F )
st
C . This

proves Conjecture 2.
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8.3.4. Aubert duality and Fourier transform. — In order to compare Aubert du-
ality with the Fourier transform, we equip V with the symmetric bilinear form
(x, y) 7→ −(x | ty ), where t refers to transposition in jλ, and we use this to de-

fine an isomorphism V → V ∗. We use the notation Ĉ := tC∗. Let ϑ : H → H
be the isomorphism of algebraic groups given by ϑ(h) = th−1, in which t refers to
transposition in Jλ. Then V → V ∗ is equivariant for the usual action of H on V
and the twist by ϑ of the usual action of H on V ∗. Now, equivariant pullback de-
fines an equivalence of categories PerH(V ∗) → PerH(V ). When pre-composed with
the Fourier transform Ft : PerH(V ) → PerH(V ∗), this defines a functor denoted by
∧ : PerH(V )→ PerH(V ). Our examples show

(150) P(π̂, δ) = P̂(π, δ).
Using the equivalence PerH(V ∗)→ PerH(V ) described above, (141) may be re-written
in form

(151) pNEvP = pEv P̂ ,
Taking traces, and recalling pNEv = T ∨ ⊗ pEv, this implies

tracea

(
NEvĈ P̂

)
= traces TC tracea (NEvC P)

for every a ∈ Amic
C . Taking P = P(π) and C = Cψ and using (150) and (152), we

recover (130).

8.3.5. Normalisation. — Recall the character χψ of Aψ given by (130). Recall from

Section that our examples suggest that this character coincides with ǫ
M/W
ψ ǫ

M/W

ψ̂
(131).

Now recall the local system T on T ∗H(V ∗)reg appearing in Sections 8.2.6. In this article
we see in our examples that

(152) traceTψ = χψ,

where Tψ is the restriction of the local system T on T ∗H(V )sreg introduced in Sec-
tion 6.9. Recall also that this local system T appeared in our study of the Fourier
transform, specifically, (141). It seems remarkable to us that the characters χψ,

ǫ
M/W
ψ ǫ

M/W

ψ̂
, traceT |Cψ and traceT Ft|Cψ all coincide in our examples.

8.3.6. ABV-packets that are not pure Arthur packets. — While all pure Arthur pack-
ets are ABV-packets in these examples, it is not true that all ABV-packets are pure
Arthur packets. In Sections 12.3.7 and 14.3.6 we discuss examples of ABV-packets
that are not pure Arthur packets and yet enjoy many of the properties we expect from
Arthur packets.

8.4. Endoscopy and equivariant restriction of perverse sheaves. — One of
the ingredients in the proof of Conjecture 1 in [CFMX] for unipotent representations
of odd orthogonal groups, is the following theorem. Let G′ be an endoscopic group

for G though which λ : WF → LG factors, thus defining λ′ : WF → LG
′
. Set

V ′ = Vλ′ . Let C′ be an H ′-orbit in V ′; pick (x′, ξ′) ∈ T ∗C′(V ′)reg and let C be the
H-orbit in V of the image of x′ under V ′ →֒ V . Suppose that the conormal map
T ∗C′(V ′) → T ∗C(V ) restricts to T ∗C′(V ′)reg → T ∗C(V )reg. Let (x, ξ) ∈ T ∗C(V )reg be its
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image of (x′, ξ′) ∈ T ∗C′(V ′)reg under that map. Then, for every P ∈ PerH(V ),

(153) (−1)dimC′

tracea′s
(
NEv
′ P|V ′

)
(x′,ξ′)

= (−1)dimC traceas (NEvP)(x,ξ) ,
where as is the image of s under ZĜ(x, ξ) → A(x,ξ) and a′s is the image of s under
ZĜ′(x

′, ξ′)→ A(x′,ξ′).
In the examples in this article, we calculate both sides of (153), independently, in

order to illustrate how the functor of vanishing cycles Ev interacts with the equivariant
restriction functor DH(V ) → DH′ (V ′). As explained in [CFMX], it is (154) that
allows us to conclude that ηNEvφ,s is the endoscopic transfer of a strongly stable virtual

representation on G′.
Although we don’t show the calculations here, the same arguments used to prove

(153) also show

(154) (−1)eC′−dimC′

tracea′s
(
Ev
′ P|V ′

)
(x′,ξ′)

= (−1)eC−dimC traceas (EvP)(x,ξ) ,
under the same hypotheses.

8.4.1. Endoscopic Vogan varieties. — After recalling the endoscopic groups G′ and
the infinitesimal parameters λ′ :WF → LG′ such that λ = ǫ◦λ′ from Section 8.1.6, we
describe V ′ :=Vλ′ and its stratification into orbits under the action by H ′ :=ZĜ′(λ

′).

In all cases, G′ = G(2) × G(1) so λ′ = (λ(2), λ(1)). Except for Section 9, we have
arranged the sequence of examples so that by the time we get to λ′ : WF → LG′,

both λ(1) : WF → LG
(1)

and λ(2) : WF → LG
(2)

have already been studied. Since
H ′ = H(2) ×H(1) and V ′ = V (2) × V (1), we use the equivalence

PerH(2)(V (2))× PerH(1)(V (1)) PerH′ (V ′)⊠

to answer all questions about PerH′ (V ′) using earlier work.
The H ′-invariant function ( · | · ) : T ∗(V ′)→ A1 is simply the sum of the functions

T ∗(V (1)) → A1 and T ∗(V (2)) → A1 while [ · , · ] : T ∗(V ′) → h′ is likewise built from
the functions T ∗(V (1)) → h(1) and T ∗(V (2)) → h2. Consequently, the conormal
bundle is

T ∗H′(V ′) = T ∗H(2)(V
(2))× T ∗H(1)(V

(2)),

so PerH′(T ∗H′ (V ′)reg) can be completely described using earlier work.

8.4.2. Vanishing cycles. — It follows from the Thom-Sebastiani Theorem, [Ill17]
and [Mas01], that

Ev
′
(
IC(C(2),L(2))⊠ IC(C(1),L(1))

)
=
(
Ev IC(C(2),L(2))

)
⊠

(
Ev IC(C(1),L(1))

)
.

Thus, the functor
Ev
′ : PerH′(V ′)→ PerH′(T ∗H′ (V ′)reg)

may also be deduced from earlier work.

8.4.3. Restriction. — The equivariant restriction functor

(155)
DH(V ) −→ DH′ (V ′)

F 7→ F|V ′
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does not take perverse sheaves to perverse sheaves. Since we wish to illustrate (154),
we compute (155) in each example, after passing to Grothendieck groups.

8.4.4. Restriction and vanishing cycles. — We have now assembled all the pieces
needed to illustrate (154). We begin by identifying all (x′, ξ′) ∈ T ∗H′(V ′)reg such that
the image of (x′, ξ′) in T ∗H(V ) is regular. This gives us an opportunity to revisit the
question of finding all Arthur parameters ψ : LF × SL(2) → LG with infinitesimal

parameter λ that factor through ǫ : LG
′ → LG to define Arthur parameters ψ :

LF × SL(2) → LG with infinitesimal parameter λ′. Finally, for such (x′, ξ′) we pick
a simple perverse sheaf P ∈ PerH(V ) and compute both sides of (154), where s is
determined by the elliptic endoscopic group G′.

9. SL(2) 4-packet of quadratic unipotent representations

Set G = SL(2) over F ; so Ĝ = PGL(2,C) and LG = PGL(2,C)×WF . Suppose q
is odd.

The function H1(F,G) → H1(F,Gad) is injective but not surjective; indeed,
H1(F,G) is trivial but H1(F,G∗ad)

∼= µ2. In other words, SL(2) has no pure rational
forms but it does have an inner rational form.

Let ̟ ∈ F be a uniformizer and let u ∈ F be a non-square unit integer. Let E/F
be the biquadratic extension E = F (

√
̟,
√
u). Then Gal(E/F ) = {1, σ, τ, στ} where

σ(
√
u) = −√u and τ(

√
̟) = −√̟. Define ̺ : Gal(E/F )→ PGL(2) by

σ 7→
(

0 1
−1 0

)
and τ 7→

(
1 0
0 −1

)
.

Let λ : WF → LG be the infinitesimal parameter defined by the composition LF →
WF → ΓF → Gal(E/F ) followed by ̺ : Gal(E/F )→ Ĝ; thus,

λ(w) =

(
0 1
−1 0

)
w ∈ LG, if w|E = σ,

and

λ(w) =

(
1 0
0 −1

)
w ∈ LG, if w|E = τ.

9.1. Arthur packets. —

9.1.1. Parameters. — There is only one Langlands parameter with infinitesimal
parameter λ chosen above: φ(w, x) = λ(w). This Langlands parameter is of Arthur
type: ψ(w, x, y) = λ(w).

9.1.2. L-packets. — With φ as above, we have

ZĜ(φ) =

{(
1 0
0 1

)
,

(
0 1
−1 0

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)}
.

Let Aφ ∼= µ2 × µ2 be the isomorphism determined by
(

0 1
−1 0

)
7→ (−1,+1) and

(
1 0
0 −1

)
7→ (+1,−1).



92 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

Using this isomorphism, the characters of Aφ will be denoted by (++), (+−), (−+)
and (−−). The L-packet Πφ(G(F )) is the unique cardinality-4 L-packet for SL(2, F ):

Πφ(G(F )) = {π(φ,++), π(φ,+−), π(φ,−+), π(φ,−−)}.
This L-packet, which is described in [She79, Section 11], may be obtained by re-
stricting a supercuspidal representation of GL(2, F ) given in [JL70, Theorem 4.6] to
SL(2, F ). Alternately, these depth-zero supercuspidal representations are produced by
compact induction from a maximal parahoric (there are two, up toG(F )-conjugation),
from (the inflation of) the two cuspidal irreducible representations appearing in the
only non-singleton Deligne-Lusztig representation of SL(2,Fq). The characters of
these representations are described in [ADSS11, Section 15].

Since G has no pure inner forms, the pure packet for the Langlands parameter φ
is an L-packet:

Πpure,φ(G/F ) = Πφ(G(F )).

9.1.3. Arthur packets. — The L-packet Πφ(G(F )) is an Arthur packet:

Πpure,ψ(G/F ) = Πpure,φ(G/F ).

9.1.4. Aubert duality. — Aubert involution fixes all the representations in this ex-
ample.

9.1.5. Stable distributions and endoscopy. — Since ψ is trivial on SL(2) in its do-
main, it follows that sψ = 1, so the stable invariant distribution (132) attached to ψ
is

Θψ = traceπ(φ,++) + traceπ(φ,+−) + traceπ(φ,−+) + traceπ(φ,−−).
For any s ∈ ZĜ(ψ) (the 4-group ZĜ(φ) appearing in Section 9.1.2) the coefficients of
Θψ,s appearing in (133) are simply

(156) 〈s, π(φ,±±)〉ψ = (±±)(s).
Besides G itself, three endoscopic groups are relevant to ψ: the unramified torus

U(1) split over F (
√
u), and the two ramified tori split over F (

√
̟), and F (

√
u̟).

More precisely, in the case of the unramified torus, take s ∈ Ĝ to be

s =

(
1 0
0 −1

)

and set

n =

(
0 1
−1 0

)
.

Note that
s = ψ◦(w), if w|E = τ

and
n = ψ◦(w), if w|E = σ.

Let G′ be the endoscopic group U(1) split over F (
√
u) with: Ĝ′ = ZĜ(s)

0; action of

WF on Ĝ′ determined by π0(ZĜ(s))
∼= Gal(F (

√
u)/F ); and ε : LG′ → LG given by
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Ĝ′ = ZĜ(s)
0 ⊂ Ĝ and

ε(1⋊ w) :=nw, if w|E = σ.

Then the Arthur parameter ψ : LF × SL(2) → LG factors through ε : LG′ → LG to
define ψ′ : LF × SL(2)→ LG′, so

ψ′(w) = s⋊ w ∈ LG′, if w|E = τ.

The representation of G′(F ) with Arthur parameter ψ′ is the quadratic character
attached to the extension F (

√
u)/F by class field theory. Then the endoscopic transfer

of the quadratic character from G′(F ) to G(F ) is

Θψ,s = traceπ(φ,++)− traceπ(φ,+−) + traceπ(φ,−+)− traceπ(φ,−−).
The set-up is similar for the ramified tori, as we now explain. Take

s =

(
0 1
−1 0

)
, respectively,

(
0 1
1 0

)
,

and, in the same order, set

n =

(
0 1
1 0

)
, respectively,

(
1 0
0 −1

)
.

Then
s = ψ◦(w), if w|E = σ, respectively, w|E = στ,

and
n = ψ◦(w), if w|E = στ, respectively, w|E = τ.

Let G′ be the endoscopic group U(1) split over F (
√
̟), respectively, F (

√
u̟) with:

Ĝ′ = ZĜ(s)
0; action of WF on Ĝ′ determined by

π0(ZĜ(s))
∼= Gal(F (

√
̟)/F ), respectively, π0(ZĜ(s))

∼= Gal(F (
√
u̟)/F );

and ε : LG′ → LG given by Ĝ′ = ZĜ(s)
0 ⊂ Ĝ and

ε(1⋊ w) := nw, if w|E = στ, respectively, w|E = τ.

Then the Arthur parameter ψ : LF × SL(2) → LG factors through ε : LG′ → LG to
define ψ′ : LF × SL(2)→ LG′, so

ψ′(w) = s⋊ w ∈ LG′, if w|E = σ, respectively, w|E = στ.

The representation of G′(F ) with Arthur parameter ψ′ is the quadratic character
attached to the extension F (

√
̟)/F , respectively, F (

√
u̟)/F , by class field theory.

Then the endoscopic transfer of the quadratic character from G′(F ) to G(F ) is Θψ,s
which, in order, is

Θψ,s = traceπ(φ,++) + traceπ(φ,+−)− traceπ(φ,−+)− traceπ(φ,−−),
respectively,

Θψ,s = traceπ(φ,++)− traceπ(φ,+−)− traceπ(φ,−+) + traceπ(φ,−−).
Together with the stable distribution Θψ, these three Θψ,s form a basis for the

vector space spanned by the characters of representations with infinitesimal parameter
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λ. These four distributions are expressed in terms of the Fourier transform of regular
semisimple orbital integrals, and their endoscopic transfer, in [CG09, Section 6.2].

9.1.6. Jacquet-Langlands. — The L-packet that this example treats also appears in
[Art06, Section 4, page 215], alongside the L-packet for the inner form corresponding
to a non-trivial cocycle in Z1(F,Gad), which determines the compact form of G,
mentioned at the beginning of this section and now denoted by Gσ. The same
Langlands parameter φ as above, when viewed as a Langlands parameter for Gσ,
produces a singleton L-packet. In this case Sψ,sc = ZĜsc

(ψ), which is the subgroup of

Ĝsc = SL(2) isomorphic to Q8 given by

Sψ,sc =





(
1 0
0 1

)
,

(
0 i
i 0

)
,

(
i 0
0 −i

)
,

(
0 1
−1 0

)

(
−1 0
0 −1

)
,

(
0 −i
−i 0

)
,

(
−i 0
0 i

)
,

(
0 −1
1 0

)




.

The compact form Gσ of G = SL(2) carries exactly one admissible representation with
infinitesimal parameter λ, and it corresponds to the unique irreducible 2-dimensional
representation of this group. We denote this representation by π(φ, 2). Although the
theory presented in Part I does include inner rational forms that are not pure, in
Section 9.2.7 we will show how to adapt the geometric picture so that it does include
π(φ, 2).

9.2. Vanishing cycles of perverse sheaves. —

9.2.1. Vogan variety and orbit duality. — Recall the groups Hλ, Jλ and Kλ from
Section 4.3. In the example at hand, these are given by

Hλ = Jλ =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 1
−1 0

)}
∼= µ2 × µ2

and Kλ = NĜ∗(T̂ ). In particular, Gλ = 1 and λnr : WF → LG is trivial so Vλnr
= 0

and Hλnr
= 1.

9.2.2. Equivariant perverse sheaves. — With reference to Theorem 4.1.1 we have

Rep(Aλ) PerHλ(Vλ) PerHλnr
(0)

Rep(µ2 × µ2) Perµ2×µ2(0) Per1(0).

equiv. π∗

π∗

In particular, there are four simple objects in PerHλ(Vλ) corresponding to the four
simple Hλ-equiviariant local systems on Vλ = {0}, or equivalently, to the four char-
acters of Aλ:

PerH(V )simple

/iso = {(++)V , (+−)V , (−+)V , (−−)V }.
9.2.3. Vanishing cycles of perverse sheaves. — We wish to describe the functor

Ev : PerHλ(Vλ)→ PerHλ(T
∗
Hλ(Vλ)reg).
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We have already seen that PerHλ(Vλ) = Rep(Aλ). In this case we have T ∗Hλ(Vλ)reg =
{(0, 0)}, so PerHλ(T

∗
Hλ

(Vλ)reg) = Rep(Aλ). With these equivalences,

Ev : Rep(Aλ)→ Rep(Aλ)

is the identity functor:

(157) traces Evψ(±±)V = (±±)(s)
for every s ∈ ZĜ(ψ).
9.2.4. Normalization of Ev and the twisting local system. — Since Ev is trivial in
this example, so is T and NEv; accordingly, the material of Section 8.2.7 is trivial in
this example.

9.2.5. Fourier transform and vanishing cycles. — Since Ev, NEv and Ft are trivial in
this example, the material of Section 8.2.8 is trivial.

9.2.6. Arthur sheaves. — Since Vλ = {0} is a single stratum, there is only one stable
perverse sheaf to consider:

AC0 = (++)V ⊕ (+−)V ⊕ (−+)V ⊕ (−−)V .
Of course, this is just the regular representation of Aλ.

9.2.7. Jacquet-Langlands. — We now show how to extend the geometric picture to
include the admissible representation π(φ, 2) of the inner rational form Gσ of G.

Replace the group action Hλ × Vλ → Vλ with the group action Hλ,sc × Vλ → Vλ,
where

Hλ,sc :=ZĜsc
(λ),

and where Hλ,sc acts on Vλ through Hλ,sc → Hλ induced by the universal cover

Ĝsc → Ĝ. The analysis of Section 3.4 shows that

PerHλ,sc(Vλ) ≡ Rep(Aλ,sc),

where Aλ,sc :=π0(Hλ,sc). Of course, Aλ,sc is just the group Sψ,sc appearing above.
Now Aλ,sc has five irreducible representations up to equivalence: four one-dimensional
representations obtained by pullback from the four characters of Aλ we have already
seen, and one two dimensional representation, denoted by E. Thus, the category
Rep(Aλ,sc) has exactly five simple objects up to isomorphism, and thence PerHλ,sc(Vλ)
has exactly five simple objects up to isomorphism:

Per
simple
Hλ,sc

(Vλ)/iso = {EV , (++)V , (+−)V , (−+)V , (−−)V }.
The rest of the story now carries through. For instance, the diagram of functors from
Section 9.2.2 becomes the following diagram:

Rep(Aλ,sc) PerHλ,sc(Vλ) PerH0
λ,sc

(Vλ)

Rep(Q8) PerQ8(0) Per1(0).

equiv. π∗

π∗
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Also, the functor vanishing cycles, Ev, is again the identity functor Rep(Aλ,sc) →
Rep(Aλ,sc), and the Arthur sheaf is again just the regular representation of Aψ,sc.
Thus, simply replacing category PerHλ(Vλ) with PerHλ,sc(Vλ) extends the theory from
pure inner twists of G to inner twists of G, allowing us to see the Jacquet-Langlands
correspondence from the geometric perspective of Part I.

9.3. ABV-packets. —

9.3.1. Admissible representations versus equivariant perverse sheaves. — The fol-

lowing table displays Vogan’s bijection between PerHλ(Vλ)
simple

/iso and Πpure,λ(G/F ),

as discussed in Section 8.3.1.

PerHλ(Vλ)
simple

/iso Πpure,λ(G/F )

(++)V π(φ,++)
(+−)V π(φ,+−)
(−+)V π(φ,−+)
(−−)V π(φ,−−)

9.3.2. ABV-packets. — Using the bijection from Section 9.3.1 and the trivial functor
of Ev from Section 9.2.3, it follows directly from definition (145) that

Πψ(G(F )) = ΠABV
pure,φψ

(G/F ).

With reference to (149) and (157), in this example we find: if s = 1 then

ηNEvψ,1 = π(φ,++)− π(φ,+−) + π(φ,−+)− π(φ,−−);
if s = ( 1 0

0 −1 ) then

ηNEvψ,s = π(φ,++)− π(φ,+−) + π(φ,−+)− π(φ,−−);
if s = ( 0 1

−1 0 ) then

ηNEvψ,s = π(φ,++) + π(φ,+−)− π(φ,−+)− π(φ,−−);
and if s = ( 0 1

1 0 ) then

ηNEvψ,s = π(φ,++)− π(φ,+−)− π(φ,−+) + π(φ,−−).
Comparing ηNEvψ,s above with ηψ,s as calculated in Section 9.1.5, we see that

trace ηNEvψ,s = Θψ,s,

in all four cases, thus confirming Conjecture 1 in this example.

9.3.3. Kazhdan-Lusztig conjecture. — The material of Section 8.3.3 is trivial in this
example.

9.4. Endoscopy and equivariant restriction of perverse sheaves. — In Sec-
tion 9.1.5 we saw that the Arthur parameter ψ factors though three elliptic endoscopic
groups, G′. For each of these G′, the infinitesimal parameter λ : WF → LG factors
through ε : LG′ → LG to define λ′ : WF → LG′.

9.4.1. Endoscopic Vogan variety. — For each G′ above, H ′ :=Z
Ĝ′(λ

′) is the sub-
group of H generated by s in H ′; see Section 9.1.5 for s. Thus, PerH′(V ′) ≡ Rep(H ′)
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has two simple objects, now denoted by (+)V ′ and (−)V ′ . Now, Vogan’s bijection for

λ′ :WF → LG
′
is given by the following table.

PerH′ (V ′)simple

/iso Πpure,λ′(G′/F )

(+)V ′ π(φ′,+)
(−)V ′ π(φ′,+)

Then π(φ′,+) = π(φ′,−) is the quadratic character of G′(F ) = N−1E′/F (1) determined

by φ′.

9.4.2. Vanishing cycles. — Arguing as in Section 9.2.3, we see that

NEv
′ : Rep(Aλ′)→ Rep(Aλ′ )

is trivial.

9.4.3. Restriction. — The restriction functor PerH(V ) → PerH′ (V ′) is just restric-
tion Rep(H)→ Rep(H ′) to the subgroup generated by s.

9.4.4. Restriction and vanishing cycles. — We see (154) almost trivially: the left-
hand side of (154) is

traceas NEvψ(±±)V = (±±)(s)
while the right-hand side of (154) is

(−1)dimC−dimC′

tracea′s
(
Ev
′
ψ′(±±)V |V ′

)
= (−1)0−0(±±)(s).

Arguing as in [CFMX], it follows from (154) that ηNEvψ,s is the Langlands-Shelstad

lift of ηNEvψ′ . These lifts are found by considering each case in turn: in order, take s ∈ Ĝ
to be

s =

(
1 0
0 −1

)
,

(
0 1
−1 0

)
, and then

(
0 1
1 0

)
;

in the same order, the quadratic extension E′/F is

E′/F = F (
√
u)/F, F (

√
̟)/F, and then F (

√
u̟)/F.

10. SO(3) unipotent representations, regular parameter

Set G = SO(3) split over F , so Ĝ = SL(2,C) and LG = SL(2,C) ×WF . In this
case,

H1(F,G) = H1(F,Gad) = H1(F,Aut(G)) ∼= Z/2Z,

so there are two isomorphism classes of rational forms of G, each pure. We will use
the notation G1 for the non-quasisplit form of SO(3) given by the quadratic form



−ε̟ 0 0
0 ε 0
0 0 ̟


 .

Let λ :WF → Ĝ be the parameter defined by

λ(w) =

(
|w|1/2 0

0 |w|−1/2

)
.
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Although this simple example exhibits some interesting geometric phenomena, the
Arthur packets in this example are singletons, so there is no interesting endoscopy
here. Nevertheless, this example will be important later when we consider other
groups for which SO(3) is an endoscopic group.

10.1. Arthur packets. —

10.1.1. Parameters. — Up to ZĜ(λ)-conjugacy, there are two Langlands parameters

φ : LF → Ĝ with infinitesimal parameter λ; they are given by

φ0(w, x) = λ(w) = ν2(dw) and φ1(w, x) = ν2(x),

where ν2 : SL(2,C) → SL(2,C) is the identity function, thus an irreducible 2-
dimensional representation of SL(2,C). So,

Pλ(
LG)/ZĜ(λ) = {φ0, φ1}.

Both φ0 and φ1 are of Arthur type: define

ψ0(w, x, y) := ν2(y) and ψ1(w, x, y) := ν2(x).

Then
Qλ(

LG)/ZĜ(λ) = {ψ0, ψ1}.
Observer that ψ1 is tempered but ψ0 is not. Also observe that the Arthur parameters
ψ0 and ψ1 are Aubert dual to each other.

10.1.2. L-packets. — The component groups for the parameters φ ∈ Pλ(LG) are

Aφ0 = π0(ZĜ(φ0)) = π0(T̂ ) ∼= 1 and Aφ1
∼= π0(ZĜ(φ1)) = π0(Z(Ĝ)) ∼= µ2.

Denoting the two characters of µ2 by + and −, the L-packets for these Langlands
parameters are:

Πφ0(G(F )) = {π(φ0)}, Πφ1(G(F )) = {π(φ1,+)},
Πφ0(G1(F )) = ∅, Πφ1(G1(F )) = {π(φ1,−)}.

Here we can view these representations as that of GL(2, F ) (resp. multiplicative group
of the quaternion algebra D) with trivial central character for G(F ) ∼= GL(2, F )/F×

(resp. G1(F ) ∼= D×/F×). Then π(φ0) (resp. π(φ1,+)) is given by the trivial
(resp. Steinberg) representation of GL(2, F ) and π(φ1,−) is given by the trivial
representation of D×.

To see how characters ρ of Aφ determine pure inner forms of G, pullback ρ along

π0(Z(Ĝ))→ π0(ZĜ(φ)) and then use the Kottwitz isomorphism: the trivial character

of Aφ0 (resp. Aφ1) determines the trivial character of π0(Z(Ĝ)) and therefore the split
pure inner form of G; the non-trivial character − of Aφ1 determines the non-trivial
character of π0(ZĜ) and therefore the non-trivial pure inner form of G. Therefore,
the pure L-packets are:

Πpure,φ0(G/F ) = {[π(φ0), 0]}, Πpure,φ1(G/F ) =

{
[π(φ1,+), 0]
[π(φ1,−), 1]

}
.



ARTHUR PACKETS FOR p-ADIC GROUPS BY WAY OF VANISHING CYCLES 99

10.1.3. Multiplicities in standard modules. —

π(φ0) π(φ1,+) π(φ1,−)
M(φ0) 1 1 0
M(φ1,+) 0 1 0
M(φ1,−) 0 0 1

10.1.4. Arthur packets. — The component groups Aψ0 and Aψ1 are both Z(Ĝ). The
Arthur packets for ψ ∈ Qλ(LG) are

Πψ0(G(F )) = {π(φ0)}, Πψ1(G(F )) = {π(φ1,+)},
Πψ0(G1(F )) = {π(φ1,−)}, Πψ1(G1(F )) = {π(φ1,−)}.

so the pure Arthur packets are

Πpure,ψ0(G/F ) =

{
[π(φ0), 0]

[π(φ1,−), 1]

}
, Πpure,ψ1(G/F ) =

{
[π(φ1,+), 0]
[π(φ1,−), 1]

}
.

10.1.5. Aubert duality. — Aubert duality for G(F ) and G1(F ) is given by the fol-
lowing table.

π π̂

π(φ0) π(φ1,+)
π(φ1,−) π(φ1,−)

The twisting character χψ0 of Aψ0 is trivial; likewise, the twisting character χψ1 of
Aψ1 .

10.1.6. Stable distributions and endoscopy. — The characters 〈 · , π〉ψ appearing in

the invariant distributions ΘGψ,s (133) are given by the first two rows of the following

table. The last row gives the analogous characters for ΘG1

ψ,s.

π 〈 · , π〉ψ0
〈 · , π, 〉ψ1

π(φ0) + 0
π(φ1,+) 0 +
π(φ1,−) − −

Using the notation s = diag(s1, s1) ∈ Aψ = Z(Ĝ), we now have

ΘGψ0,s
= traceπ(φ0), ΘG1

ψ0,s
= −s1 traceπ(φ1,−),

ΘGψ1,s
= traceπ(φ1,+), ΘG1

ψ1,s
= s1 traceπ(φ1,−).

Therefore, in this example, the virtual representations ηψ,s (32) are:

ηψ0,s = π(φ0) + s1π(φ1,−),
ηψ1,s = π(φ1,+)− s1π(φ1,−).

Since Aψ = Z(Ĝ), the only endoscopic group relevant to these parameters is G
itself.

10.2. Vanishing cycles of perverse sheaves. —

10.2.1. Vogan variety and orbit duality. — Since λ : WF → LG is unramified and
λ(Fr) is elliptic and G is split, we have λnr = λ.
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The Vogan variety for λ is

Vλ =

{(
0 y
0 0

)
∈ ĝ

∣∣ y
}
∼= A1,

with Hλ :=ZĜ(λ)-action
(
t 0
0 t−1

)
:

(
0 y
0 0

)
7→
(
0 t2y
0 0

)

so Vλ is stratified into Hλ-orbits

C0 :=

{(
0 0
0 0

)}
and Cy :=

{(
0 y
0 0

)
∈ ĝ | y 6= 0

}
.

The dual Vogan variety V ∗λ is given by

V ∗λ =

{(
0 0
y′ 0

)
∈ ĝ

∣∣ y′
}
∼= A1,

with Hλ-action (
t 0
0 t−1

)
:

(
0 0
y′ 0

)
7→
(

0 0
t−2y′ 0

)
,

so V ∗λ is stratified into Hλ-orbits

Ct0 :=

{(
0 0
0 0

)}
and Cty :=

{(
0 0
y′ 0

)
∈ ĝ | y′ 6= 0

}

The Hλ-invariant function [ · , · ] : T ∗(Vλ)→ hλ is given by
(
0 y
y′ 0

)
7→ yy′

(
1 0
0 −1

)
.

From this, dual orbits are easily found.

Cy = Ĉ0 dim = 1 C∗0 = Cty

C0 = Ĉy dim = 0 C∗y = Ct0

10.2.2. Equivariant perverse sheaves. — On the closed stratum C0 there is one
simple local system 1C0 and its perverse extension IC(1C0) is the rank-one skyscraper
sheaf at C0. The open stratum Cy carries two simple local systems: 1Cy and the non-
trivial ECy corresponding, respectively, to the trivial and non-trivial characters of
the equivariant fundamental group of Cy. Therefore, the irreducible shifted standard
sheaves on V are:

S(1C0) = jC0 !1C0 [0],
S(1Cy ) = jCy !1Cy [1], and S(ECy ) = jCy !ECy [1].

There are three simple objects in PerHλ(Vλ) = PerGm
(A1) up to isomorphism:

PerHλ(Vλ)
simple

/iso =
{
IC(1C0), IC(1Cy ), IC(ECy)

}
.
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The perverse extension of 1Cy is the constant sheaf 1Vλ [1] = IC(1Cy ) while the
perverse extension IC(ECy) of ECy is the standard sheaf obtained by extension by
zero from ECy [1].

P P|C0 P|C1

IC(1C0) 1C0 [0] 0
IC(1Cy ) 1C0 [1] 1Cy [1]
IC(ECy ) 0 ECy [1]

The first two row of this table are clear since C0 and Cy are smooth. To see the third
row, let π : V → V be the proper double cover given by y 7→ y2 and note that

π∗(1V [1]) = IC(1Cy )⊕ IC(ECy ),
by the Decomposition Theorem. Since both of π∗(1V [1])|C0 and IC(1Cy )|C0 are rank
one, it follows that IC(ECy )|C0 = 0.

Thus, the geometric multiplicity matrix is

S(1C0) S(1Cy ) S(ECy )
IC(1C0) 1 0 0
IC(1Cy ) −1 1 0
IC(ECy ) 0 0 1

and the normalised geometric multiplicity matrix is

1

♮
C0

1

♮
Cy

E♮Cy
1

♯
C0

1 0 0

1

♯
Cy

1 1 0

E♯Cy 0 0 1

10.2.3. Cuspidal support decomposition and Fourier transform. — Up to conjuga-

tion, Ĝ = SL(2,C) admits exactly two cuspidal Levi subgroups: Ĝ itself and

T̂ = GL(1). Thus,

PerHλ(Vλ) = PerHλ(Vλ)T̂ ⊕ PerHλ(Vλ)Ĝ.

Simple objects in these two subcategories are listed below.

PerHλ(Vλ)
simple

T̂ /iso
PerHλ(Vλ)

simple

Ĝ/iso

IC(1C0)
IC(1Cy ) IC(ECy )

The Fourier transform is given on simply objects by:

Ft : PerHλ(Vλ) −→ PerHλ(V
∗
λ )

IC(1C0) 7→ IC(1C∗
0
) = IC(1Cty )

IC(1Cy ) 7→ IC(1C∗
y
) = IC(1Ct0)

IC(ECy ) 7→ IC(EC∗
0
) = IC(ECty )
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Table 10.2.1. p
Ev : PerHλ(Vλ) → PerHλ(T

∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 10.

PerH(V )
p
Ev−→ PerH(T ∗H(V )reg)

IC(1C0) 7→ IC(1O0)
IC(1Cy ) 7→ IC(1Oy )
IC(ECy ) 7→ IC(EOy )⊕ IC(EO0)

10.2.4. Equivariant local systems on the regular conormal bundle. — The regular
conormal bundle T ∗Hλ(Vλ)reg decomposes into two Hλ orbits

T ∗Hλ(Vλ)reg = T ∗C0
(Vλ)reg

⊔
T ∗Cy(Vλ)reg

given by

T ∗C0
(Vλ)reg =

{(
0 y
y′ 0

)
| y = 0
y′ 6= 0

}
, T ∗Cy(Vλ)reg =

{(
0 y
y′ 0

)
| y 6= 0
y′ = 0

}
.

We remark that

T ∗C0
(Vλ)reg = T ∗C0

(Vλ)sreg = C0 × C∗0 and T ∗Cy(Vλ)reg = T ∗Cy(Vλ)sreg = Cy × C∗y .
These components are Hλ-orbits, so every H-equivariant perverse sheaf on T ∗H(V )reg
is a standard sheaf shifted to degree 1. The equivariant fundamental groups are both
given by

Amic
C = π1(T

∗
C(Vλ), (x, ξ))ZHλ (x,ξ)0 = π0(ZHλ(x, ξ)) = Z(Ĝ) ∼= {±1}.

Let 1Oψ be the constant local system on T ∗Cψ(Vλ)sreg and let EOψ be the non-trivial

H-equivariant local system on T ∗Cψ(Vλ)sreg. Then

IC(1Oj ) = S(1Oj ) and IC(EOj ) = S(EOj ).
In summary,

LocH(T ∗C0
(V )sreg)

simple

/iso = {1O0 , EO0}
and

LocH(T ∗Cy (V )sreg)
simple

/iso =
{
1Oy , EOy

}
.

10.2.5. Vanishing cycles of perverse sheaves. — The functor pEv : PerH(V ) →
PerH(T ∗H(V )reg) is given on simple objects in Table 10.2.1. The lower part uses the
identification of local systems on the regular conormal with representations of the
corresponding equivariant fundamental groups, so each EvsC P is given as a character
of Amic

C .
We now explain the computations behind Tables 10.2.1 and 10.2.2.

(a) Using Lemma 6.2.1 we find

pEvCy IC(1Cy ) = 1Oy [1]
pEvCy IC(ECy ) = EOy [1]

pEvCy IC(1C0) = 0 pEvC0 IC(1C0) = 1O0 [0].

It only remains, therefore, to determine pEvC0 IC(1Cy ) and pEvC0 IC(ECy ).
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Table 10.2.2. Evs : PerHλ(Vλ) → LocHλ(T
∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 10.

P EvsC0 P EvsCy P
IC(1C0) + 0
IC(1Cy ) 0 +
IC(ECy ) − −

(b) Since IC(1Cy ) = 1V [1], we have

EvC0 IC(1Cy ) = RΦyy′(1V [1]⊠ 1C∗
0
)|T∗

C(V )reg .

As 1V ⊠1C∗
0
= 1V×C∗

0
is a local system and the function (y, y′) 7→ yy′ is smooth

on V × C∗0 , it follows Lemma 6.2.2 that

EvC0 IC(1Cy ) = 0.

Note that C∗0 specifically excludes the locus y′ = 0, which is where the singu-
larities would be.

(c) We now consider the case of IC(ECy ), using the proper double cover π : V → V ,
already used in Section 10.2.2. Recall that

π∗(1V [1]) = IC(1Cy )⊕ IC(ECy ).
Since Ev is exact by Proposition 6.4.1,

EvC0 π∗(1V [1]) = EvC0 IC(1Cy )⊕ EvC0 IC(ECy ).
We have just seen that EvC0 IC(1Cy ) = 0, so

EvC0 IC(ECy ) = EvC0 π∗(1V [1]).

By Lemma 6.5.2,

EvC0 π∗(1V [1]) = π!

(
RΦy2y′(1V×C∗

0
[1])|T∗

C(V )π-reg

)
.

Since π is an isomorphism on T ∗C(V )π-reg,

EvC0 π∗(1V [1]) = RΦy2y′(1V×C∗
0
[1])|T∗

C(V )reg .

Now,
RΦy2y′(1V×C∗

0
[1]) = π′!1C0×C∗

0
[1],

where π′ : C∗0 → C∗0 is the double cover y′ 7→ y′2. Note that

π′!1C0×C∗
0
[1] = π′!1O0 [1].

By the Decomposition Theorem,

π′!1O0 [1] = 1O0 [1]⊕ EO0 [1],

where EO0 is the non-trivial equivariant local system on O0 introduced in Sec-
tion 10.2.4, which is the associated to the double cover arising from taking

√
y′

over O0. Therefore,
pEvC0 IC(ECy ) = EO0 [1].
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This completes the calculation of pEv : PerH(V )→ PerH(T ∗(V )reg) on simple objects,
as displayed in Table 10.2.1.

10.2.6. Normalization of Ev and the twisting local system. — From Table 10.2.1 we
see that the twisting local system T is trivial in this case, so pNEv = pEv.

10.2.7. Fourier transform and vanishing cycles. — Having computed the values of
the functor pEv : PerH(V ) → PerH(T ∗H(V )reg) on simple objects, we also know the
values of pEv

∗ : PerH(V ∗) → PerH(T ∗H(V ∗)reg). We use this and the coincidence of
pEv with pNEv, in the table below.

PerH(V )
p
Ev−→ PerH(T ∗H(V )reg)

a∗→ PerH(T ∗H(V ∗)reg)
Ev

∗

←− PerH(V ∗)
IC(1C0) 7→ IC(1O0) 7→ IC(1O∗

0
) ←[ IC(1C∗

0
)

IC(1Cy ) 7→ IC(1Oy ) 7→ IC(1O∗
y
) ←[ IC(1C∗

y
)

IC(ECy ) 7→ IC(EOy)⊕ IC(EO0) 7→ IC(EO∗
y
)⊕ IC(EO∗

0
) ←[ IC(EC∗

0
)

Since the map from the first to the fourth column is the Fourier transform, this verifies
(141).

10.2.8. Arthur sheaves. —

Arthur sheaf packet sheaves coronal sheaves

AC0 IC(1C0) ⊕ IC(ECy )
ACy IC(1Cy )⊕ IC(ECy)

10.3. ABV-packets. —

10.3.1. Admissible representations versus equivariant perverse sheaves. — Vogan’s
bijection for λ : WF → LG chosen at the beginning of Section 10 is given by the
following table:

PerHλ(Vλ)
simple

/iso Πpure,λ(G/F )

IC(1C0) (π(φ0), 0)
IC(1Cy ) (π(φ1), 0)
IC(ECy ) (π(φ1,−), 1)

The base points for H-orbits in T ∗H(V )reg determined by the Arthur parameters ψ0

and ψ1 are:

(xψ0 , ξψ0) =

(
0 0
1 0

)
∈ T ∗C0

(Vλ)reg, (xψ1 , ξψ1) =

(
0 1
0 0

)
∈ T ∗Cy(Vλ)reg.

10.3.2. ABV-packets. — Using the bijection of Section 10.3.1, the vanishing cycles
calculations of Section 10.2.5, and the definition of ABV-packets from Section 7.1, we
find ABV-packets for G for representations with infinitesimal parameter λ :WF → LG
from Section 10.1.1:

ΠABV
pure,ψ0

(G/F ) =

{
[π(φ0), 0]

[π(φ1,−), 1]

}
, ΠABV

pure,ψ1
(G/F ) =

{
[π(φ1,+), 0]
[π(φ1,−), 1]

}
.

We see that all pure Arthur packets are ABV-packets simply by comparing this with
Section 10.1.4. In this example, all the strata in V are of Arthur type, so all ABV-
packets are Arthur packets.
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10.3.3. Stable invariant distributions and their endoscopic transfer. — We recalled
in Section 10.1.6 the coefficient appearing in the invariant distributions ηψ,s attached
to ψ ∈ Qλ(

LG) and s ∈ ZĜ(ψ). Using Section 10.2.5, compare 〈ssψ , [π, δ]〉ψ with

traceEvψ P(π, δ)(ssψ). This proves (147) and therefore establishes Conjecture 1, in
this case:

ηψ,s = ηNEvψ,s,

for ψ ∈ Qλ(LG) and s ∈ ZĜ(ψ).
Also recall from Section 10.1.6 that the only endoscopic group relevant to ψ0 and

ψ1 is G.

10.3.4. Kazhdan-Lusztig conjecture. — Using the bijection of Section 10.3.1 we may
compare the multiplicity matrix from Section 10.1.3 with the normalised geometric
multiplicity matrix from Section 10.2.2:

mrep =




1 1 0
0 1 0
0 0 1


 , m′geo =




1 0 0
1 1 0
0 0 1


 .

Since tmrep = m′geo, this confirms the Kazhdan-Lusztig conjecture as it applies to

representations with infinitesimal parameter λ :WF → LG given in Section 10.1.1.

10.3.5. Aubert duality and Fourier transform. — By using Vogan’s bijection from
Section 10.3.1 to compare Aubert duality from Section 10.1.5 with the Fourier trans-
form from Section 10.2.3 one redily verifies (150).

10.3.6. Normalisation. — A comparison of the twisting characters χψ of Aψ from
Section 10.1.5 with the restriction Tψ to T ∗Cψ(V )reg of the local system Tψ from

Section 10.2.7 verifies (152).

10.4. Endoscopy and equivariant restriction of perverse sheaves. — The

material of Section 8.4 is trivial in this example, since ZĜ(ψ) = Z(Ĝ).

11. PGL(4) shallow representations

This example illustrates the utility of Theorem 4.1.1 and the significance of the
decomposition of λ(Fr) into hyperbolic and elliptic parts. Here, the calculation of the
Arthur packets for certain non-tempered representations of PGL(4) is reduced to the
calculation of certain unipotent representations of SL(2). This example also demon-
strates a case when H1(F,Gad)→ H1(F,Aut(G)) is surjective but not injective.

SetG = PGL(4) over F and suppose q is odd. So, Ĝ = SL(4) and LG = SL(4)×WF .
In this case, H1(F,G) = H1(F,Gad) ∼= Irrep(µ4), so there are four isomorphism
classes of inner forms of G, each one pure. However, G has only three forms, up to
isomorphism: the split group G itself, an anisotropic form G1, and a non-quasi-split
form G2 with a proper minimal Levi. In fact, the outer automorphism of G induces
an action of order 2 on H1(F,G), and the orbits of this action correspond exactly
to the image of H1(F,G) in H1(F,Aut(G)). The map H1(F,Gad)→ H1(F,Aut(G))
from isomorphism classes of inner form of G to isomorphism classes of forms of G is
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given by: 0 7→ G, 1 7→ G1, 2 7→ G2 and 3 7→ G1, where the notation refers to an
identification of Irrep(µ4) with Z/4Z.

Let E be the Galois closure of the ramified extension F ( q+1
√
̟). Then E is

the compositum of an unramified quadratic extension of F and the totally ramified
extension F ( q+1

√
̟); now Gal(E/F ) is the dihedral group with generators σ, τ , where

σ has order 2 and τ has order q+1 and στσ = τ−1 = τq. Consider the representation
̺ : Gal(E/F )→ SL(2,C) defined by

σ 7→
(

0 1
−1 0

)
, τ 7→

(
ζ 0
0 ζ−1

)
,

where ζ ∈ C is a fixed primitive q+1-th root of unity. Let ρ :WF → SL(2,C) be the
composition of WF → ΓF → Gal(E/F ) with ̺. Define λ : WF → LG = SL(4)×WF

by
λ(w) := ρ(w)⊗ ν2(dw).

Thus, if w|E = σ then

λ(w) =




0 0 |w|1/2 0

0 0 0 |w|−1/2
−|w|1/2 0 0 0

0 −|w|−1/2 0 0




while if w|E = τ then

λ(w) =




ζ 0 0 0
0 ζ 0 0
0 0 ζ−1 0
0 0 0 ζ−1


 .

11.1. Arthur packets. —

11.1.1. Parameters. — There are two Langlands parameters with infinitesimal pa-
rameter λ, each of Arthur type:

φ0(w, x) := ρ(w) ⊗ ν2(dw), φ1(w, x) := ρ(w) ⊗ ν2(x)
ψ0(w, x, y) := ρ(w) ⊗ ν2(y), ψ1(w, x, y) := ρ(w) ⊗ ν2(x).

Note that ψ0 and ψ1 are Aubert dual.

11.1.2. L-packets. — There are 5 admissible representations of the three forms G,
G1 and G2, with infinitesimal parameter λ. In order to list them, we start with the
component groups of φ ∈ Pλ(LG). First, note that

ZĜ(λ) =








s1 0 0 0
0 s2 0 0
0 0 s1 0
0 0 0 s2



∣∣ s1s2 = ±1




∼= GL(1)× µ2,

under the isomorphism s 7→ (s1, s1s2). Then

Aφ0 = π0(ZĜ(φ0)) = π0(ZĜ(λ))
∼= µ2 and Aφ1 = π0(ZĜ(φ1)) = π0(Z(Ĝ)) ∼= µ4.
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Following our convention, we write + and − for the trivial and non-trivial characters
of µ2, respectively; the characters of µ4 will be labeled by +1, −1, +i and −i. The
admissible representations for the Langlands parameters φ0 and φ1 fall into L-packets
for the three forms of G (up to isomorphism) as follows:

Πφ0(G(F )) = {π(φ0,+)} Πφ1(G(F )) = {π(φ1,+1)}
Πφ0(G1(F )) = ∅ Πφ1(G1(F )) = {π(φ1,+i)}

= {π(φ1,−i)}
Πφ0(G2(F )) = {π(φ0,−)} Πφ1(G2(F )) = {π(φ1,−1)}.

However, Πpure,λ(G/F ) consists of 6 representations of 4 pure rational forms of G:

Πpure,φ0(G/F ) =
{

[π(φ0,+), 0], [π(φ0,−), 2]
}
,

and

Πpure,φ1(G/F ) =
{

[π(φ1,+1), 0], [π(φ1,+i), 1], [π(φ1,−1), 2], [π(φ1,−i), 3]
}
.

In other words, when passing from the four equivalence classes of pure rational
forms [δ] ∈ H1(F,G) to the three isomorphism classes of forms of G, two repre-
sentations collapse to one, namely, [π(φ1,+i), 1] and [π(φ1,−i), 3] map to the same
admissible representation of G1(F ).

11.1.3. Multiplicities in standard modules. —

π(φ0,+) π(φ0,−) π(φ1,+1) π(φ1,−1) π(φ1,+i) π(φ1,−i)
M(φ0,+1) 1 0 1 0 0 0
M(φ0,−1) 0 1 0 1 0 0
M(φ1,+1) 0 0 1 0 0 0
M(φ1,−1) 0 0 0 1 0 0
M(φ1,+i) 0 0 0 0 1 0
M(φ1,−i) 0 0 0 0 0 1

11.1.4. Arthur packets. — The component groups Aψ0 and Aψ1 are both Z(Ĝ),
canonically. Arthur packets for rational forms G, G1 and G2 of G are

Πψ0(G(F )) = {π(φ0,+)} Πψ1(G(F )) = {π(φ1,+1)}
Πψ0(G1(F )) = {π(φ1,+i)} Πψ1(G1(F )) = {π(φ1,+i)}

= {π(φ1,−i)} = {π(φ1,−i)}
Πψ0(G2(F )) = {π(φ0,−)} Πψ1(G2(F )) = {π(φ1,−1)}

The pure Arthur packets for ψ0 and ψ1 are

Πpure,ψ0(G/F ) =
{

[π(φ0,+), 0], [π(φ0,−), 2], [π(φ1,+i), 1], [π(φ1,−i), 3]
}
,

and

Πpure,ψ1(G/F ) =
{

[π(φ1,+1), 0], [π(φ1,+i), 1], [π(φ1,−1), 2], [π(φ1,−i), 3]
}
.

For later reference, we break these pure Arthur packets apart into packet and coronal
representations:
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pure Arthur pure L-packet coronal

packets representations representations

Πpure,ψ0(G/F ) [π(φ0,+), 0], [π(φ0,−), 2] [π(φ1,+i), 1], [π(φi,−i), 3]
Πpure,ψ1(G/F ) [π(φ1,+1), 0], [π(φ1,+i), 1]

[π(φ1,−i), 3], [π(φ1,−1), 2]

11.1.5. Aubert duality. — Aubert duality for admissible representations of G(F )
with infinitesimal parameter λ is given by the following table.

π π̂

π(φ0,+) π(φ1,+1)
π(φ1,+1) π(φ0,+)

Aubert duality for G1(F ) = G3(F ) is given by the following table.

π π̂

π(φ1,+i) = π(φ1,−i) π(φ1,+i) = π(φ1,−i)
Aubert duality for G2(F ) is given by the following table.

π π̂

π(φ0,−) π(φ1,−1)
π(φ1,−1) π(φ0,−)

The twisting characters χψ0 and χψ1 are trivial.

11.1.6. Stable distributions and endoscopy. — The coefficients 〈asaψ, (π, δ)〉ψ ap-

pearing in the invariant distributions ηψ,s (32) are given by the following list, in

which s ∈ Aψ = Z(Ĝ) ∼= µ4.

ηψ0 = ηψ0,1 = [π(φ0,+), 0] + [π(φ0,−), 2] + [π(φ1,+i), 1] + [π(φ1,−i), 3]
ηψ0,−1 = [π(φ0,+), 0] + [π(φ0,−), 2]− [π(φ1,+i), 1]− [π(φ1,−i), 3]
ηψ0,i = [π(φ0,+), 0]− [π(φ0,−), 2] + i[π(φ1,+i), 1]− i[π(φ1,−i), 3]
ηψ0,−i = [π(φ0,+), 0]− [π(φ0,−), 2]− i[π(φ1,+i), 1] + i[π(φ1,−i), 3]

and

ηψ1 = ηψ1,1 = [π(φ1,+1), 0]− [π(φ1,−i), 1] + [π(φ1,−1), 2]− [π(φ1,−i), 3]
ηψ1,−1 = [π(φ1,+1), 0]− [π(φ1,−i), 1]− [π(φ1,−1), 2] + [π(φ1,−i), 3]
ηψ1,i = [π(φ1,+1), 0] + [π(φ1,−i), 1] + i[π(φ1,−1), 2] + i[π(φ1,−i), 3]
ηψ1,−i = [π(φ1,+1), 0] + [π(φ1,−i), 1]− i[π(φ1,−1), 2]− i[π(φ1,−i), 3].

Since Aψ0 = Z(Ĝ) and Aψ1 = Z(Ĝ), the only endoscopic groups relevant to these
Arthur parameters are G = G, G1 and G2.

11.2. Vanishing cycles of perverse sheaves. —



ARTHUR PACKETS FOR p-ADIC GROUPS BY WAY OF VANISHING CYCLES 109

11.2.1. Vogan variety and orbit duality. — The Vogan variety Vλ and its dual V ∗λ
may both be deduced from the conormal bundle

T ∗H(V ) =








0 y 0 0
y′ 0 0 0
0 0 0 y
0 0 y′ 0


 | yy

′ = 0





on which H :=ZĜ(λ)
∼= GL(1)× ν2 acts by




s1 0 0 0
0 s2 0 0
0 0 s1 0
0 0 0 s2


 ·




0 y 0 0
y′ 0 0 0
0 0 0 y
0 0 y′ 0


 =




0 s1s
−1
2 y 0 0

s−11 s2y
′ 0 0 0

0 0 0 s1s
−1
2 y

0 0 s−11 s2y
′ 0


 .

Recall that s1s2 = ±1, so s1s
−1
2 = ±s21. From this we see the stratification of V into

H-orbits and the duality on those orbits is exactly as in Section 10.2.1.
We now use Theorem 4.1.1 to replace λ :WF → LG with an unramified infinitesimal

parameter λnr : WF → LGλ of a split group Gλ such that λnr(Fr) is hyperbolic. The
hyperbolic part of λ(Fr) is sλ × 1 with

sλ = ρ(1)⊗ ν2(Fr) =




q1/2 0 0 0

0 q−1/2 0 0
0 0 q1/2 0

0 0 0 q−1/2




while the elliptic part of λ(Fr) is tλ × Fr with

tλ = ρ(Fr)⊗ ν2(1) =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 .

Then

Jλ :=ZĜ(λ|IF , sλ) =








a b 0 0
c d 0 0
0 0 a b
0 0 c d



∣∣ det

(
a b
c d

)
= ±1




∼= SL(2)× µ2

under the isomorphism diag(h, h) 7→ (h′, deth) where h′ = h if deth = 1 and h′ = ih
if deth = −1. Therefore, Gλ = PGL(2) and λnr : WF → LGλ is given by

λnr(w) =

(
|w|1/2 0

0 |w|−1/2

)
.

Now

Hλnr
= ZĜλ(λnr) =

{(
t 0
0 t−1

)
| t 6= 0

}
∼= GL(1)

and

Vλnr
=

{(
0 y
0 0

) ∣∣ y
}
∼= A1
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with Hλnr
-action (

t 0
0 t−1

)
:

(
0 y
0 0

)
7→
(
0 t2y
0 0

)
.

This brings us back to Section 10.2.1. We will freely use notation from there, below.
The Hλ-action on Vλnr

is given by

(t,±1) :

(
0 y
0 0

)
7→
(
0 ±t2y
0 0

)
.

From this we see that every Hλ-orbit in Vλnr
coincides with a Hλnr

orbit in Vλnr
.

11.2.2. Equivariant perverse sheaves on Vogan variety. — With reference to Theo-
rem 4.1.1 we have

Rep(Aλ) PerHλ(Vλ) PerHλnr
(Vλnr

)

Rep(µ2) PerGL(1)×µ2
(A1) PerGL(1)(A

1)

π∗

π∗

The image of the trivial representation + of µ2 under the functor Rep(Aλ) →
PerHλ(Vλ) is the trivial local system on V , denoted here by (+)V to emphasise its
genesis; image of the non-trivial irreducible representation − of µ2 under the functor
Rep(Aλ)→ PerHλ(Vλ) will likewise be denoted by (−)V .

To find the simple objects in PerH(V ), we begin with the equivariant perverse
sheaves on H-orbits in V .

C0: The equivariant fundamental group of C0 is AC0 = π0(H) ∼= µ2. Let us write
1

+
C0

and 1

−
C0

for the local systems corresponding to the trivial and non-trivial
representations of AC0 , respectively. Note that, under the forgetful functor
LocH(C0)→ LocHnr

(C0), these both map to 1C0 , the constant sheaf on C0.

Cy: The equivariant fundamental group of Cy is ACy = Z(Ĝ) ∼= µ4. Let us write 1+
Cy

and 1

−
Cy

for the equivariant local systems on Cy that correspond to the trivial

+1 and order-2 characters −1 of ACy , respectively; these both map to 1Cy

under LocH(Cy)→ LocHnr
(Cy). We write E+Cy and E−Cy for the equivariant local

systems on Cy that correspond to the order-4 characters +i and −i, respectively,
of ACy ; these both map to ECy under LocH(Cy)→ LocHnr

(Cy).

Therefore, the six simple objects in PerH(V ) are given by:

PerH(V )simple

/iso =

{
IC(1+

C0
), IC(1+

Cy
), IC(E+Cy )

IC(1−C0
), IC(1−Cy ), IC(E

−
Cy

)

}
.

On simple objects, the functor Rep(Aλ)→ PerHλ(V ) is given by

Rep(Aλ) → PerHλ(V )
(+)V 7→ IC(1+

Cy
)

(−)V 7→ IC(1−Cy )
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while the functor PerHλ(V )→ PerHλnr
(Vλnr

) is given by

PerHλ(V ) → PerHλnr
(Vλnr

)
IC(1±C0

) 7→ IC(1C0)

IC(1±Cy ) 7→ IC(1Cy )IC(E±Cy ) 7→ IC(ECy )
and the functor PerHλnr

(Vλnr
)→ PerHλ(V ) is given by

PerHλnr
(Vλnr

) → PerHλ(V )
IC(1C0) 7→ IC(1+

C0
)⊕ IC(1−C0

)

IC(ECy ) 7→ IC(E+Cy )⊕ IC(E
−
Cy

)

From this we find the stalks of the simple objects in PerH(V ).

P P|C0 P|C+1

IC(1+
C0

) 1

+
C0

[0] 0

IC(1−C0
) 1

−
C0

[0] 0

IC(1+
C+1

) 1

+
C0

[1] 1

+
C+1

[1]

IC(1−C+1
) 1

−
C0

[1] 1

−
C+1

[1]

IC(E+C+1
) 0 E+C+1

[1]

IC(E−C+1
) 0 E−C+1

[1]

This gives us the normalised geometric multiplicity matrix:

(1+
C0

)♮ (1−C0
)♮ (1+

C1
)♮ (1−C1

)♮ (E+C1
)♮ (E−C1

)♮

(1+
C0

)♯ 1 0 0 0 0 0

(1−C0
)♯ 0 1 0 0 0 0

(1+
C1

)♯ 1 0 1 0 0 0

(1−C1
)♯ 0 1 0 1 0 0

(E+C1
)♯ 0 0 0 0 1 0

(E−C1
)♯ 0 0 0 0 0 1

11.2.3. Cuspidal support decomposition and Fourier transform. — The cuspidal sup-
port decomposition respects the functors appearing in Theorem 4.1.1, so the results
here follow from Section 10.2.3. Specifically, we have

PerHλ(Vλ) = PerHλ(Vλ)T̂ ⊕ PerHλ(Vλ)Ĝ,

where the simple objects in these summand categories are given here.

PerHλ(Vλ)
simple

T̂ /iso
PerHλ(Vλ)

simple

Ĝ/iso

IC(1+
C0

)

IC(1−C0
)

IC(1+
Cy

) IC(E+Cy )
IC(1−Cy ) IC(E−Cy )
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Since the diagram

Rep(Aλ) PerHλ(Vλ) PerHλnr
(Vλnr

)

Rep(Aλ) PerHλ(V
∗
λ ) PerHλnr

(V ∗λnr
)

id

π∗

Ft

π∗

Ft

π∗

π∗

commutes, the Fourier transform is given on simple objects as follows.

Ft : PerHλ(Vλ) −→ PerHλ(V
∗
λ )

IC(1+
C0

) 7→ IC(1+
C∗

0
) = IC(1+

Ct1
)

IC(1−C0
) 7→ IC(1−C∗

0
) = IC(1−

Ct1
)

IC(1+
Cy

) 7→ IC(1+
C∗
y
) = IC(1+

Ct0
)

IC(1−Cy ) 7→ IC(1−C∗
y
) = IC(1−

Ct0
)

IC(E+Cy ) 7→ IC(E+C∗
0
) = IC(E+Cty )

IC(E−Cy ) 7→ IC(E−C∗
0
) = IC(E−Cty )

11.2.4. Equivariant perverse sheaves on the regular conormal bundle. — Recall that
Hλ orbits coincide with Hλnr

-orbits. The following diagram commutes:

Rep(Aλ) PerHλ(C
∗) PerHλnr

(C∗)

Rep(Aλ) PerHλ(T
∗
C(Vλ)sreg) PerHλnr

(T ∗C(Vλnr
)sreg)

Rep(Aλ) PerHλ(C) PerHλnr
(C)

π∗

π∗

π∗

π∗

π∗

π∗

We now describe the fundamental groups and associated equivariant local systems
on the strongly regular conormal bundle T ∗H(V )sreg . For the computation of the
functor Ev : PerH(V ) → PerH(T ∗H(V )reg) in Section 11.2.5 we will need to know
the effect of pullback along the bundle map T ∗H(V )reg → V , so we also give that
information below.

C0: We choose a base point for T ∗C0
(V )sreg:

(x0, ξ0) =

(
0 0
1 0

)
.

Then A(x0,ξ0) = Z(Ĝ) ∼= µ4 and the bundle maps induce the following homo-
morphisms of fundamental groups:

µ2
∼= Ax0 A(x0,ξ0) Aξ0

∼= µ4.
id

Now label local systems on T ∗C0
(V )sreg according to the following chart, which

lists the corresponding characters of A(x0,ξ0) using the convention for characters
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of µ4 from Section 11.1.2.

LocH(T ∗C0
(V )sreg) : 1

+
O0

1

−
O0

E+O0
E−O0

Rep(A(x0,ξ0)) : +1 −1 +i −i
Pullback of equivariant local systems along the bundle map T ∗C0

(V )sreg → C0 is
given on simple objects by:

LocH(C0) → LocH(T ∗C0
(V )sreg)

1

±
C0

7→ 1

±
O0

E±O0
.

Cy: We choose a base point for T ∗Cy(V )sreg:

(x1, ξ1) =

(
0 1
0 0

)
.

Then A(x1,ξ1) = Z(Ĝ) ∼= µ4 and the bundle maps induce the following homo-
morphisms of fundamental groups:

µ4
∼= Ax1 A(x1,ξ1) Aξ1 ∼= µ2.

id

Now label local systems on T ∗Cy(V )sreg according to the following chart, which

lists the corresponding characters of A(x1,ξ1) using the convention for characters
of µ4 from Section 11.1.2.

LocH(T ∗Cy(V )sreg) : 1

+
Oy

1

−
Oy

E+Oy E−Oy
Rep(A(x1,ξ1)) : +1 −1 +i −i

Pullback of equivariant local systems along the bundle map T ∗Cy(V )sreg → Cy is

given on simple objects by:

LocH(Cy) → LocH(T ∗Cy(V )sreg)

1

±
Cy

7→ 1

±
Oy

E±Cy 7→ E±Oy .
11.2.5. Vanishing cycles of perverse sheaves. — Table 11.2.1 gives the functor Ev :
PerH(V ) → PerH(T ∗H(V )reg) on simple objects. These calculations follow from Ta-
ble 10.2.1.

11.2.6. Normalization of Ev and the twisting local system. — From Table 11.2.1 we
see that the twisting local system T is trivial in this case, so pNEv = pEv.

11.2.7. Vanishing cycles and Fourier transform. — Comparing the table below with
Ft : PerH(V )→ PerH(V ∗) from Section 11.2.3 verifies (141) in this example.

PerH(V )
p
Ev−→ PerH(T ∗Hλ(V )reg)

a∗→ PerH(T ∗Hλ(V
∗)reg)

Ev
∗

←− PerH(V ∗)

IC(1±C0
) 7→ IC(1±O0

) 7→ IC(1±O∗
0
) ←[ IC(1±C∗

0
)

IC(1±Cy ) 7→ IC(1±Oy ) 7→ IC(1±O∗
y
) ←[ IC(1±C∗

y
)

IC(E±Cy ) 7→ IC(E±Oy)⊕ IC(E
±
O0

) 7→ IC(E±O∗
y
)⊕ IC(E±O∗

0
) ←[ IC(E±C∗

0
)
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Table 11.2.1. p
Ev : PerHλ(Vλ) → PerHλ(T

∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 11.

PerH(V )
p
Ev−→ PerH(T ∗Hλ(V )reg)

IC(1+
C0

) 7→ IC(1+
O0

)

IC(1−C0
) 7→ IC(1−O0

)

IC(1+
Cy

) 7→ IC(1+
Oy

)

IC(1−Cy ) 7→ IC(1−Oy )
IC(E+Cy ) 7→ IC(E+Oy )⊕ IC(E

+
O0

)

IC(E−Cy ) 7→ IC(E−Oy )⊕ IC(E
−
O0

)

Table 11.2.2. Evs : PerHλ(Vλ) → LocHλ(T
∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 11.

P EvsC0 P EvsC1 P
IC(1+

C0
) +1 0

IC(1−C0
) −1 0

IC(1+
Cy

) 0 +1

IC(1−Cy ) 0 −1
IC(E+Cy ) +i +i

IC(E−Cy ) −i −i

11.2.8. Arthur sheaves. —

Arthur sheaf packet sheaves coronal sheaves

AC0 IC(1+
C0

)⊕ IC(1−C0
) ⊕ IC(E+Cy)⊕ IC(E

−
Cy

)

ACy IC(1+
Cy

)⊕ IC(1−Cy )⊕ IC(E
+
Cy

)⊕ IC(E−Cy )

11.3. ABV-packets. —

11.3.1. Admissible representations versus perverse sheaves. —

PerHλ(Vλ)
simple

/iso Πpure,λ(G/F )

IC(1+
C0

) (π(φ0,+), 0)

IC(1−C0
) (π(φ0,−), 2)

IC(1+
Cy

) (π(φ1,+1), 0)

IC(1−Cy ) (π(φ1,−1), 2)
IC(E+Cy ) (π(φ1,+i), 1)

IC(E−Cy ) (π(φ1,−i), 3)
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11.3.2. ABV-packets. —

ABV-packets pure L-packet representations coronal representations

ΠABV
pure,φ0

(G/F ) : [π(φ0,+), 0], [π(φ0,−), 2] [π(φ1,+i), 1], [π(φ1,−i), 3]
ΠABV

pure,φ1
(G/F ) : [π(φ1,+1), 0], [π(φ1,+i), 1]

[π(φ1,−1), 2], [π(φ1,−i), 3]

11.3.3. Stable distributions and endoscopic transfer. —

ηNEvψ0
= ηNEvψ0,1

= [π(φ0,+), 0] + [π(φ0,−), 2] + [π(φ1,+i), 1] + [π(φ1,−i), 3]
ηNEvψ0,−1

= [π(φ0,+), 0] + [π(φ0,−), 2]− [π(φ1,+i), 1]− [π(φ1,−i), 3]
ηNEvψ0,i

= [π(φ0,+), 0]− [π(φ0,−), 2] + i[π(φ1,+i), 1]− i[π(φ1,−i), 3]
ηNEvψ0,−i

= [π(φ0,+), 0]− [π(φ0,−), 2]− i[π(φ1,+i), 1] + i[π(φ1,−i), 3]

ηNEvψ1
= ηNEvψ1,1

= [π(φ1, 1), 0]− [π(φ1, i), 1] + [π(φ1,−1), 2]− [π(φ1,−i), 3]
ηNEvψ1,−1

= [π(φ1, 1), 0]− [π(φ1, i), 1]− [π(φ1,−1), 2] + [π(φ1,−i), 3]
ηNEvψ1,i

= [π(φ1, 1), 0] + [π(φ1, i), 1] + i[π(φ1,−1), 2] + i[π(φ1,−i), 3]
ηNEvψ1,−i

= [π(φ1, 1), 0] + [π(φ1, i), 1]− i[π(φ1,−1), 2]− i[π(φ1,−i), 3]

Comparing with Section 11.1.6 proves (148).

11.3.4. Kazhdan-Lusztig conjecture. — From Section 11.1.3 we find the multiplicity
matrix:

mrep =




1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



,

and from Section 11.2.2 we find the normalised geometric multiplicity matrix

m′geo =




1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



.

Since mt
rep = m′geo, this proves the Kazhdan-Lusztig conjecture in this case.
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Notice that 


1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




=



1 1 0
0 1 0
0 0 1


⊗

(
1 0
0 1

)

and compare with Section 10.3.4.

11.3.5. Aubert duality and Fourier transform. — To verify (150), use Vogan’s bi-
jection from Section 11.3.1 to compare Aubert duality from Section 11.1.5 with the
Fourier transform from Section 11.2.3

To verify (152), observe that the twisting characters χψ of Aψ from Section 11.1.5
are trivial, as are the local systems Tψ from Section 11.2.7.

11.4. Endoscopy and equivariant restriction of perverse sheaves. — The

material of Section 8.4 is trivial in this example, since ZĜ(ψ) = Z(Ĝ).

12. SO(5) unipotent representations, regular parameter

In this example, of the four Langlands parameters with infinitesimal parameter λ
below, only two are of Arthur type. Accordingly, we find two ABV-packet that are
not Arthur packets.

Let G = SO(5), so Ĝ = Sp(4) and LG = Ĝ×WF . As in the cases above,

H1(F,G) = H1(F,Gad) = H1(F,Aut(G)) ∼= Z/2Z,

so there are two isomorphism classes of rational forms of G, each pure. We will use the
notation G = G and G1 for the non-quasisplit form of SO(5) given by the quadratic
form 



0 0 0 0 1
0 −ε̟ 0 0 0
0 0 ε 0 0
0 0 0 ̟ 0
1 0 0 0 0



.

Let λ :WF → Ĝ be the unramified homomorphism

λ(Fr) =




|w|3/2 0 0 0

0 |w|1/2 0 0

0 0 |w|−1/2 0

0 0 0 |w|−3/2


 .

Here and below we use the symplectic form 〈x, y〉 = txJy with matrix J given by

Jij = (−1)jδ5−i,j to determine a representation of Ĝ = Sp(4).
Although this example exhibits some interesting geometric phenomena, there is

still no interesting endoscopy here. Nevertheless, this example will be important later
when we consider other groups for which SO(5) is an endoscopic group.
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12.1. Arthur packets. —

12.1.1. Parameters. — Up to ZĜ(λ)-conjugation, there are four Langlands param-
eters with infinitesimal parameter λ:

φ0(w, x) = ν4(dw) = λ(w),

φ1(w, x) = ν22 (dw)⊗ ν2(x) =




|w|x11 |w|x11 0 0
|w|x21 |w|x22 0 0

0 0 |w|−1x11 |w|−1x12
0 0 |w|−1x11 |w|−1x12


 ,

φ2(w, x) = ν32 (dw)⊕ ν2(x) =




|w|3/2 0 0 0
0 x11 x12 0
0 x21 x22 0

0 0 0 |w|−3/2


 ,

φ3(w, x) = ν4(x),

where ν4 : SL(2)→ Sp(4) is the irreducible 4-dimensional representation of SL(2). Of
the four Langlands parameters φ0, φ1, φ2 and φ3, only φ0 and φ3 are of Arthur type;
define

ψ0(w, x, y) := ν4(y), and ψ3(w, x, y) := ν4(x).

12.1.2. L-packets. — The component groups Aφ0 and Aφ1 are trivial, while the
component groups Aφ2 and Aφ3 each have order two, being canonically isomorphic to

Z(Ĝ). Therefore, the representations in play in this example are:

Πφ0(G(F )) = {π(φ0)}, Πφ0(G1(F )) = ∅,
Πφ1(G(F )) = {π(φ1)}, Πφ1(G1(F )) = ∅,
Πφ2(G(F )) = {π(φ2,+)}, Πφ2(G1(F )) = {π(φ2,−)},
Πφ3(G(F )) = {π(φ3,+)}, Πφ3(G1(F )) = {π(φ3,−)}.

Of the four admissible representations of G(F ) with infinitesimal parameter λ, only
π(φ3,+) is tempered – this is the Steinberg representation. The representation π(φ1)
(resp. π(φ2,+)) is denoted by L(νζ StGL(2)) (resp. L(ν3/2ζ, ζ StSO(3))) with ζ = 1 in
[Mat10]. When arranged into pure packets, we get

Πpure,φ0(G/F ) = {[π(φ0), 0]}
Πpure,φ1(G/F ) = {[π(φ1), 0]}
Πpure,φ2(G/F ) = {[π(φ2,+), 0], [π(φ2,−), 1]}
Πpure,φ3(G/F ) = {[π(φ3,+), 0], [π(φ3,−), 1]}.

12.1.3. Multiplicities in standard modules. — The standard module M(φ1) (resp.
M(φ2,+)) is denoted by νζ StGL(2) ⋊1 (resp. ν3/2ζ⋊StSO(3)) with ζ = 1 in [Mat10].
The following table may be deduced from [Mat10, Proposition 3.3].
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π(φ0) π(φ1) π(φ2,+) π(φ3,+) π(φ2,−) π(φ3,−)
M(φ0) 1 1 1 1 0 0

M(φ1) 0 1 0 1 0 0

M(φ2,+) 0 0 1 1 0 0

M(φ3,+) 0 0 0 1 0 0

M(φ2,−) 0 0 0 0 1 1

M(φ3,−) 0 0 0 0 0 1

12.1.4. Arthur packets. — The Arthur packets for these representations are

Πψ0(G(F )) = {π(φ0)}, Πψ0(G1(F )) = {π(φ2,−)},
Πψ3(G(F )) = {π(φ3,+)}, Πψ3(G1(F )) = {π(φ3,−)}.

When arranged into pure packets, we get

Πpure,ψ0(G/F ) = {[π(φ0), 0], [π(φ2,−), 1]},
Πpure,ψ3(G/F ) = {[π(φ3,+), 0], [π(φ3,−), 1]}.

12.1.5. Aubert duality. — Aubert duality for G(F ) and G1(F ) are given by the
following table.

π π̂

π(φ0) π(φ3,+)
π(φ1) π(φ2,+)
π(φ2,+) π(φ1)
π(φ3,+) π(φ0)
π(φ2,−) π(φ3,−)
π(φ3,−) π(φ2,−)

The twisting characters χψ0 and χψ1 are trivial.

12.1.6. Stable distributions and endoscopic transfer. — For s ∈ Z(Ĝ) ∼= µ2, the
virtual representations ηψ0,s and ηψ3,s are given by

ηψ0,1 = [π(φ0), 0] + [π(φ2,−), 1]
ηψ0,−1 = [π(φ0), 0]− [π(φ2,−), 1]

and
ηψ3,1 = [π(φ3,+), 0]− [π(φ3,−), 1]
ηψ3,−1 = [π(φ3,+), 0] + [π(φ3,−), 1].

There are no endoscopic groups relevant to ψ0 or ψ3 other than G.

12.2. Vanishing cycles of perverse sheaves. —
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12.2.1. Vogan variety and orbit duality. — Now

H :=ZĜ(λ) =








t1 0 0 0
0 t2 0 0
0 0 t−12 0
0 0 0 t−11


 |

t1 6= 0
t2 6= 0




.

The Vogan varieties V and V ∗ are given by

V =








0 u 0 0
0 0 x 0
0 0 0 u
0 0 0 0


 | u, x




, V ∗ =








0 0 0 0
u′ 0 0 0
0 x′ 0 0
0 0 u′ 0


 | u′, x′




.

The action of H on T ∗(V ) is given by



t1 0 0 0
0 t2 0 0
0 0 t−12 0
0 0 0 t−11


 :




0 u 0 0
u′ 0 x 0
0 x′ 0 u
0 0 u′ 0


 7→




0 t1t
−1
2 u 0 0

t−11 t2u
′ 0 t22x 0

0 t−22 x′ 0 t1t
−1
2 u

0 0 t−11 t2u
′ 0


 .

The conormal bundle is

T ∗Hλ(Vλ)
∼=








0 u 0 0
u′ 0 x 0
0 x′ 0 u
0 0 u′ 0


 |

uu′ = 0
xx′ = 0




.

Now V is stratified into the following H-orbits:

C0 :=








0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







, C3 :=








0 u 0 0
0 0 x 0
0 0 0 u
0 0 0 0


 |

u 6= 0
x 6= 0




,

and

Cu :=








0 u 0 0
0 0 0 0
0 0 0 u
0 0 0 0


 | u 6= 0




, Cx :=








0 0 0 0
0 0 x 0
0 0 0 0
0 0 0 0


 | x 6= 0




.

The dual orbits in V ∗ are

C∗0 =








0 0 0 0
u′ 0 0 0
0 x′ 0 0
0 0 u′ 0


 |

u′ 6= 0
x′ 6= 0




, C∗ux =








0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







,

and

C∗u =








0 0 0 0
0 0 0 0
0 x′ 0 0
0 0 0 0


 | x′ 6= 0




, C∗x =








0 0 0 0
u′ 0 0 0
0 0 0 0
0 0 u′ 0


 | u′ 6= 0




.
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The following diagram gives the closure relations for these orbits.

Cux = Ĉ0 dim = 2 C∗0 = Ctux

Cu = Ĉx Cx = Ĉu dim = 1 C∗u = Ctx C∗x = Ctu

C0 = Ĉux dim = 0 C∗ux = Ct0

12.2.2. Equivariant perverse sheaves. — The equivariant fundamental groups for C0

and Cu are trivial, so they each carry only one equivariant local system, denoted by
1C0 and 1Cu , respectively. The equivariant fundamental groups for Cx and Cux have
order two, so they each carry two equivariant local systems, denoted by 1Cx , LCx ,
1Cux and LCux . Thus,

PerH(V )simple

/iso = {IC(1C0), IC(1Cu), IC(1Cx), IC(1Cux), IC(LCx), IC(LCux)}.
The following table describes these perverse sheaves on H-orbits in V .

P P|C0 P|Cu P|Cx P|Cu,x
IC(1C0) 1C0 [0] 0 0 0

IC(1Cu) 1C0 [1] 1Cu [1] 0 0

IC(1Cx) 1C0 [1] 0 1Cx [1] 0

IC(1Cux) 1C0 [2] 1Cu [2] 1Cx [2] 1Cux [2]

IC(LCx) 0 0 LCx [1] 0

IC(LCux) 0 0 LCx [2] LCux [2]

We now explain how to make these calculations.

(a) For the first four rows in the table above, those that deal with IC(1C), it is
sufficient to observe that the closure C of each strata C is smooth, hence the
sheaf 1C [dim(C)] is perverse.

(b) For the remaining two rows, those that deal with IC(LC), we observe that the

closure C of the strata C admits a finite equivarient double cover π : C̃ → C

by taking
√
x. Because C̃ is smooth, the sheaf 1C̃ [dim(C)] is perverse. The

decomposition theorem for finite maps of perverse sheaves now yields that
π!(1C̃ [dim(C)]) = IC(1C) ⊕ IC(LC). Proper base change, the decomposition
theorem for finite étale maps, and our earlier computations for IC(1C) then
allows us to readily compute the stalks of IC(LC).

From this, we easily find the normalised geometric multiplicity matrix is as follows.
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1

♮
C0

1

♮
Cu

1

♮
Cx

1

♮
Cux

L♮Cx L♮Cux
1

♯
C0

1 0 0 0 0 0

1

♯
Cu

1 1 0 0 0 0

1

♯
Cx

1 0 1 0 0 0

1

♯
Cux

1 1 1 1 0 0

L♯Cx 0 0 0 0 1 0

L♯Cux 0 0 0 0 1 1

12.2.3. Cuspidal support decomposition and Fourier transform. — Up to conjuga-

tion, Ĝ = Sp(4) admits exactly two cuspidal Levi subgroups: M̂ = Sp(2) × GL(1)

and T̂ = GL(1)×GL(1).

PerHλ(Vλ) = PerHλ(Vλ)T̂ ⊕ PerHλ(Vλ)M̂ .

Simple objects in these two subcategories are listed below.

PerH(V )Ť PerH(V )M̌
IC(1C0)
IC(1Cu)
IC(1Cx) IC(LCx)
IC(1Cux) IC(LCux)

The Fourier transform is given as follows.

Ft : PerH(V ) −→ PerH(V ∗)
IC(1C0) 7→ IC(1C∗

0
) = IC(1Ctux)

IC(1Cu) 7→ IC(1C∗
u
) = IC(1Ctx)

IC(1Cx) 7→ IC(1C∗
x
) = IC(1Ctu)

IC(1Cux) 7→ IC(1C∗
ux
) = IC(1Ct0)

IC(LCx) 7→ IC(LC∗
0
) = IC(LCtux)

IC(LCux) 7→ IC(LC∗
u
) = IC(LCtx)

12.2.4. Equivariant local systems on the regular conormal bundle. — The regular
conormal bundle to the H-action on V decomposes into H-orbits

T ∗H(V )reg = T ∗C0
(V )reg ⊔ T ∗Cu(V )reg ⊔ T ∗Cx(V )reg ⊔ T ∗Cux(V )reg,

where each T ∗C(V )reg is given below. In each case, the microlocal fundamental group

Amic
C is canonically identified with Z(Ĝ) ∼= {±1}.

C0: Regular conormal bundle:

T ∗C0
(V )reg =








0 0 0 0
u′ 0 0 0
0 x′ 0 0
0 0 u′ 0


 |

u′ 6= 0
x′ 6= 0





= C0 × C∗0
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Base point:

(x0, ξ0) =




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


 ∈ T

∗
C0

(V )reg

Fundamental groups:

1 = Ax0 A(x0,ξ0) Aξ0 = {±1}id

Local systems:
LocH(T ∗C0

(V )sreg) : 1O0 LO0

Rep(A(x0,ξ0)) : + −
Pullback along the bundle map T ∗C0

(V )sreg → C0:

LocH(C0) → LocH(T ∗C0
(V )sreg)

1C0 7→ 1O0

LO0

Cu: Regular conormal bundle:

T ∗Cu(V )reg =








0 u 0 0
0 0 0 0
0 x′ 0 u
0 0 0 0


 |

u 6= 0
x′ 6= 0





= Cu × C∗u

Base point:

(x1, ξ1) =




0 1 0 0
0 0 0 0
0 1 0 1
0 0 0 0


 ∈ T

∗
Cu(V )reg

Fundamental groups:

1 = Ax1 A(x1,ξ1) Aξ1 = {±1}id

Local systems:
LocH(T ∗Cu(V )sreg) : 1Ou LOu

Rep(A(x1,ξ1)) : + −
Pullback along the bundle map T ∗Cu(V )sreg → Cu:

LocH(Cu) → LocH(T ∗Cu(V )sreg)
1Cu 7→ 1Ou

LOu
Cx: Regular conormal bundle:

T ∗Cx(V )reg =








0 0 0 0
u′ 0 x 0
0 0 0 0
0 0 u′ 0


 |

u′ 6= 0
x 6= 0





= Cx × C∗x
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Base point:

(x2, ξ2) =




0 0 0 0
1 0 1 0
0 0 0 0
0 0 1 0


 ∈ T

∗
Cx(V )reg

Fundamental groups:

{±1} = Ax2 A(x2,ξ2) Aξ2 = 1id

Local systems:
LocH(T ∗Cx(V )sreg) : 1Ox LOx

Rep(A(x2,ξ2)) : + −
Pullback along the bundle map T ∗Cx(V )sreg → Cx:

LocH(Cx) → LocH(T ∗Cx(V )sreg)
1Cx 7→ 1Ox

LCx 7→ LOx
Cux: Regular conormal bundle:

T ∗Cux(V )reg =








0 u 0 0
0 0 x 0
0 0 0 u
0 0 0 0


 |

u 6= 0
x 6= 0





= Cux × C∗ux

Base point:

(x3, ξ3) =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 ∈ T

∗
Cux(V )reg

Fundamental groups:

{±1} = Ax3 A(x3,ξ3) Aξ3 = 1id

Local systems:

LocH(T ∗Cux(V )sreg) : 1Oux LOux
Rep(A(x3,ξ3)) : + −

Pullback along the bundle map T ∗Cux(V )sreg → Cux:

LocH(Cux) → LocH(T ∗Cux(V )sreg)
1Cux 7→ 1Oux

LCux 7→ LOux
12.2.5. Vanishing cycles of perverse sheaves. — We summarize the values of the
functor Ev : PerH(V ) → PerH(T ∗H(V )reg) on simple objects in Table 12.2.1 We now
explain how to make these calculations.

(a) To compute EvC0 IC(1Cx) we look at the vanishing cycles

EvC0 IC(1Cx) = RΦxx′(1Cx×C∗
0
)|T∗

C0
(V )reg [1].
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Table 12.2.1. p
Ev : PerHλ(Vλ) → PerHλ(T

∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 12.

PerH(V )
p
Ev−→ PerH(T ∗H(V )reg)

IC(1C0) 7→ IC(1O0)
IC(1Cu) 7→ IC(1Ou)
IC(1Cx) 7→ IC(1Ox)
IC(1Cux) 7→ IC(1Oux)
IC(LCx) 7→ IC(LOx)⊕ IC(LO0)
IC(LCux) 7→ IC(LOux)⊕ IC(LOu)

Table 12.2.2. Evs : PerHλ(Vλ) → LocHλ(T
∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 12.

P EvsC0 P EvsCu P EvsCx P EvsCux P
IC(1C0) + 0 0 0
IC(1Cu) 0 + 0 0
IC(1Cx) 0 0 + 0
IC(1Cux) 0 0 0 +
IC(LCx) − 0 − 0
IC(LCux) 0 − 0 −

The singular locus of xx′ is x = x′ = 0 but this is not part of T ∗C0
(V )reg,

so EvC0 IC(1Cx) = 0. All the non-diagonal entries in the first four rows work
similarly.

(b) To compute the last two rows of the tables above consider the map π : C̃′ → C′

which comes from taking a square root of x. Rather than directly applying Ev

to IC(LC′) we apply it to π!(1C̃′) and exploit the fact that we have already
computed Ev for the IC sheaves of constant local systems. For example, in the
case of EvC0(π!(1C̃x)) we will compute:

(
π! RΦx2x′(1C̃′ ⊠ 1C∗

0
)
)
T∗
C0

(V )reg
.

The singular locus is precisely x = 0 (noting that x′ is not actually zero on the
variety under consideration). The local structure of the singularity is that it is
a smooth family (in the variable u′) over the singularity of x2x′ over A × Gm

It follows from Lemma 6.2.4 that the vanishing cycles on such a singularity is
the sheaf supported on x = 0 associated to the non-trivial double cover

√
x′.

Finally, by observing that the map π is an isomorphism on the support of RΦ,
we conclude that:

pEvC0(π!(1C̃x)) = IC(LO0).

The other entries are computed similarly.
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12.2.6. Normalization of Ev and the twisting local system. — From Table 12.2.1 we
see that the twisting local system T is trivial in this case, so pNEv = pEv.

12.2.7. Fourier transform and vanishing cycles. — Compare the table below with
the Fourier transform from Section 12.2.3 to confirm (141) in this example.

PerHλ(Vλ)
p
Ev−→ PerH(T ∗Hλ(Vλ)reg)

a∗−→ PerH(T ∗Hλ(V
∗
λ )reg)

Ev
∗

←− PerHλ(V
∗
λ )

IC(1C0) 7→ IC(1O0) 7→ IC(1O∗
0
) ←[ IC(1C∗

0
)

IC(1Cu) 7→ IC(1Ou) 7→ IC(1O∗
u
) ←[ IC(1C∗

u
)

IC(1Cx) 7→ IC(1Ox) 7→ IC(1O∗
x
) ←[ IC(1C∗

x
)

IC(1Cux) 7→ IC(1Oux) 7→ IC(1O∗
ux
) ←[ IC(1C∗

ux
)

IC(LCx) 7→ IC(LOx)⊕ IC(LO0) 7→ IC(LO∗
x
)⊕ IC(LO∗

0
) ←[ IC(LC∗

0
)

IC(LCux) 7→ IC(LOux)⊕ IC(LOu) 7→ IC(LO∗
ux
)⊕ IC(LO∗

u
) ←[ IC(LC∗

u
)

12.2.8. Arthur sheaves. —

Arthur pure L-packet coronal
sheaf sheaves perverse sheaves

AC0 IC(1C0) ⊕ IC(LCx)
ACu IC(1Cu) ⊕ IC(LCux)
ACx IC(1Cx) ⊕ IC(LCx)
ACux IC(1Cux) ⊕ IC(LCux)

12.3. ABV-packets. —

12.3.1. Admissible representations versus equivariant perverse sheaves. —

PerHλ(Vλ)
simple

/iso Πpure,λ(G/F )

IC(1C0) (π(φ0), 0)
IC(1Cu) (π(φ1), 0)
IC(1Cx) (π(φ2,+), 0)
IC(1Cux) (π(φ3,+), 0)
IC(LCx) (π(φ2,−), 1)
IC(LCux) (π(φ3,−), 1)

The Arthur parameters ψ0 and ψ3 correspond uniquely to the base points (x0, ξ0)
and (x3, ξ3) from Section 12.2.4 under the map Qλ(

LG)→ T ∗H(V )reg given by Propo-
sition 5.1.1.

12.3.2. ABV-packets. — Using Section 12.2.5 and the bijection of Section 12.3.1, we
simply read off the ABV-packets:

ΠABV
pure,φ0

(G/F ) = {[π(φ0), 0], [π(φ2,−), 1]}
ΠABV

pure,φ1
(G/F ) = {[π(φ1), 0], [π(φ3,−), 1]}

ΠABV
pure,φ2

(G/F ) = {[π(φ2,+), 0], [π(φ2,−), 1]}
ΠABV

pure,φ3
(G/F ) = {[π(φ3,+), 0], [π(φ3,−), 1]}.
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Using Section 12.1.4, we see

Πpure,ψ0(G/F ) = ΠABV
pure,φ0

(G/F )

Πpure,ψ3(G/F ) = ΠABV
pure,φ3

(G/F ),

thus verifying that Arthur packets are ABV-packets for admissible representations
with infinitesimal parameter λ :WF → LG given at the beginning of Section 12.

12.3.3. Stable distributions and endoscopy. — For s ∈ Z(Ĝ) ∼= µ2, the virtual rep-
resentations ηNEvφ,s of (149) are given by

ηNEvφ0,1
= [π(φ0), 0] + [π(φ2,−), 1]

ηNEvφ0,−1
= [π(φ0), 0]− [π(φ2,−), 1]

ηNEvφ1,1
= [π(φ1), 0]− [π(φ3,−), 1]

ηNEvφ1,−1
= [π(φ1), 0] + [π(φ3,−), 1]

ηNEvφ2,1
= [π(φ2,+), 0] + [π(φ2,−), 1]

ηNEvφ2,−1
= [π(φ2,+), 0]− [π(φ2,−), 1]

ηNEvφ3,1
= [π(φ3,+), 0]− [π(φ3,−), 1]

ηNEvφ3,−1
= [π(φ3,+), 0] + [π(φ3,−), 1].

Comparing with Section 12.1.6, this proves (148) in this example.

12.3.4. Kazhdan-Lusztig conjecture. — Using the bijection of Section 12.3.1 we com-
pare the normalised geometric multiplicity matrix from Section 12.2.2 with the mul-
tiplicity matrix from Section 12.1.3:

mrep =




1 1 1 1 0 0
0 1 0 1 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1



, m′geo =




1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1



.

Since tmrep = m′geo, this confirms the Kazhdan-Lusztig conjecture as it applies to

representations with infinitesimal parameter λ : WF → LG given at the beginning of
Section 12.

12.3.5. Aubert duality and Fourier transform. — To verify (150), use Vogan’s bi-
jection from Section 12.3.1 to compare Aubert duality from Section 12.1.5 with the
Fourier transform from Section 12.2.3.

12.3.6. Normalisation. — To verify (152), observe that the twisting characters χψ
of Aψ from Section 12.1.5 are trivial, as are the local systems Tψ from Section 12.2.7.

12.3.7. ABV-packets that are not pure Arthur packets. — The closed stratum C0

and the open stratum C3 are of Arthur type, while C1 and C2 are not of Arthur type.
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Thus, there are two ABV-packets that are not Arthur packets in this example:

ΠABV
pure,φ1

(G/F ) = {[π(φ1), 0], [π(φ3,−), 1]}
ΠABV

pure,φ2
(G/F ) = {[π(φ2,+), 0], [π(φ2,−), 1]}.

From these we extract four stable distributions,

ΘGφ1
:= traceπ(φ1) ΘG1

φ1
:= traceπ(φ3,−)

ΘGφ2
:= traceπ(φ2,+) ΘG1

φ2
:= − traceπ(φ2,−).

We will see more interesting examples of ABV-packets that are not pure Arthur
packets in Section 14.3.6.

12.4. Endoscopy and equivariant restriction of perverse sheaves. — The
material from Section 8.4 is trivial in this case.

13. SO(5) unipotent representations, singular parameter

In this example we encounter an L-packet of representations of SO(5, F ) that is
lifted from an L-packet of representations of SO(3, F )×SO(3, F ). In Section 13.4 will
see how this lifting may be understood through equivariant restriction of perverse
sheaves on Vogan varieties, and their vanishing cycles.

Let G = SO(5). Then H1(F,G) ∼= Z/2Z. Let G1 be the non-split form of G,
as in Section 12. We consider admissible representations of G(F ) and G1(F ) with
infinitesimal parameter λ :WF → LG given by

λ(w) =




|w|1/2 0 0 0

0 |w|1/2 0 0

0 0 |w|−1/2 0

0 0 0 |w|−1/2


 .

13.1. Arthur packets. —

13.1.1. Parameters. — There are three Langlands parameters with infinitesimal pa-
rameter λ, up to ZĜ(λ)-conjugacy, each of Arthur type. Set

ψ0(w, x, y) := ν2(y)⊕ ν2(y),
ψ2(w, x, y) := ν2(x)⊕ ν2(y),
ψ3(w, x, y) := ν2(x)⊕ ν2(x),

and observe that ψ0 and ψ3 are Aubert dual while ψ2 is self dual. Let φ0, φ2 and φ3
be the associated Langlands parameters; thus,

φ0(w, x) := ν2(dw)⊕ ν2(dw),
φ2(w, x) := ν2(x)⊕ ν2(dw),
φ3(w, x) := ν2(x)⊕ ν2(x).

13.1.2. L-packets. — The pure component groups for these three Langlands param-
eters are

Aφ0 = 1, Aφ2
∼= {±1}, Aφ3

∼= {±1}.
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Thus, there are five admissible representations of two pure forms of SO(5) in play in
this example. When arranged into L-packets, these representations are:

Πφ0(G(F )) = {π(φ0)}, Πφ0(G1(F )) = ∅,
Πφ2(G(F )) = {π(φ2,+)}, Πφ2(G1(F )) = {π(φ2,−)},
Πφ3(G(F )) = {π(φ3,+), π(φ3,−)}, Πφ3(G1(F )) = ∅.

Of these five admissible representations, only π(φ3,+) and π(φ3,−) are tempered;
these two representations are denoted by τ2 and τ1, respectively, in [Mat10]. The
admissible representation π(φ0) is denoted by L(ν1/2ζ, ν1/2ζ, 1) with ζ = 1 in [Mat10]
and π(φ2,+) is denoted by L(ν1/2ζ, ζ StSO(3)) with ζ = 1.

13.1.3. Multiplicities in standard modules. — The standard module M(φ0) is in-
duced from the Levi subgroup GL(1, F ) × GL(1, F ) × SO(1, F ) of SO(5, F ); it is
denoted by ν1/2ζ× ν1/2ζ⋊ 1 with ζ = 1 in [Mat10]. The standard module M(φ2,+)
is induced from the Levi subgroup GL(1, F )× SO(3, F ) of SO(5, F ); it is denoted by
ν1/2ζ ⋊ ζ StSO(3) with ζ = 1 in [Mat10]. The standard module M(φ3,±) coincides
with the tempered representation π(φ3,±). The 4 × 4 block in the following table
may be deduced from [Mat10, Proposition 3.3].

π(φ0) π(φ2,+) π(φ3,+) π(φ3,−) π(φ2,−)
M(φ0) 1 1 1 1 0
M(φ2,+) 0 1 1 0 0
M(φ3,+) 0 0 1 0 0
M(φ3,−) 0 0 0 1 0
M(φ2,−) 0 0 0 0 1

13.1.4. Arthur packets. — The component groups for the Arthur parameters in this
example are

Aψ0
∼= {±1}, Aψ2

∼= {±1} × {±1}, Aψ3
∼= {±1}.

We may represent elements of each Aψ as cosets with representatives taken from

T̂ [2]. The map T̂ [2]→ Aψ0 is s 7→ s1s2; the map T̂ [2]→ Aψ2 is s 7→ (s1, s2); the map

T̂ [2]→ Aψ3 is s 7→ s1s2.
The Arthur packets for Arthur parameters with infinitesimal parameter λ are:

Πψ0(G(F )) = {π(φ0), π(φ2,+)}, Πψ0(G1(F )) = ∅,
Πψ2(G(F )) = {π(φ2,+), π(φ3,−)}, Πψ2(G1(F )) = {π(φ2,−)},
Πψ3(G(F )) = {π(φ3,+), π(φ3,−)}, Πψ3(G1(F )) = ∅.

We arrange these representations into pure Arthur packets in the table below.

pure Arthur pure L-packet coronal

packets representations representations

Πpure,ψ0(G/F ) [π(φ0), 0] [π(φ2,+), 0]

Πpure,ψ2(G/F ) [π(φ2,+), 0], [π(φ2,−), 1] [π(φ3,−), 0]
Πpure,ψ3(G/F ) [π(φ3,+), 0], [π(φ3,−), 0]
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13.1.5. Aubert duality. — Aubert duality for G(F ) and G1(F ) are given by the
following table.

π π̂

π(φ0) π(φ3,+)
π(φ2,+) π(φ3,−)
π(φ3,+) π(φ0,+)
π(φ3,−) π(φ2,+)
π(φ2,−) π(φ2,−)

The twisting characters χψ0 and χψ3 are trivial. The twisting character χψ2 of Aψ2

is χψ2(s) = s1s2 = det(s). This is the first non-trivial twisting character to appear in
this article.

13.1.6. Stable distributions and endoscopic transfer. — The stable distributions

ΘGψ =
∑

π∈Πψ(G(F ))

〈sψ, π〉ψ traceπ

attached the Arthur parameters are:

ΘGψ0
= traceπ(φ0) + traceπ(φ2,+)

ΘGψ2
= traceπ(φ2,+)− traceπ(φ3,−)

ΘGψ3
= traceπ(φ3,+) + traceπ(φ3,+).

The distributions
ΘGψ,s =

∑

π∈Πψ(Gδ(F ))

〈ssψ, π〉ψ traceπ,

where s ∈ ZĜ(ψ), are obtained by transfer from endoscopic groups. The coefficients
above are given by

〈ssψ, π〉ψ = 〈sψ, π〉ψ〈s, π〉ψ
where 〈sψ, π〉ψ appear above while 〈s, π〉ψ is given by the tables below.

We now give 〈 ·π〉ψ as a character of Aψ, using the isomorphisms from Sec-
tion 13.1.4.

π 〈 · , π〉ψ0
〈 · , π〉ψ2

〈 · , π〉ψ3

π(φ0) + 0 0
π(φ2,+) − ++ 0
π(φ3,+) 0 0 +
π(φ3,−) 0 −− −

The values of this character on the image of s = diag(s1, s2, s
−1
2 , s−11 ) ∈ T̂ [2] in Aψ

are given by.
π 〈s, π〉ψ0

〈s, π〉ψ2
〈s, π〉ψ3

π(φ0) 1 0 0
π(φ2,+) s1s2 1 0
π(φ3,+) 0 0 1
π(φ3,−) 0 s1s2 s1s2
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For instance, if we take s = diag(1,−1,−1, 1) ∈ T̂ [2] then

ΘGψ0,s
= traceπ(φ0)− traceπ(φ2,+),

ΘGψ2,s
= traceπ(φ2,+)+ traceπ(φ3,−),

ΘGψ3,s
= traceπ(φ3,+)− traceπ(φ3,−).

In this case, the elliptic endoscopic group G′ for G determined by s is the group
G′ = SO(3)× SO(3), split over F .

13.2. Vanishing cycles of perverse sheaves. — We now assemble the geometric
tools needed to calculate the Arthur packets, stable distributions and endoscopic
transfer described above.

13.2.1. Vogan variety and its conormal bundle. —

V =








z x
y −z


 | x, y, z





V ∗ =






 z′ y′

x′ −z′


 | x

′, y′, z′





so

T ∗(V ) =








z x
y −z

z′ y′

x′ −z′


 |

x, y, z
x′, y′, z′




⊂ sp(4)

The cotangent bundle T ∗(V ) comes equipped with an action of

H :=ZĜ(λ) =








a1 b1
c1 d1

a2 b2
c2 d2


 ∈ Sp(4)




.

We will write h1 = ( a1 b1c1 d1
) and h2 = ( a2 b2c2 d2

). Then h2 = h1 deth
−1
1 , by the choice of

symplectic form J in Section 12. In particular, H ∼= GL(2). The action of H on V ,
V ∗ and T ∗(V ) is given by

h ·
(
z x
y −z

)
= h1

(
z x
y −z

)
h−12

h ·
(
z′ y′

x′ −z′
)

= h2

(
z′ y′

x′ −z′
)
h−11 .

The H-invariant function ( · | · ) : T ∗(Vλ)→ A1 is the quadratic form



z x
y −z

z′ y′

x′ −z′


 7→ xx′ + yy′ + 2zz′.
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The Hλ-invariant function [·, ·] : T ∗(Vλ)→ hλ is given by



z x
y −z

z′ y′

x′ −z′


 7→




zz′ + xx′ zy′ − xz′
yz′ − zx′ yy′ + zz′

zz′ + yy′ xz′ − zy′
zx′ − yz′ xx′ + zz′




The conormal bundle is

T ∗H(V ) =








z x
y −z

z′ y′

x′ −z′


 |

zz′ + xx′ = 0
zz′ + yy′ = 0
zx′ − yz′ = 0
xz′ − zy′ = 0





The orbits of the action of H on V are

C0 =








0 0
0 0








C2 =








z y
x −z


 |

xy + z2 = 0
(x, y, z) 6= (0, 0, 0)





C3 =








z y
x −z


 | xy + z2 6= 0





while the orbits of the action of H on V ∗ are:

C∗0 =






 z′ y′

x′ −z′


 | x′y′ + z′2 6= 0





C∗2 =






 z′ y′

x′ −z′


 |

x′y′ + z′2 = 0
(x′, y′, z′) 6= (0, 0, 0)





C∗3 =






 0 0

0 0








The following diagram gives the dimensions of the H-orbits C and the dual orbits
C∗, we well as the eccentricities eC = dimC + dimC∗ − dimV and closure relations
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for the H-orbits C in V :

C3 dimC3 = 3 eC3 = 0 C∗0

C2 dimC2 = 2 eC2 = 1 C∗2

C0 dimC0 = 0 eC0 = 0 C∗3

Orbit C2 is the first stratum in this article with non-zero eccentricity.

13.2.2. Equivariant local systems. —

C0: Regular conormal bundle above the closed H-orbit C0 ⊂ V :

T ∗C0
(V )reg =








0 0
0 0

z′ y′

x′ −z′


 | x′y′ − z′2 6= 0





Base point:

(x0, ξ0) =




0 0
0 0

0 1
1 0


 ∈ T

∗
C0
(V )reg

Fundamental groups:

T̂ [2]

1 = Ax0 A(x0,ξ0) Aξ0
∼= {±1}

s7→s1s2

id

Local systems:
LocH(T ∗C0

(V )sreg) : 1O0 LO0

Rep(A(x0,ξ0)) : + −
Pullback along the bundle map T ∗C0

(V )sreg → C0:

LocH(C0) → LocH(T ∗C0
(V )sreg)

1C0 7→ 1O0

LO0

C2: Regular conormal bundle above C2 ⊂ V :

T ∗C2
(V )reg =








z x
y −z

z′ y′

x′ −z′


 |

xy + z2 = 0
[x : y : z] = [y′ : x′ : z′]




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Base point:

(x2, ξ2) =




0 1
0 0

0 1
0 0


 ∈ T

∗
C2
(V )reg

Fundamental groups:

T̂ [2]

{±1} = Ax2 A(x2,ξ2) Aξ2 = {±1}

s7→(s1,s2)∼=

s1←[(s1,s2) (s1,s2) 7→s2

Local systems:

LocH(T ∗C2
(V )sreg) : 1O2 LO2 FO2 EO2

Rep(A(x2,ξ2)) : ++ −− −+ +−
Pullback along the bundle map T ∗C2

(V )sreg → C2:

LocH(C2) → LocH(T ∗C2
(V )sreg)

1C2 7→ 1O2

LO2

FC2 7→ FO2

EO2

C3: Regular conormal bundle above C3 ⊂ V :

T ∗C3
(V )reg =








z x
y −z

0 0
0 0


 | xy + z2 6= 0





Base point:

(x3, ξ3) =




0 1
1 0

0 0
0 0


 ∈ T

∗
C3
(V )reg

Fundamental groups:

T̂ [2]

{±1} ∼= Ax3 A(x3,ξ3) Aξ3 = 1

s1s2←[s

id

Local systems:
LocH(T ∗C3

(V )sreg) : 1O3 LO3

Rep(A(x3,ξ3)) : + −
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Pullback along the bundle map T ∗C3
(V )sreg → C3:

LocH(C3) → LocH(T ∗C3
(V )sreg)

1C3 7→ 1O3

LC3 7→ LO3

13.2.3. Equivariant perverse sheaves. — The following table is helpful to understand
the simple objects in PerH(V ).

P P|C0 P|C2 P|C3

IC(1C0) 1C0 [0] 0 0
IC(1C2) 1C0 [2] 1C2 [2] 0
IC(1C3) 1C0 [3] 1C2 [3] 1C3 [3]
IC(LC3) 1C0 [1] 0 LC3 [3]
IC(FC2) 0 FC2 [2] 0

We now explain how we made these calculations:

(a) The first and third row of these tables are computed using the observation that
when C is smooth, the sheaf 1C [dim(C)] is perverse.

(b) For the second row, the relevant cover C̃
(1)
2 is the blowup of the nilcone at the

origin. We readily find using the decomposition theorem for semi-small maps
that

π
(1)
2 !(1C̃(1)

2
[2]) = IC(1C2)⊕ IC(1C0).

Proper base change and exactness allows us to deduce the fibres of IC(1C2)
using what we already know about IC(1C0).

(c) For the fourth row, we consider the double cover which arises from taking the
square root of the determinant. Although this is singular at the origin, blowing
up resolves this singularity. An alternate model for this blowup is the cover:

C̃3 =
{
([a : b], (x, y, z)) ∈ P1 × V | a2x+ 2abz − b2y = 0

}

with the obvious map π3 to V = C3. The decomposition theorem for semi-small
maps yields

π3!(1C̃3
[3]) = IC(LC3)⊕ IC(1C3).

Proper base change and exactness again allows us to deduce the entries for
IC(LC3), the key observation being that the map is 2 : 1 overC3, an isomorphism
over C2 and the fibre over C0 is P1.

(d) Finally the fifth row is computed by considering the “symmetric squares” cover

of the nilcone given by π
(2)
2 : (a, b) 7→ (a2,−b2, ab). This map is 2 : 1 over C2 and

an isomorphism over C0; we readily confirm using the decomposition theorem
for finite maps that

π
(2)
2 !(1C̃ [2]) = IC(FC2)⊕ IC(1C2).

Computing the entries in the table is now immediate using our understanding
of the fibres and what we already know about IC(1C2).
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Table 13.2.1. p
Ev : PerHλ(Vλ) → PerHλ(T

∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 13.

PerHλ(Vλ)
p
Ev−→ PerH(T ∗Hλ(Vλ)reg)

IC(1C0) 7→ IC(1O0)
IC(1C2) 7→ IC(LO2)⊕ IC(LO0)
IC(1C3) 7→ IC(1O3)
IC(LC3) 7→ IC(LO3)⊕ IC(1O2)
IC(FC2) 7→ IC(EO2)

From this, we easily find the normalised geometric multiplicity matrix.

1

♮
C0

1

♮
C2

1

♮
C3

L♮C3
F ♮C2

1

♯
C0

1 0 0 0 0

1

♯
C2

1 1 0 0 0

1

♯
C3

1 1 1 0 0

L♯C3
1 0 0 1 0

F ♯C2
0 0 0 0 1

13.2.4. Cuspidal support decomposition and Fourier transform. — Cuspidal Levi

subgroups for Ĝ were given in Section 12.2.3, so the cuspidal support decomposition
of PerHλ(Vλ) takes the same form here:

PerHλ(Vλ) = PerHλ(Vλ)T̂ ⊕ PerHλ(Vλ)M̂ .

However, simple objects in these two subcategories are quite different in this case:

PerH(V )Ť PerH(V )M̌
IC(1C0)
IC(1C2) IC(FC2)
IC(1C3)
IC(LC3)

Here we record the functor Ft : PerH(V ) → PerH(V ∗) on simple objects, and the
composition of that functor with the equivalence PerH(V ∗) → PerH(V ) described in
Section 8.3.4; the composition is the functor ∧ : PerH(V ) → PerH(V ) also discussed
in Section 8.3.4.

PerH(V )
Ft−→ PerH(V ∗) −→ PerH(V )

IC(1C0) 7→ IC(1C∗
0
) 7→ IC(1C3)

IC(1C2) 7→ IC(LC∗
0
) 7→ IC(LC3)

IC(1C3) 7→ IC(1C∗
3
) 7→ IC(1C0)

IC(LC3) 7→ IC(1C∗
2
) 7→ IC(1C2)

IC(FC2) 7→ IC(FC∗
2
) 7→ IC(FC2)

Note that the Fourier transform respects the cuspidal support decomposition.
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Table 13.2.2. Evs : PerHλ(Vλ) → LocHλ(T
∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 13.

P EvsC0 P EvsC2 P EvsC3 P
IC(1C0) + 0 0
IC(1C2) − −− 0
IC(1C3) 0 0 +
IC(LC3) 0 ++ −
IC(FC2) 0 +− 0

13.2.5. Vanishing cycles. — Table 13.2.1 presents the calculation of Ev on simple
objects. We explain all the calculation here.

All the entries in row 1 and column 3 are are a direct consequence of Lemma 6.2.1.
We show how to compute column 2.

(a) We compute pEvC2 IC(1C2). By Lemma 6.6.1,
pEvC2 IC(1C2) = RΦxx′+yy′+2zz′(1C2×C∗

2
)|T∗

C2
(V )reg [3].

Consider the affine open subvariety Uxy′ of C2 × C∗2 given by the equations
xy′ 6= 0; then

U =








z x
y −z

z′ y′

x′ −z′



∣∣

xy + z2 = 0

x′y′ + z′
2
= 0

xy′ 6= 0





Then Uxy′ has coordinate ring

C[x, y, z, x′, y,′ z′]xy′/(xy + z2, x′y′ + z′2) ∼= C[x, z, y′, z′]xy′ .

Write fxy′ : Uxy′ → A1 for the restriction of f to Uxy′ . Then fxy′ is given on
coordinate rings by

t 7→ −xz
′2

y′
− y′ z

2

x
+ 2zz′ = − 1

xy′
(zy′ − xz′)2.

Using Section 6.2, especially Lemma 6.2.4, it follows that RΦfxy′ (1Uxy′ ) is the
sheaf on

f−1xy′(0) = Spec(C[x, z, y′, z′]xy′/(zy
′ − xz′))

associated to the double cover Spec(C[x, z, y′, z′, s]xy′/(zy
′ − xz′, s2 + xy′)).

With reference to Section 13.2.1, the restriction of [·, ·] : T ∗(Vλ)→ hλ to Uxy′

is given by


z x
∗ −z

z′ y′

∗ −z′


 7→ zy′−xz′

xy′




xz′ 1
−zz′ −zy′

−zy′ −1
zz′ xz′



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and so the equation zy′ − xz′ = 0 implies this product is zero. It follows that
the support of RΦfxy′ (1Uxy′ ) is contained in T ∗C2

(V )reg ∩Uxy′ . We may find the

entire sheaf RΦf |C2×C∗
2
(1C2×C∗

2
) by also considering the affine open Ux′y cut out

by the condition x′y 6= 0. In this case we symmetrically obtain the local system
on zx′ − yz′ = 0 associated to the double cover given by s2 + x′y = 0. We
may then glue these local systems together to see that pEvC2 IC(1C2)[−3] is the
non-trivial local system on T ∗C2

(V )reg trivialized by the double cover

Spec(C[a2, b2, ab, a′
2
, b′

2
, a′b′, ab′, aa′, ba′, bb′])→ T ∗C2

(V )reg

(subvariety of A10 with all of the implied relations) given on the coordinate rings
by

x 7→ a2, y 7→ −b2, z 7→ ab, x′ 7→ a′
2
, y′ 7→ −b′2, z′ 7→ a′b′.

This is the diagonal quotient of the product of the symmetric squares.
It remains to see how to describe this local system in the language of Sec-

tion 13.2.2. To do this, observe that (x2, ξ2) ∈ Uxy′ and return to the descrip-
tion of the local system RΦfxy′ (1Uxy′ ) given above and observe that the covering

group of Spec(C[x, z, y′, z′, s]xy′/(zy
′ − xz′, s2 + xy′)) over f−1xy′(0) is s 7→ ±s, or

equivalently, (x, y′) 7→ (±x,±y′). It follows that pEvC2 IC(1C2) = LO2 [3] where
LO2 is the local system which corresponds to the character (−−) of A(x2,ξ2).
Note that pEvC2 IC(1C2) 6= 1O2 [3].

(b) Here we compute pEvC2 IC(FC2) using the affine covering Uxy′ ∪Ux′y = C2×C∗2
from Section 13.2.5, (a). Observe that

pEvC2 IC(FC2) = RΦf |C2×C∗
2
(FC2 ⊠ 1C∗

2
)[3]

since IC(FC2) = F ♮C2
[2]. Consider the cover Ũxy′ = Spec(C[a, b, y′, z′]ay′) of

Uxy′ = Spec(C[x, z, y′, z′]xy′) given on coordinate rings by x 7→ a2, z 7→ ab and

the cover Ũx′y = Spec(C[a, b, x′, z′]bx′) of Ux′y = Spec(C[y, z, x′, z′]x′y) given
on coordinate rings by y 7→ −b2, z 7→ ab. Together, this defines a double cover
π : C̃2×C∗2 → C2×C∗2 ; the local system FC2⊠1C∗

2
is associated to the quadratic

character of the covering group (a, b) 7→ (±a,±b). Then

(f ◦ π)|Uxy′ = −
1

a2y′
(aby′ − a2z′)2 = − 1

y′
(by′ − az′)2.

By Lemma 6.2.4,
RΦ− 1

y′
(by′−az′)2(1Ũxy′ )

is the local system associated to the cover s2 + y′ = 0 over the zero locus
of by′ − az′ and the quadratic character of the covering group s 7→ ±s, or
equivalently, (a, b) 7→ (±a,±b). By proper base change,

(π|Ũxy′ )∗RΦ− 1
y′

(by′−az′)2(1Ũxy′ ) = RΦf |U
xy′

(π|Ũxy′ )∗1Ũxy′ )
This shows that EvC2 IC(F2)[−3] is not the pullback FO2 of F2 to T ∗C2

(V )reg,
but rather the twist of that by the local system above, which is EO2 .
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(c) Recall the cover π3 : C̃3 → C3 from Section 13.2.3 (c). To compute EvC2 IC(LC3)
we consider

RΦf◦(π3×id)(1C̃3×C∗
2
).

Localize C3 = V at xy′ 6= 0 to define Vxy′ . Localize the fibre (π3 × id)−1(Vxy′)

away from the exceptional divisor to define Ṽxy′ with coordinate ring

C[d, x, y, z, z′, y′, z′]xy′/(xy + z2 − d2, x′y′ + z′2) ∼= C[d, x, z, y′, z′]xy′

and the cover π3
xy′ : Ṽxy′ → Vxy′ . Then

f ◦ π3
xy′ = −

1

xy′
(xz′ − zy′ − dy′)(xz′ − zy′ + dy′)

The functions (xz′ − zy′− dy′) and (xz′− zy′+ dy′) being smooth on Ṽxy′ , and
xy′ being non-zero, it follows from Corollary 6.2.6 that

RΦf◦π3
xy′

(1Ṽxy′ )

is the constant sheaf on the intersection of their zero loci, which is precisely
O2 ∩ Ṽxy′ . Using proper base change, and noting that proper pushforward is an
isomorphism on the regular conormal vectors, it follows that

EvC2 IC(LC3) = 1O2 [3].

This concludes the computation of column 2 in Table 13.2.1.
We have now explained every entry in Table 13.2.1 except for the following case.

(d) To compute EvC0 IC(1C2), consider

RΦxx′+yy′+2zz′(1C̃(1)
2 ×C

∗
0
)

with

C̃
(1)
2 =

{
([a : b], (x, y, z)) ∈ P1 × C2 | −ax+ bz = 0, az + by = 0

}
.

The Jacobian condition for smoothness tells us that this is singular precisely
when x = y = z = 0 and

−a2x′ + 2abz′ + b2y′ = 0.

The restriction of C̃
(1)
2 ×C∗0 → C2×C∗0 to the singular locus gives the non-trivial

double cover of C∗0 . From this we conclude

EvC0 π
(1)
2 !1

C̃
(1)
2

[2] = IC(LO0)⊕ IC(1O0).

As we already know that IC(1C0) is the source of the second term, we conclude
that

EvC0 IC(1C2) = IC(LO0).

13.2.6. Normalization of Ev and the twisting local system. — From Table 13.2.1 we
find the first interesting case of the local system T on T ∗H(V )sreg described in general
in Section 6.9, and defined on T ∗C(V )sreg by (97):

TC := EvsC IC(C).
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Table 13.2.3. p
NEv : PerHλ(Vλ)→ PerHλ(T

∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 13.

PerHλ(Vλ)
p
NEv−→ PerH(T ∗Hλ(Vλ)reg)

IC(1C0) 7→ IC(1O0)
IC(1C2) 7→ IC(1O2)⊕ IC(LO0)
IC(1C3) 7→ IC(1O3)
IC(LC3) 7→ IC(LO3)⊕ IC(LO2)
IC(FC2) 7→ IC(FO2)

Table 13.2.4. NEvs : PerHλ(Vλ)→ LocHλ(T
∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 13.

P NEvsψ0 P NEvsψ2 P NEvsψ3 P
IC(1C0) + 0 0
IC(1C2) − ++ 0
IC(1C3) 0 0 +
IC(LC3) 0 −− −
IC(FC2) 0 −+ 0

From Table 13.2.1 we see that

T = 1

♮
O0
⊕ L♮O2

⊕ 1♮O3
,

or, in other notation,
ψ0 ψ2 ψ3

Tψ + −− +

We use T in Table 13.2.3 to calculate pNEv : PerHλ(Vλ)→ PerHλ(T
∗
Hλ

(Vλ)reg) in two
forms; compare with Table 13.2.1 .

13.2.7. Fourier transform and vanishing cycles. — We may now verify (141) by
comparing the functors below with the Fourier transform appearing in Section 13.2.4.

PerHλ(Vλ)
p
NEv−→ PerH(T ∗Hλ(Vλ)reg)

a∗−→ PerH(T
∗
Hλ

(V ∗λ )reg)
p
Ev

∗

←− PerHλ(V
∗
λ )

IC(1C0) 7→ IC(1O0) 7→ IC(1O∗
0
) ←[ IC(1C∗

0
)

IC(1C2) 7→ IC(1O2)⊕ IC(LO0) 7→ IC(1O∗
2
)⊕ IC(LO∗

0
) ←[ IC(LC∗

0
)

IC(1C3) 7→ IC(1O3) 7→ IC(1O∗
3
) ←[ IC(1C∗

3
)

IC(LC3) 7→ IC(LO3)⊕ IC(LO2) 7→ IC(LO∗
3
)⊕ IC(LO∗

2
) ←[ IC(1C∗

2
)

IC(FC2) 7→ IC(FO2) 7→ IC(FO∗
2
) ←[ IC(FC∗

2
)
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13.2.8. Arthur sheaves. —

Arthur packet coronal
sheaf sheaves sheaves
AC0 IC(1C0) ⊕ IC(1C2)
AC2 IC(1C2)⊕ IC(FC2) ⊕ IC(LC3)
AC3 IC(1C3)⊕ IC(FC3)

13.3. ABV-packets. —

13.3.1. Admissible representations versus equivariant perverse sheaves. —

PerHλ(Vλ)
simple

/iso Πpure,λ(G/F )

IC(1C0) [π(φ0), 0]
IC(1C2) [π(φ2,+), 0]
IC(1C3) [π(φ3,+), 0]
IC(LC3) [π(φ3,−), 0]
IC(FC2) [π(φ2,−), 1]

13.3.2. ABV-packets. —

ABV-packets packet representations coronal representations

ΠABV
pure,φ0

(G/F ) : [π(φ0,+), 0] [π(φ2,+), 0]

ΠABV
pure,φ2

(G/F ) : [π(φ2,+), 0], [π(φ2,−), 1] [π(φ3,−), 0]
ΠABV

pure,φ3
(G/F ) : [π(φ3,+), 0], [π(φ3,−), 0]

13.3.3. Stable distributions and endoscopic transfer. — We now calculate the virtual
representations ηNEvφ,s ; see (149). In the list below, we use the notation s = (s1, s2) for

elements of T̂ [2].

φ0:
ηNEvφ0,s

= [π(φ0,+), 0] + (−)(s1s2)[π(φ2,+), 0]

so

ηNEvφ0,(1,1)
= [π(φ0), 0] + [π(φ2,+), 0]

ηNEvφ0,(1,−1)
= [π(φ0), 0]− [π(φ2,+), 0]

ηNEvφ0,(−1,1)
= [π(φ0), 0]− [π(φ2,+), 0]

ηNEvφ0,(−1,−1)
= [π(φ0), 0] + [π(φ2,+), 0].

φ2:

ηNEvφ2,s
= [π(φ2,+), 0]− (+−)(s)[π(φ2,−), 1]− (−−)(s)[π(φ3,−), 0]

so
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ηNEvφ2,(1,1)
= [π(φ2,+), 0]− [π(φ2,−), 1]− [π(φ3,−), 0]

ηNEvφ2,(1,−1)
= [π(φ2,+), 0] + [π(φ2,−), 1] + [π(φ3,−), 0]

ηNEvφ2,(−1,1)
= [π(φ2,+), 0]− [π(φ2,−), 1] + [π(φ3,−), 0]

ηNEvφ2,(−1,−1)
= [π(φ2,+), 0] + [π(φ2,−), 1]− [π(φ3,−), 0]

φ3:
ηNEvφ3,s

= [π(φ3,+), 0] + (−)(s1s2)[π(φ3,−), 0]
so

ηNEvφ3,(1,1)
= [π(φ3,+), 0] + [π(φ3,−), 0]

ηNEvφ3,(1,−1)
= [π(φ3,+), 0]− [π(φ3,−), 0]

ηNEvφ3,(−1,1)
= [π(φ3,+), 0]− [π(φ3,−), 0]

ηNEvφ3,(−1,−1)
= [π(φ3,+), 0] + [π(φ3,−), 0].

After comparing with Section 13.1.6, we see

ηψ0,s = ηNEvψ0,s

ηψ3,s = ηNEvψ3,s
.

This proves (148) for admissible represenations with infinitesimal parameter λ given
at the beginning of Section 13.

13.3.4. Kazhdan-Lusztig conjecture. — From Section 13.1.3 we find the multiplicity
matrix mrep and from Section 13.2.3 we find the normalised geometric multiplicity
matrix m′geo:

mrep =




1 1 1 1 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



, m′geo =




1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 0 0 1 0
0 0 0 0 1



.

Since tmrep = m′geo, this confirms the Kazhdan-Lusztig conjecture as it applies to

representations with infinitesimal parameter λ : WF → LG given at the beginning of
Section 13.

13.3.5. Aubert duality and Fourier transform. — To verify (150), use Vogan’s bi-
jection from Section 13.3.1 to compare Aubert duality from Section 13.1.5 with the
Fourier transform from Section 13.2.4 .

13.3.6. Normalisation. — To verify (152), observe that the twisting characters χψ
of Aψ from Section 13.1.5 are trivial except for the Arthur parameter ψ2, as are
the local systems Tψ from Section 13.2.7 and in both cases they are given by the
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character (−−) of Aψ2 determined by the isomorphism Aψ2
∼= {±1}× {±1}, fixed in

Section 13.1.4.

13.4. Endoscopy and equivariant restriction of perverse sheaves. — As in
Section 13.1.6, we now consider the split endoscopic group G′ = SO(3) × SO(3) for

G determined by s = diag(1,−1,−1, 1) ∈ Ĝ. Then λ : WF → LG factors through

ǫ : LG
′ → LG to define λ′ :WF → LG

′
by

λ′(w) =

((
|w|1/2 0

0 |w|−1/2

)
,

(
|w|1/2 0

0 |w|−1/2

))
.

In this section we will calculate both sides of (154). This will illustrate how the
Langlands-Shelstad lift of Θψ′ on G′(F ) to Θψ,s on G(F ) is related to equivariant
restriction of perverse sheaves from V to the Vogan variety V ′ for G′. Note that
each component of λ′ is the infinitesimal parameter WF → LSO(3) that appeared in
Section 10; here we will use that Section extensively.

13.4.1. Parameters. — There are four Arthur parameters with infinitesimal param-
eter λ′ : WF → LG′, up to H ′-conjugacy. Using notation from Section 10, they
are

ψ′00 := ψ0 × ψ0, ψ′11 := ψ1 × ψ1,
ψ′10 := ψ1 × ψ0, ψ′01 := ψ0 × ψ1,

so
ψ′00(w, x, y) = (ν2(y), ν2(y)), ψ′11(w, x, y) = (ν2(x), ν2(x)),
ψ′10(w, x, y) = (ν2(x), ν2(y)), ψ′01(w, x, y) = (ν2(y), ν2(x)).

Although ψ2 = ǫ ◦ ψ′10 is H-conjugate to ǫ ◦ ψ′01, the Arthur parameters ψ′10 and ψ′01
for G′ are not H ′-conjugate.

13.4.2. Endoscopic Vogan variety. — The Vogan variety V ′ for λ′ is simply two
copies of the Vogan variety appearing in Section 10. As a subvariety of the conormal
bundle to V , the conormal to the Vogan variety V ′ for λ′ :WF → LG′ is

T ∗H′(V ′) =








0 x
y 0

0 y′

x′ 0


 |

xy′ = 0
yx′ = 0

.





(C′0). Set C′0 = C0×C0. Then the regular conormal above the closedH ′-orbit C′0 ⊂ V ′
is

T ∗C′
0
(V ′)reg =








0 0
0 0

0 y′

x′ 0


 |

x′ 6= 0
y′ 6= 0





Base point:

(x′0, ξ
′
0) =




0 0
0 0

0 1
1 0


 ∈ T

∗
C′

0
(V ′)reg
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Fundamental groups:

T̂ [2]

1 = Ax′
0

A(x′
0,ξ

′
0)

Aξ′0 = {±1} × {±1}

s7→(s1,s2)

id

Local systems on strongly regular conormal:

LocH(T ∗C′
0
(V )sreg) : 1O′

0
LO′

0
FO′

0
EO′

0

Rep(A(x′
0,ξ

′
0)
) : ++ −− −+ +−

Pullback along the bundle map:

LocH′ (C′0) → LocH′(T ∗C′
0
(V ′)sreg)

1C′
0

7→ 1O′
0

LO′
0

FO′
0

EO′
0

(C′x). Set C′x = Cx × C0 ⊂ V ′. Then the regular conormal above C′x is

T ∗C′
x
(V )reg =








0 x
0 0

0 y′

0 0


 |

x 6= 0
y′ 6= 0





Base point:

(x′10, ξ
′
10) =




0 1
0 0

0 1
0 0


 ∈ T

∗
C′
x
(V )reg

Fundamental groups:

T̂ [2]

{±1} = Ax′
10

A(x′
10,ξ

′
10)

Aξ′10 = {±1}

s7→(s1,s2)

s1←[(s1,s2) (s1,s2) 7→s2

Local systems on strongly regular conormal:

LocH(T ∗C′
x
(V )sreg) : 1O′

x
LO′

x
FO′

x
EO′

x

Rep(A(x′
01,ξ

′
01)

) : ++ −− −+ +−
Pullback along the bundle map:

LocH′ (C′x) → LocH′ (T ∗C′
x
(V )sreg)

1C′
x

7→ 1O′
x

LO′
x

LC′
x

7→ FO′
x

EO′
x
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(C′y). Set C′y = C0 × Cx ⊂ V ′. Then the regular conormal above C′y is

T ∗C′
y
(V )reg =








0 0
y 0

0 0
x′ 0


 |

x′ 6= 0
y 6= 0





Base point:

(x′01, ξ
′
01) =




0 0
1 0

0 0
1 0


 ∈ T

∗
C′
y
(V )reg

Fundamental groups:

T̂ [2]

{±1} = Ax′
01

A(x′
01,ξ

′
01)

Aξ′01 = {±1}

s7→(s1,s2)

s2←[(s1,s2) (s1,s2) 7→s1

Local systems on strongly regular conormal:

LocH(T ∗C′
y
(V )sreg) : 1O′

y
LO′

y
FO′

y
EO′

y

Rep(A(x′
10,ξ

′
10)

) : ++ −− −+ +−
Pullback along the bundle map:

LocH(C′y) → LocH(T ∗C′
y
(V )sreg)

1C′
y

7→ 1O′
y

LO′
y

FO′
y

LC′
y

7→ EO′
y

(C′xy). Set C′xy = Cx × Cy ⊂ V ′. Then

T ∗Cxy(V )reg =








0 x
y 0

0 0
0 0


 | xy 6= 0





Base point:

(x′11, ξ
′
11) =




0 1
1 0

0 0
0 0


 ∈ T

∗
C′
xy
(V )reg
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Fundamental groups:

T̂ [2]

{±1} × {±1} = Ax′
11

A(x′
11,ξ

′
11)

Aξ′11 = 1

s7→(s1,s2)

id

Local systems on strongly regular conormal:

LocH(T ∗C′
xy
(V )sreg) : 1O′

xy
LO′

xy
FO′

xy
EO′

xy

Rep(A(x′
11,ξ

′
11)

) : ++ −− −+ +−
Pullback along the bundle map:

LocH′ (C′xy) → LocH(T ∗C′
xy
(V ′)sreg)

1C′
xy

7→ 1O′
xy

LC′
xy

7→ LO′
xy

FC′
xy

7→ FO′
xy

EC′
xy

7→ EO′
xy

13.4.3. Vanishing cycles. — The functor
pNEv

′ : PerH′(V ′)→ PerH′(T ∗H′ (V ′)reg)

may be deduced from Section 10.2.6 using the Sebastiani-Thom isomorphism [Ill17]
and [Mas01]; see Table 13.4.1. Here we show the calculation of the last three rows,
to illustrate the method.

pNEv
′ IC(LC′

x
) = pNEv

′ (IC(ECx)⊠ IC(1C0))

= ( pNEv IC(ECx))⊠ ( pNEv IC(1C0))

= (IC(EOx)⊕ IC(EO0))⊠ IC(1O0)

= IC(EOx)⊠ IC(1O0)⊕ IC(EO0)⊠ IC(1O0)

= IC(EOx ⊠ 1O0)⊕ IC(EO0 ⊠ 1O0)

= IC(FO′
x
)⊕ IC(FO′

0
)

Similarly,
pNEv

′ IC(LC′
y
) = pNEv

′
(
IC(1C0)⊠ IC(ECy )

)

= ( pNEv IC(1C0))⊠
(
pNEv IC(ECy)

)

= IC(1O0)⊠
(
IC(EOy )⊕ IC(EO0)

)

= IC(EO0)⊠ IC(1O0)⊕ IC(EOy )⊠ IC(1O0)

= IC(EO0 ⊠ 1O0)⊕ IC(EOy ⊠ 1O0)

= IC(EO′
0
)⊕ IC(EO′

y
)
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Table 13.4.1. p
NEv

′ : PerHλ′ (Vλ′) → PerHλ′ (T
∗
Hλ′

(Vλ′)reg) on simple

objects, for λ′ : WF →
LG

′
given at the beginning of Section 13.

PerH′(V ′)
p
NEv

′

−→ PerH′(T ∗H′ (V ′)reg)
IC(1C′

0
) 7→ IC(1O′

0
)

IC(1C′
x
) 7→ IC(1O′

x
)

IC(1C′
y
) 7→ IC(1O′

y
)

IC(1C′
xy
) 7→ IC(1O′

xy
)

IC(LC′
x
) 7→ IC(FO′

x
)⊕ IC(FO′

0
)

IC(LC′
y
) 7→ IC(EO′

y
)⊕ IC(EO′

0
)

IC(LC′
xy
) 7→ IC(LO′

xy
)⊕ IC(LO′

x
)⊕ IC(LO′

y
)⊕ IC(LO′

0
)

Table 13.4.2. NEvs
′ : PerHλ′ (Vλ′) → LocHλ′ (T

∗
Hλ′

(Vλ′)sreg) on simple

objects, for λ′ : WF →
LG

′
given at the beginning of Section 13.

P ′ NEvsψ′
00
P ′ NEvsψ′

10
P ′ NEvsψ′

01
P ′ NEvsψ′

11
P ′

IC(1C′
0
) ++ 0 0 0

IC(1C′
x
) 0 ++ 0 0

IC(1C′
y
) 0 0 ++ 0

IC(1C′
xy
) 0 0 0 ++

IC(LC′
x
) −+ −+ 0 0

IC(LC′
y
) +− 0 +− 0

IC(LC′
xy
) −− −− −− −−

and
pNEv

′ IC(LC′
xy
) = pNEv

′
(
IC(ECx)⊠ IC(ECy )

)

= ( pNEv IC(ECx))⊠
(
pNEv IC(ECy)

)

= (IC(EOx)⊕ IC(EO0)) ⊠
(
IC(EOy )⊕ IC(EO0)

)

= IC(EOx ⊠ EOy )⊕ IC(EOx ⊠ EO0)

⊕IC(EO0 ⊠ EOy )⊕ IC(EO0 ⊠ EO0)

= IC(LO′
xy
)⊕ IC(LO′

x
)⊕ IC(LO′

y
)⊕ IC(LO′

0
).
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13.4.4. Restriction. —

res : PerH(V ) −→ KPerH′(V ′)
IC(1C0) 7→ IC(1C′

0
)

IC(1C2) 7→ IC(1C′
x
)[1]⊕ IC(1C′

y
)[1]⊕ IC(1C′

0
)[1]

IC(1C3) 7→ IC(1C′
xy
)[1]

IC(LC3) 7→ IC(1C′
0
)[1]⊕ IC(LC′

xy
)[1]

IC(FC2) 7→ IC(LC′
x
)[1]⊕ IC(LC′

y
)[1]

13.4.5. Restriction and vanishing cycles. — In this example the inclusion V ′ →֒ V
induces a map of conormal bundles ǫ : T ∗H′(V ′) →֒ T ∗H(V ); this is not true in general,
as Section 14.4.3 shows. Here we have

T ∗C0
(V )reg ∩ T ∗H′(V ′)reg = T ∗C′

0
(V ′)reg

T ∗C2
(V )reg ∩ T ∗H′(V ′)reg = T ∗C′

x
(V ′)reg ∪ T ∗C′

y
(V ′)reg

T ∗C3
(V )reg ∩ T ∗H′(V ′)reg = T ∗C′

xy
(V ′)reg.

We now calculate both sides of (153) in three cases: when P = IC(1C2), IC(LC3)
and IC(FC2).

The case P = IC(1C2). — We now calculate both sides of (153) when P = IC(1C2).
By Section 13.4,

IC(1C2)|V ′ ≡ IC(1C′
x
)[1]⊕ IC(1C′

y
)[1]⊕ IC(1C′

0
)[1],

after passing to the Grothendieck group of PerH′(V ′). So, by Section 13.4.3,

NEv
′ (IC(1C2)|V ′)

≡ NEv
′
(
IC(1C′

x
)[1]⊕ IC(1C′

y
)[1]⊕ IC(1C′

0
)[1]
)

= IC(1O′
x
)[1]⊕ IC(LO′

y
)[1]⊕ IC(LO′

0
)[1]

in the Grothendieck group of PerH′(T ∗H′(V ′)reg). Thus, for each (x′, ξ′) ∈ T ∗C′(V ′)reg
with image (x, ξ) ∈ T ∗C(V )reg, the left-hand side of (153) is

(−1)dimC′

tracea′s
(
NEv
′ IC(1C2)|V ′

)
(x′,ξ′)

= (−1)dimC′

tracea′s

(
IC(1O′

x
)[1]⊕ IC(LO′

y
)[1]⊕ IC(LO′

0
)[1]
)
(x′,ξ′)

while the right-hand side of (153) is

(−1)dimC traceas(Ev IC(1C2))(x,ξ)
= (−1)dimC traceas (IC(1O2)⊕ IC(LO0))(x,ξ) .

We now calculate both sides of (153) when P = IC(1C2).

(C′0). If (x′, ξ′) ∈ T ∗C′
0
(V ′)reg then C′ = C′0 and C = C0 and the left-hand side of

(153) is

(−1)dimC′
0 trace(+1,−1) IC(1O′

0
)[1]

= −(−1)0 trace(+1,−1) IC(1O′
0
)

= −(++)(+1,−1)
= −1,
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while the right-hand side of (153) is

(−1)dimC0 trace(+1,−1) (IC(1O2)⊕ IC(LO0)) |T∗
C0

(V )reg

= trace(+1,−1) IC(LO0)
= (−−)(+1,−1)
= −1.

This confirms (153) on T ∗C′
0
(V ′)reg.

(C′x). If (x′, ξ′) ∈ T ∗C′
x
(V ′)reg then C′ = C′x and C = C2 and the left-hand side of

(153) is

(−1)dimC′
x trace(+1,−1) IC(LO′

x
)[1]

= −(−1)1 trace(+1,−1) IC(LO′
x
)

= (−−)(+1,−1)
= −1

while the right-hand side of (153) is

(−1)dimC2 trace(−1) (IC(LO3)⊕ IC(LO2)) |T∗
C2

(V )reg

= trace(−1) IC(LO2)
= (−)(−1)
= −1.

This confirms (153) on T ∗C′
x
(V ′)reg.

(C′y). If (x′, ξ′) ∈ T ∗C′
y
(V ′)reg then C′ = C′y and C = C2 and the left-hand side of

(153) is

(−1)dimC′
y trace(−1,+1) IC(LO′

y
)[1]

= −(−1)1 trace(−1,+1) IC(LO′
y
)

= (−−)(−1,+1)
= −1,

while the right-hand side of (153) is −1, as in the case above. This confirms
(153) on T ∗C′

y
(V ′)reg.

(C′xy). If (x′, ξ′) ∈ T ∗C′
xy
(V ′)reg then C′ = C′xy and C = C3 and the left-hand side of

(153) is

(−1)dimC′
xy trace(+1,−1)

(
IC(1O′

x
)[1]⊕ IC(LO′

y
)[1]⊕ IC(LO′

0
)[1]
)
(x′,ξ′)

while the right-hand side of (153) is

(−1)dimC3 trace(−1) (IC(1O2)⊕ IC(LO0)) |T∗
C3

(V )reg ,

both of which are trivially 0. This confirms (153) on T ∗C′
xy
(V ′)reg.

This proves (154) when P = IC(1C2).

The case P = IC(LC3). — We now calculate both sides of (153) when P = IC(LC3).
By Section 13.4,

IC(LC3)|V ′ ≡ IC(1C′
0
)[1]⊕ IC(LC′

xy
)[1],
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after passing to the Grothendieck group of PerH′(V ′). So, by Section 13.4.3,

NEv
′ (IC(LC3)|V ′)

≡ NEv
′
(
IC(1C′

0
)[1]⊕ IC(LC′

xy
)[1]
)

= IC(1O′
0
)[1]⊕ IC(LO′

xy
)[1]⊕ IC(LO′

y
)[1]⊕ IC(LO′

x
)[1]⊕ IC(LO′

0
)[1]

in the Grothendieck group of PerH′(T ∗H′(V ′)reg). Thus, for each (x′, ξ′) ∈ T ∗C′(V ′)reg
with image (x, ξ) ∈ T ∗C(V )reg, the left-hand side of (153) is

(−1)dimC′

tracea′s
(
NEv
′ IC(LC3)|V ′

)
(x′,ξ′)

= (−1)dimC′

tracea′s

(
IC(1O′

0
)[1]⊕IC(LO′

xy
)[1]⊕ IC(LO′

y
)[1]

⊕ IC(LO′
x
)[1]⊕ IC(LO′

0
)[1]
)
(x′,ξ′)

while the right-hand side of (153) is

(−1)dimC traceas(Ev IC(LC3))(x,ξ)
= (−1)dimC traceas (IC(LO3)⊕ IC(LO2))(x,ξ) .

We now calculate both sides of (153) in every case.

(C′0). If (x′, ξ′) ∈ T ∗C′
0
(V ′)reg then C′ = C′0 and C = C0 and the left-hand side of

(153) is

(−1)dimC′
0 trace(+1,−1)

(
IC(1O′

0
)[1]⊕ IC(LO′

0
)[1]
)

= (−1)0
(
− trace(+1,−1) IC(1O′

0
)− trace(+1,−1) IC(LO′

0
)
)

= −(++)(+1,−1)− (−−)(+1,−1)
= +1− 1
= 0,

while the right-hand side of (153) is

(−1)dimC0 trace(−1) (IC(LO3)⊕ IC(LO2)) |T∗
C0

(V )reg = 0.

This confirms (153) on T ∗C′
0
(V ′)reg.

(C′x). If (x′, ξ′) ∈ T ∗C′
x
(V ′)reg then C′ = C′x and C = C2 and the left-hand side of

(153) is

(−1)dimC′
x trace(+1,−1) IC(LO′

x
)[1]

= −(−1)1 trace(+1,−1) IC(LO′
x
)

= (−−)(+1,−1)
= −1

while the right-hand side of (153) is

(−1)dimC2 trace(−1) (IC(LO3)⊕ IC(LO2)) |T∗
C2

(V )reg

= trace(−1) IC(LO2)
= (−)(−1)
= −1.

This confirms (153) on T ∗C′
x
(V ′)reg.
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(C′y). If (x′, ξ′) ∈ T ∗C′
y
(V ′)reg then C′ = C′y and C = C2 and the left-hand side of

(153) is

(−1)dimC′
y trace(−1,+1) IC(LO′

y
)[1]

= −(−1)1 trace(−1,+1) IC(LO′
y
)

= (−−)(−1,+1)
= −1,

while the right-hand side of (153) is −1, as in the case above. This confirms
(153) on T ∗C′

y
(V ′)reg.

(C′xy). If (x′, ξ′) ∈ T ∗C′
xy
(V ′)reg then C′ = C′xy and C = C3 and the left-hand side of

(153) is

(−1)dimC′
xy trace(+1,−1) IC(LO′

xy
)[1]

= −(−1)2 trace(+1,−1) IC(LO′
xy
)

= −(−−)(+1,−1)
= −(−1)
= +1

while the right-hand side of (153) is

(−1)dimC3 trace(−1) (IC(LO3)⊕ IC(LO2)) |T∗
C3

(V )reg

= − trace(−1) IC(LO3)
= −(−)(−1)
= +1.

This confirms (153) on T ∗C′
xy
(V ′)reg.

This proves (154) when P = IC(LC3).

The case P = IC(FC2). — We now calculate both sides of (153) when P = IC(FC2).
By Section 13.4,

IC(FC2)|V ′ ≡ IC(1C′
x
)[1]⊕ IC(LC′

y
)[1],

after passing to the Grothendieck group of PerH′(V ′). So, by Section 13.4.3,

NEv
′ (IC(FC2)|V ′)

≡ NEv
′
(
IC(LC′

x
)[1]⊕ IC(LC′

y
)[1]
)

= IC(FO′
x
)[1]⊕ IC(FO′

0
)[1]⊕ IC(EO′

y
)[1]⊕ IC(EO′

0
)[1]

in the Grothendieck group of PerH′(T ∗H′(V ′)reg). Thus, for each (x′, ξ′) ∈ T ∗C′(V ′)reg
with image (x, ξ) ∈ T ∗C(V )reg, the left-hand side of (153) is

(−1)dimC′

tracea′s
(
NEv
′ IC(FC2)|V ′

)
(x′,ξ′)

= (−1)dimC′

tracea′s

(
IC(FO′

x
)[1]⊕ IC(FO′

0
)[1]

⊕ IC(EO′
y
)[1]⊕ IC(EO′

0
)[1]
)
(x′,ξ′)
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while the right-hand side of (153) is

(−1)dimC traceas(Ev(x,ξ) IC(FC2))
= (−1)dimC traceas (Ev IC(FC2)) |T∗

C(V )reg

= (−1)dimC traceas (IC(FO2)) |T∗
C(V )reg .

We now calculate both sides of (153) in every case.

(C′0). If (x′, ξ′) ∈ T ∗C′
0
(V ′)reg then C′ = C′0 and C = C0 and the left-hand side of

(153) is

(−1)dimC′
0 trace(+1,−1)

(
IC(FO′

0
)[1]⊕ IC(EO′

0
)[1]
)

= (−1)0
(
− trace(+1,−1) IC(FO′

0
)− trace(+1,−1) IC(EO′

0
)
)

= −(−+)(+1,−1)− (+−)(+1,−1)
= +1− 1
= 0,

while the right-hand side of (153) is

(−1)dimC0 trace(−1) (IC(FO2) |T∗
C0

(V )reg = 0.

This confirms (153) on T ∗C′
0
(V ′)reg.

(C′x). If (x′, ξ′) ∈ T ∗C′
x
(V ′)reg then C′ = C′x and C = C2 and the left-hand side of

(153) is

(−1)dimC′
x trace(+1,−1) IC(FO′

x
)[1]

= −(−1)1 trace(+1,−1) IC(FO′
x
)

= (−+)(+1,−1)
= +1,

while the right-hand side of (153) is

(−1)dimC2 trace(+1,−1) IC(FO2)|T∗
C2

(V )reg

= trace(+1,−1) IC(FO2)
= (−+)(+1,−1)
= +1.

This confirms (153) on T ∗C′
x
(V ′)reg.

(C′y). If (x′, ξ′) ∈ T ∗C′
y
(V ′)reg then C′ = C′y and C = C2 and the left-hand side of

(153) is

(−1)dimC′
y trace(−1,+1) IC(EO′

y
)[1]

= −(−1)1 trace(−1,+1) IC(EO′
x
)

= (+−)(−1,+1)
= +1,

while the right-hand side of (153) is +1, as in the case above. This confirms
(153) on T ∗C′

y
(V ′)reg.

(C′xy). If (x′, ξ′) ∈ T ∗C′
xy
(V ′)reg then C′ = C′xy and C = C3 and the left-hand side of

(153) is

(−1)dimC′
xy trace(+1,−1)

(
IC(FO′

x
)[1]⊕ IC(FO′

0
)[1]
)
(x′,ξ′)
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while the right-hand side of (153) is

(−1)dimC traceas (IC(FO2)) |T∗
C3

(V )reg ,

both of which are trivially 0. This confirms (153) on T ∗C′
xy
(V ′)reg.

This proves (154) when P = IC(FC2).

14. SO(7) unipotent representations, singular parameter

Let G = SO(7). The calculation of pure inner twists and inner twists and their
forms for G is the same as in Section 12. Let G1 be the non-quasisplit form of G,
given by the quadratic form



0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 −ε̟ 0 0 0 0
0 0 0 ε 0 0 0
0 0 0 0 ̟ 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0




.

One readily verifies that the Hasse invariant of this form is (̟, ε) = −1 so that the
form is not split. Note that the choice ε = 1 would give a split form.

Consider the infinitesimal parameter λ :WF → Ĝ given by

λ(w) :=




|w|3/2 0 0 0 0 0

0 |w|1/2 0 0 0 0

0 0 |w|1/2 0 0 0

0 0 0 |w|−1/2 0 0

0 0 0 0 |w|−1/2 0

0 0 0 0 0 |w|−3/2




.

Here, and below, we use the symplectic form 〈x, y〉 = txJy with matrix J given by
Jij = (−1)jδ7−i,j to determine a representation of Sp(6). Note that, in contrast to
the unramified infinitesimal parameters in Sections 10 and 12, in this case the image
of Frobenius is singular semisimple.

14.1. Arthur packets. —

14.1.1. Parameters. — Up to Hλ-conjugation, there are eight Langlands parameters
with infinitesimal parameter λ, of which six are of Arthur type. The six Langlands
parameters of Arthur type are most easily described through their Arthur parameters:

ψ0(w, x, y) = ν4(y)⊕ ν2(y), ψ7(w, x, y) = ν4(x)⊕ ν2(x),
ψ2(w, x, y) = ν4(y)⊕ ν2(x), ψ6(w, x, y) = ν4(x)⊕ ν2(y),
ψ4(w, x, y) = ν2(x) ⊗ ν3(y), ψ5(w, x, y) = ν3(x)⊗ ν2(y).

where ν4 : SL(2) → Sp(4) is a 4-dimensional symplectic irreducible representation of
SL(2), ν3 : SL(2)→ SO(3) is a 3-dimensional orthogonal irreducible representation of
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SL(2) and, as above, ν2 : SL(2)→ SL(2) is the identity representation. Note that ψ0

is the Aubert dual of ψ7, ψ2 is the Aubert dual of ψ6, and ψ4 is the Aubert dual of
ψ5.

These Arthur parameters define the following six Langlands parameters:

φ0(w, x) = ν4(dw)⊕ ν2(dw), φ7(w, x) = ν4(x) ⊕ ν2(x),
φ2(w, x) = ν4(dw)⊕ ν2(x), φ6(w, x) = ν4(x) ⊕ ν2(dw),
φ4(w, x) = ν2(x) ⊗ ν3(dw), φ5(w, x) = ν3(x) ⊗ ν2(dw).

The remaining two Langlands parameters in Pλ(
LG)/ZĜ(λ) that are not of Arthur

type are given here:

φ1(w, x) =




|w|x11 |w|x12 0 0 0 0
|w|x21 |w|x22 0 0 0 0

0 0 |w|1/2 0 0 0

0 0 0 |w|−1/2 0 0

0 0 0 0 |w|−1x11 |w|−1x12
0 0 0 0 |w|−1x21 |w|−1x22



,

φ3(w, x) =




|w|3/2 0 0 0 0 0
0 x11 0 0 x12 0
0 0 x11 x12 0 0
0 0 x21 x22 0 0
0 −x21 0 0 −x22 0

0 0 0 0 0 |w|−3/2



.

14.1.2. L-packets. — In total, there are 15 admissible representations with infinites-
imal parameter λ, of which 10 are representations of G(F ) while 5 are representations
of G1(F ). In order to list them, we must enumerate the irreducible representations
Aφ, for each φ ∈ Pλ(LG). In every case but one, the group Aφ is trivial or has order 2;
in the latter case, the irreducible representations of these groups are unambiguously
labeled with + or −; in the former case, we simply elide the trivial representation,
such as in the list below.

Πφ0(G(F )) = {π(φ0)} Πφ0(G1(F )) = ∅
Πφ1(G(F )) = {π(φ1)} Πφ1(G1(F )) = ∅
Πφ2(G(F )) = {π(φ2,+)} Πφ2(G1(F )) = {π(φ2,−)}
Πφ3(G(F )) = {π(φ3,+), π(φ3,−)} Πφ3(G1(F )) = ∅
Πφ4(G(F )) = {π(φ4,+)} Πφ4(G1(F )) = {π(φ4,−)}
Πφ5(G(F )) = {π(φ5)} Πφ5(G1(F )) = ∅
Πφ6(G(F )) = {π(φ6,+)} Πφ6(G1(F )) = {π(φ6,−)}
Πφ7(G(F )) = {π(φ7,++), π(φ7,−−)} Πφ7(G1(F )) = {π(φ7,+−), π(φ7,−+)}
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The centraliser of φ7 is the following subgroup of 2-torsion elements T̂ [2] in the

diagonal dual torus T̂ :

ZĜ(φ7) =








s1 0 0 0 0 0
0 s2 0 0 0 0
0 0 s3 0 0 0
0 0 0 s3 0 0
0 0 0 0 s2 0
0 0 0 0 0 s1



∈ T̂ [2] | s1 = s2





.

We fix the isomorphism ZĜ(φ7)
∼= {±1}×{±1} so that the image of Z(Ĝ) in ZĜ(φ7)

is {(+1,+1), (−1,−1)}; using this isomorphism, we label irreducible representations
of Aφ7

∼= ZĜ(φ7) by the symbols ++, +−, −+ and −−. Note that the restriction of

these representations to Z(Ĝ) is trivial for ++ and −− only.
Of these 15 admissible representations, only the representation π(φ7,+−) of G1(F )

is supercuspidal. In fact, π(φ7,+−) is a unipotent supercusidal depth-zero represen-
tation. In Lusztig’s classification of unipotent representations, π(φ7,+−) is the case
n = 3, a = 1, b = 1 of [Lus95a, 7.55]; it corresponds to the unique cuspidal unipo-

tent local system for Ĝ, see C̃3/(C3 × C0) in [Lus95a, 7.55]. Lusztig’s classification
also shows how π(φ7,+−) may be constructed by compact induction, as follows; see

B̃3/(D1 × B2) in [Lus95a, 7.55]. Let G1 be the parahoric OF -group scheme asso-
ciated to an almost self-dual lattice chain and the quadratic form at the beginning
of Section 14. The generic fibre of G1 is the inner form G1 of G∗, and G1(OF ) is a
maximal parahoric subgroup of the F -points on the generic fibre of G1. The reductive

quotient G1
red

Fq
of the special fibre of G1 is SO(5)× SO(2) over Fq, where SO(5) and

SO(2) are determined, respectively, by



0 0 0 0 1
0 0 0 1 0
0 0 ǫ 0 0
0 1 0 0 0
1 0 0 0 0




and

(
−ǫ 0
0 1

)
,

with ǫ = ε mod OF . Note that the parahoric G1(OK) is not hyperspecial. The
finite group SO(5,Fq) × SO(2,Fq) admits a unique cuspidal unipotent irreducible
representation, oσ. Let inf( oσ) be the representation of G1(OF ) obtained by inflation

of oσ along G1(OF ) → (G1)
red
Fq

(Fq). Now extend inf( oσ) to the representation

inf( oσ)+ of NG1(F )(G1(OF )) by tensoring with an unramified character which has
order 2 on NG1(F )(G1(OF ))/G1(OF ). Then

π(φ7,+−) = cInd
G1(F )

NG1(F )(G1(OF ))(inf(σ)
+).

We remark that NG1(F )(G1(OF )) also admits a smooth model over OF , for which the
reductive quotient of the special fibre is S(O(5)×O(2)) ∼= SO(5)×O(2).

14.1.3. Multiplicities in standard modules. — In order to describe the other admissi-
ble representations appearing in this example, we give the multiplicity of π(φ, ρ) in the
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standard modules M(φ′, ρ′) for representations of the pure form G(F ) in Table 14.5.
To save space there we write π

i
for π(φi) and πǫi for π(φi, ǫ); a similar convention

applies to the notation for the standard modules. Let us see show how to calculate
row 8 in Table 14.5. Consider the standard module

M+
6 := Ind(||1/2 ⊗ π(ν4,+))

for G(F ). It is clear that this will contain π+
6 . Moreover, it has an irreducible

submodule π++
7 . To show there is nothing else, we can compute the Jacquet module

of M+
6 with respect to the standard parabolic subgroup P , whose Levi component is

GL(1)× SO(5). By the geometric lemma, we get

s.s. JacPM+
6 = ||3/2 ⊗ Ind(||1/2 ⊗ π(ν2,+))⊕ ||1/2 ⊗ π(ν4,+)⊕ ||−1/2 ⊗ π(ν4,+)

and
s.s. Ind(||1/2 ⊗ π(ν2,+)) = π(ν2 ⊕ ν2,++)⊕ π′

where π′ is the unique irreducible quotient. Here, s.s. denotes the semi-simplification
of the module. On the other hand,

s.s. JacPπ
+
6 = ||−1/2 ⊗ π(ν4,+)⊕ ||3/2 ⊗ π′

and
s.s. JacPπ

++
7 = ||1/2 ⊗ π(ν4,+)⊕ ||3/2 ⊗ π(ν2 ⊕ ν2,++).

Therefore,
s.s.M+

6 = π+
6 ⊕ π++

7 .

This explains row 8 in Table 14.5.
The multiplicity of π(φ, ρ) in the standard modules M(φ′, ρ′), for representations

of the form G1(F ) are also displayed in Table 14.5.

14.1.4. Arthur packets. — In order to describe the component groups Aψ, consider
the torus

S :=








s1
s2 0
0 s3

s−13 0
0 s−12

s−11



| s1 = s2





⊂ T̂ ⊂ Ĝ.

Let S[2] be the 2-torsion subgroup of S; Note that Z(Ĝ) ⊂ S[2]. Let us the notation

s(s2, s3) :=




s2
s2 0
0 s3

s3 0
0 s2

s2



∈ S[2]
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and let S[2] ∼= {±1} × {±1} be the isomorphism determined by this notation. Then

Z(Ĝ) ∼= {±1} is the diagonal subgroup, for which we will use the notation

s(s1, s1) :=




s1
s1 0
0 s1

s1 0
0 s1

s1



∈ Z(Ĝ) ⊂ S[2].

We can now give the component groups Aψ:

Aψ0 = S[2], Aψ7 = S[2],
Aψ2 = S[2], Aψ6 = S[2],

Aψ4 = Z(Ĝ), Aψ5 = Z(Ĝ).

The Arthur packets for admissible representations of G(F ) with infinitesimal pa-
rameter λ are

Πψ0(G(F )) = {π(φ0), π(φ2,+)},
Πψ2(G(F )) = {π(φ2,+), π(φ3,−)},
Πψ4(G(F )) = {π(φ4,+)},
Πψ5(G(F )) = {π(φ5)},
Πψ6(G(F )) = {π(φ6,+), π(φ7,−−)},
Πψ7(G(F )) = {π(φ7,++), π(φ7,−−)},

and the Arthur packets for admissible representations of G1(F ) with infinitesimal
parameter λ are

Πψ0(G1(F )) = {π(φ4,−), π(φ7(+−)},
Πψ2(G1(F )) = {π(φ2,−), π(φ7,+−)},
Πψ4(G1(F )) = {π(φ4,−), π(φ7,+−)},
Πψ5(G1(F )) = {π(φ7,−+), π(φ7,+−)},
Πψ6(G1(F )) = {π(φ6,−), π(φ7,+−)},
Πψ7(G1(F )) = {π(φ7,−+), π(φ7,+−)}.

We arrange these representations into pure Arthur packets in Table 14.5; see also
Table 14.5.
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14.1.5. Aubert duality. — The following table gives Aubert duality for the admissi-
ble representations of G(F ) with infinitesimal parameter λ.

π π̂

π(φ0) π(φ7,++)
π(φ1,+) π(φ3,+)
π(φ2,+) π(φ7,−−)
π(φ3,+) π(φ1,+)
π(φ3,−) π(φ6,+)
π(φ4,+) π(φ5)
π(φ5) π(φ4,+)
π(φ6,+) π(φ3,−)
π(φ7,++) π(φ0)
π(φ7,−−) π(φ2,+)

Aubert duality for the admissible representations of G1(F ) with infinitesimal param-
eter λ is given by the following table.

π π̂

π(φ2,−) π(φ6,−)
π(φ4,−) π(φ7,−+)
π(φ6,−) π(φ2,−)
π(φ7,+−) π(φ7,+−)

The twisting characters χψ0 , χψ4 , χψ5 and χψ7 are trivial. The twisting characters
χψ2 and χψ6 are nontrivial, both given (−−), using the respective isomorphisms
Aψ2 = S[2] ∼= {±1} × {±1} and Aψ6 = S[2] ∼= {±1} × {±1} fixed in Section 14.1.4.

14.1.6. Stable distributions and endoscopy. — The stable distributions on G(F )
attached to these Arthur packets are:
ΘGψ0

= traceπ(φ0) + traceπ(φ2,+), ΘGψ7
= traceπ(φ7,++) + traceπ(φ7,−−),

ΘGψ2
= traceπ(φ2,+)− traceπ(φ3,−), ΘGψ6

= traceπ(φ6,+)− traceπ(φ7,−−),
ΘGψ4

= traceπ(φ4,+), ΘGψ5
= traceπ(φ5).

The characters 〈 · , π〉ψ of Aψ are given in Table 14.5. With this, we easily find the

coefficients 〈ssψ, π〉ψ in ΘGψ,s. First calculate sψ :=ψ(1, 1,−1):
sψ0 = ν4(−1)⊕ ν2(−1) = s(−1,−1), sψ7 = ν4(1)⊕ ν2(1) = s(1, 1),
sψ2 = ν4(−1)⊕ ν2(1) = s(−1, 1), sψ6 = ν4(1)⊕ ν2(−1) = s(1,−1),
sψ4 = ν2(1)⊗ ν3(−1) = s(1, 1), sψ5 = ν3(1)⊗ ν2(−1) = s(−1,−1).

Then, using the notation s = s(s2, s3) from Section 14.1.4, we have:

ΘGψ0,s
= traceπ(φ0) + s2s3 traceπ(φ2,+),

ΘGψ2,s
= traceπ(φ2,+)− s2s3 traceπ(φ3,−),

ΘGψ4,s
= traceπ(φ4,+),

and
ΘGψ7,s

= traceπ(φ7,++) + s2s3 traceπ(φ7,−−),
ΘGψ6,s

= traceπ(φ6,+)− s2s3 traceπ(φ7,−−),
ΘGψ5,s

= traceπ(φ5).
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We now turn our attention to the distributions on G1(F ) attached to these Arthur
packets:

ΘG1

ψ0
= − traceπ(φ4,+)− traceπ(φ7,+−)

ΘG1

ψ2
= + traceπ(φ2,−)− traceπ(φ7,+−)

ΘG1

ψ4
= + traceπ(φ4,−) + traceπ(φ7,+−)

and
ΘG1

ψ7
= + traceπ(φ7,−+) + traceπ(φ7,+−)

ΘG1

ψ6
= + traceπ(φ6,−)− traceπ(φ7,+−)

ΘG1

ψ5
= − traceπ(φ7,−+)− traceπ(φ7,+−)

The characters 〈 · , π〉ψ of Aψ for these representations are also given in Table 14.5.

With this, we easily find the coefficients 〈ssψ, π〉ψ in ΘG1

ψ,s, again using the notation

s = s(s2, s3) or s = s(s1, s1) from Section 14.1.4 from which we deduce

ΘG1

ψ0,s
= −s2 traceπ(φ4,+)− s3 traceπ(φ7,+−)

ΘG1

ψ2,s
= +s3 traceπ(φ2,−)− s2 traceπ(φ7,+−)

ΘG1

ψ4,s
= +s1 traceπ(φ4,−) + s1 traceπ(φ7,+−)

and
ΘG1

ψ7,s
= +s2 traceπ(φ7,−+) + s3 traceπ(φ7,+−)

ΘG1

ψ6,s
= +s2 traceπ(φ6,−)− s3 traceπ(φ7,+−)

ΘG1

ψ5,s
= −s1 traceπ(φ7,−+)− s1 traceπ(φ7,+−)

The endoscopic group for G attached to s = s(1,−1) or s = s(−1, 1) is the
group G′ = SO(5)× SO(3), in which case ΘGψ,s is the endoscopic transfer of a stable

distribution ΘG
′

ψ′ . We write ψ′ = (ψ(2), ψ(1)) where ψ(1) is an Arthur parameter for

SO(3) and ψ(2) is an Arthur parameter for SO(5). The following table gives ψ(1) from
Section 10.1.1 and ψ(2) from Section 12.1.1, for each Arthur parameter ψ appearing

in Section 14.1.1 that factors through LG
′
.

§14.1.1 §12.1.1 §10.1.1

ψ ψ(2) ψ(1)

ψ0 ψ0 ψ0

ψ2 ψ0 ψ1

ψ6 ψ3 ψ0

ψ7 ψ3 ψ1

14.2. Vanishing cycles of perverse sheaves. —
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14.2.1. Vogan variety and its conormal bundle. — The centralizer in Ĝ of the in-
finitesimal parameter λ :WF → LG is

Hλ :=








h1
a2 b2
c2 d2

a3 b3
c3 d3

h4



∈ Ĝ





∼= GL(1)×GL(2)

We will write h2 = ( a2 b2c2 d2
) and h3 = ( a3 b3c3 d3

). Then h3 = h2 deth
−1
2 and h4 = h−11 , by

the choice of symplectic form J at the beginning of Section 14. The Vogan varieties
Vλ and V ∗λ are:

Vλ =








u v
z x
y −z

−v
u








, V ∗λ =








u′

v′

z′ y′

x′ −z′
−v′ u′








so

T ∗(Vλ) =








u v
u′ z x
v′ y −z

z′ y′ −v
x′ −z′ u

−v′ u′



| u, v, x, y, z
u′, v′, x′, y′, z′





⊂ ĝ

The action of Hλ on V , V ∗ and T ∗(Vλ) is simply the restriction of the adjoint

action of H ⊂ Ĝ on T ∗(V ) ⊂ ĝ. This action is given by

h ·
(
u v

)
= h1

(
u v

)
h−12

h ·
(
z x
y −z

)
= h2

(
z x
y −z

)
h−13

and

h ·
(
u′

v′

)
= h2

(
u′

v′

)
h−11 ,

h ·
(
z′ y′

x′ −z′
)

= h3

(
z′ y′

x′ −z′
)
h−12 .

We remark that for µ ∈ C,

(
u v

)(z x
y −z

)
= µ

(
u v

)

if and only if

h ·
(
u v

)
h ·
(
z x
y −z

)
= (µ deth2) h ·

(
u v

)
.
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The H-invariant function ( · | · ) : T ∗(Vλ)→ A1 is the quadratic form



u v
u′ z x
v′ y −z

z′ y′ −v
x′ −z′ u

−v′ u′



7→ 2uu′ + 2vv′ + xx′ + yy′ + 2zz′.

The Hλ-invariant function [·, ·] : T ∗(Vλ)→ hλ is given by



u v
u′ z x
v′ y −z

z′ y′ −v
x′ −z′ u

−v′ u′



7→

(uu′ + vv′)H1 + (xx′ + zz′)H2

+(yy′ + zz′)H3 + (zy′ − xz′)E
+(yz′ − zx′)F

where, {H1, H2, H3} is the standard basis for the standard Cartan in ĝ and, with

reference to Hλ ⊂ Ĝ and hλ ⊂ ĝ, {H1}, {H2, H3, E, F} is the Chevalley basis for
gl(2) in sp(6). Thus, the conormal bundle is

T ∗H(Vλ) =








u v
u′ z x
v′ y −z

z′ y′ −v
x′ −z′ u

−v′ u′



|

uu′ + vv′ = 0
xx′ + zz′ = 0
yy′ + zz′ = 0
zy′ − xz′ = 0
yz′ − zx′ = 0





Note that the fibre of ( · | · ) : Vλ × V tλ → A1 above 0 properly contains the conormal
bundle T ∗H(Vλ) as a codimension-4 subvariety.

Although it is possible to continue to work with V and T ∗(V ) as matrices in ĝ

and make all the following calculations, we now switch to the perspective on Vogan
varieties discussed in Section 8.2.1. This new perspective has several advantages: it
is notationally less awkward, it generalises to all classical groups after unramification
in the sense of Theorem 4.1.1 and it helps clarify the proper covers which play a
crucial role in the calculations of the vanishing cycles that we make later in this
section. Write ĝ = sp(E, J), so E is a six-dimensional vector space equipped with
the symplectic form described in Section 14.1.1. Let E1 be the eigenspace of λ(Fr)
with eigenvalue q3/2; let E2 be the eigenspace of λ(Fr) with eigenvalue q1/2; let E3

be the eigenspace of λ(Fr) with eigenvalue q−1/2; let E4 be the eigenspace of λ(Fr)
with eigenvalue q−3/2. Then GL(E4) × GL(E3) × GL(E2) × GL(E1) acts naturally
on the variety Hom(E3, E4) × Hom(E2, E3) × Hom(E1, E2). If we identify E3 with
the dual space E∗2 and E4 with E∗1 then V may be identified with the subvariety of
(w1, w2, w3) in Hom(E1, E2)×Hom(E2, E

∗
2 )×Hom(E∗2 , E

∗
1 ) such that tw3 = w1 and

tw2 = w2, so

V ∼=
{
(w,X) ∈ Hom(E1, E2)×Hom(E2, E

∗
2 ) | tX = X

}
∼= Hom(E1, E2)× Sym2(E∗2 ).
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The action of H on V now corresponds to the natural action of GL(E1) × GL(E2)
on Hom(E1, E2)×Hom(E2, E

∗
2 ). After choosing bases for E1 and E2, the conversion

from the matrices in ĝ to pairs (w,X) ∈ Hom(E1, E2)× Sym2(E∗2 ) is given by

w =

(
u
v

)
and X :=

(
−x z
z y

)
=

(
z x
y −z

)(
0 1
−1 0

)
.

We will use coordinates (w,X) for Vλ when convenient. The same perspective gives
coordinates (w′, X ′) for V ∗λ where

w′ =
(
u′ v′

)
and X ′ :=

(
−x′ z′

z′ y′

)
=

(
0 −1
1 0

)(
z′ y′

x′ −z′
)
.

In these coordinates, the action of H on V is given by

h · w = th−12 w th1 h · w′ = h1w
′h−12

h ·X = h2X
th2 h ·X ′ = h2X

′ th2,

the H-invariant function ( · | · ) : T ∗(Vλ)→ A1 is given by

((w,X) | (w′, X ′)) = w′w + traceX ′X,

and the H-invariant function [·, ·] : T ∗(Vλ)→ hλ is given by

[(w,X), (w′, X ′)] = (w′w,X ′X).

In particular, the conormal may be written as

T ∗(Vλ) ∼= {((w,X), (w′, X ′)) ∈ V × V ∗ | w′w = 0, X ′X = 0}.
14.2.2. Equivariant local systems and orbit duality. — The variety Vλ is stratified
into H-orbits according to the possible values of rankX (either 2, 1 or 0), rank tw
(either 1 or 0) and rank twXw (either 1 or 0). There are eight compatible values
for these ranks. We now describe these eight locally closed subvarieties C ⊂ V , the
singularities in the closure C̄ ⊂ V and the equivariant local systems on C. For each
H-orbit C ⊂ V except the open orbit C7 ⊂ V , the H-equivariant fundamental group
of C is trivial or of order 2. So in each of these cases we use the notation 1C for
the constant local system and LC or FC for the non-constant irreducible equivariant
local system on C. (The choice of LC or FC will be explained in Section 14.2.4.)

C0: Closed orbit:
C0 = {0}.

This corresponds to the minimal rank values

rankX = 0, rank tw = 0, rank twXw = 0.

This is the only closed orbit in Vλ.
C1: Punctured plane:

C1 = {(w,X) ∈ Vλ | X = 0, w 6= 0}.
This corresponds to the rank values

rankX = 0, rank tw = 1, rank twXw = 0.
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While C1 is not affine, its closure C̄1 = {(w,X) ∈ Vλ | X = 0} is A2. This orbit
is not of Arthur type. Since AC1 is trivial, 1C1 is the only simple equivariant
local system on C1.

C2: Smooth cone:

C2 = {(w,X) ∈ Vλ | rankX = 1, w = 0}.
This corresponds to the rank values

rankX = 1, rank tw = 0, rank twXw = 0.

Then C2 is not an affine variety and the singular locus of its closure

C̄2
∼= {(x, y, z) | xy + z2 = 0}

is precisely C0. We remark that xy+ z2 is a semi-invariant of Vλ with character
h 7→ deth22. Now AC2

∼= {±1}; let FC2 be the equivariant local system for the
non-trivial character of AC2 . Then FC2 coincides with the local system denoted
by the same symbol in Section 13.2.3.

C3: The rank values

rankX = 2, rank tw = 0, rank twXw = 0.

determine

C3 = {(w,X) ∈ Vλ | rankX = 2, w = 0} ∼= {(x, y, z) | xy + z2 6= 0}.
The closure of C3 is smooth:

C̄3 = {(w,X) ∈ Vλ | w = 0} ∼= A3.

This orbit is not of Arthur type. Since AC3
∼= {±1}, there are two simple

equivariant local systems on C3, denoted by 1C3 and LC3 . Then LC3 coincides
with the local system denoted by the same symbol in Section 13.2.3.

C4: The rank values

rankX = 1, rank tw = 1, rank twXw = 0

determine

C4 = {(w,X) ∈ Vλ | rankX = 1, w 6= 0, Xw = 0}.
The singular locus of the closure

C̄4
∼= {(u, v, x, y, z) | xy + z2 = 0, −xu+ zv = 0 = zu+ yv}

is C0. Here, AC4
∼= {±1}. Let 1C4 and FC4 be the local systems for the trivial

and non-trivial characters, respectively, of AC4 .
C5: The rank values

rankX = 2, rank tw = 1, rank twXw = 0

determine

C5 = {(w,X) ∈ Vλ | rankX = 2, w 6= 0, twXw = 0}.
The closure of C5,

C̄5
∼= {(u, v, x, y, z) | − u2x+ 2uvz + v2y = 0},
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has singular locus C̄3. We remark that −u2x + 2uvz + v2y is a semi-invariant
of Vλ with character h 7→ h21. The group AC5 is trivial.

C6: The rank values

rankX = 1, rank tw = 1, rank twXw = 1

determine

C6 = {(w,X) ∈ Vλ | rankX = 1, w 6= 0, twXw 6= 0}.
The singular locus of

C̄6
∼= {(u, v, x, y, z) | xy + z2 = 0}

is C̄1. Then AC6
∼= {±1}. Let 1C6 and FC6 be the local systems for the

trivial and non-trivial characters, respectively, of AC6 . The local system FC6 is
associated to the double cover from adjoining d2 = −u2x + 2uvz + v2y, which
is isomorphic to the pullback of the double cover from FC2.

C7: Open dense orbit:

C7 = {(w,X) ∈ Vλ | rankX = 2, w 6= 0, twXw 6= 0}.
This corresponds to the maximal rank values:

rankX = 2, rank tw = 1, rank twXw = 1.

Now, AC7 = S[2] ∼= {±1} × {±1}. Let 1C7 be the local system for the trivial
character (++) of AC7 ; let LC7 be the local system for the character (−−) of
AC7 ; let FC7 be the local system for the character (−+) of AC7 ; let EC7 be
the local system for the character (+−) of AC7 . Equivalently, LC7 is the local
system on C7 associated to the double cover d2 = xy + z2, FC7 is the local
system associated to the double cover d2 = −u2x+ 2uvz + v2y, and EC7 is the
local system associated to the double cover d2 = (xy+ z2)(−u2x+2uvz+ v2y).

Dimensions, closure relations for these eight orbits in V , and their dual orbits in V ∗,
are given as follows:

C7 = Ĉ0 5

C5 = Ĉ4 C6 = Ĉ2 4

C3 = Ĉ1 C4 = Ĉ5 3

C2 = Ĉ6 C1 = Ĉ3 2

C0 = Ĉ7 0
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From this table one can find the eccentricities, as defined in Section 6.7, of these
strata:

eC0 = dimC0 + dimC7 − dimV = 0 + 5− 5 = 0
eC1 = dimC2 + dimC3 − dimV = 2 + 3− 5 = 0
eC2 = dimC2 + dimC6 − dimV = 2 + 4− 5 = 1
eC3 = dimC3 + dimC2 − dimV = 3 + 2− 5 = 0
eC4 = dimC4 + dimC5 − dimV = 3 + 4− 5 = 2
eC5 = dimC5 + dimC4 − dimV = 4 + 3− 5 = 2
eC6 = dimC6 + dimC2 − dimV = 4 + 2− 5 = 1
eC7 = dimC7 + dimC0 − dimV = 5 + 0− 5 = 0

14.2.3. Equivariant perverse sheaves. — Table 14.2.1 shows the results of calculating
P|C for every simple equivariant perverse sheaf IC(C,L) and every stratum C in V .
Using this, Table 14.5.6 gives the normalised geometric multiplicity matrix, m′geo.
Notice that m′geo decomposes into block matrices of size 10× 10, 4× 4 and 1× 1.

Table 14.2.1. Standard sheaves and perverse sheaves in PerHλ(Vλ)

P P|C0 P|C1 P|C2 P|C3 P|C4 P|C5 P|C6 P|C7

IC(1C0) 1C0 [0] 0 0 0 0 0 0 0

IC(1C1) 1C0 [2] 1C1 [2] 0 0 0 0 0 0

IC(1C2) 1C0 [2] 0 1C2 [2] 0 0 0 0 0

IC(1C3) 1C0 [3] 0 1C2 [3] 1C3 [3] 0 0 0 0

IC(LC3) 1C0 [1] 0 0 LC3 [3] 0 0 0 0

IC(1C4) 1C0 [1]⊕ 1C0 [3] 1C1 [3] 1C2 [3] 0 1C4 [3] 0 0 0

IC(1C5) 1C0 [2]⊕ 1C0 [4] 1C1 [4] 1C2 [4] 1C3 [4]⊕ LC3 [4] 1C4 [4] 1C5 [4] 0 0

IC(1C6) 1C0 [4] 1C1 [4] 1C2 [4] 0 1C4 [4] 0 1C6 [4] 0

IC(1C7) 1C0 [5] 1C1 [5] 1C2 [5] 1C3 [5] 1C4 [5] 1C5 [5] 1C6 [5] 1C7 [5]

IC(LC7) 1C0 [3] 1C1 [3] 0 LC3 [5] 0 1C5 [5] 0 LC7 [5]

IC(FC2) 0 0 FC2 [2] 0 0 0 0 0

IC(FC4) 0 0 FC2 [3] 0 FC4 [3] 0 0 0

IC(FC6) 0 0 FC2 [4] 0 FC4 [4] 0 FC6 [4] 0

IC(FC7) 0 0 FC2 [5] 0 0 0 FC6 [5] FC7 [5]

IC(EC7) 0 0 0 0 0 0 0 EC7 [5]

We now give a few explicit examples of the technique, sketched in Section 8.2.3,
which we used to find the local systems appearing in Table 14.2.1.

(a) The calculations from Section 13.2.3 show how to find rows 1–5 and row 11 so
here we begin with row 6.

(b) To compute IC(1C4)|C for every H-orbit C ⊂ V , observe that

C4 =
{
(w,X) ∈ Vλ | twX = 0, det(X) = 0

}
.

Note that twX = 0 implies det(X) = 0 provided w 6= 0. This variety is singular
precisely when w and X are both zero; in other words, C0 is the singular locus
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of C4, as we remarked in Section 14.2.1. The blowup of C4 at the origin is:

C̃
(1)
4 :=

{
((w,X), [a : b]) ∈ Vλ × P1 |

(
−b a

)
w = 0,

(
a b

)
X = 0

twX = 0, detX = 0

}
.

Let π(1) : C̃
(1)
4 → C4 be the obvious projection. In the definition of C̃

(1)
4 ,

the first two equations imply the second two; this observation greatly simplifies

checking the following claims. The cover π(1) : C̃
(1)
4 → C4 is proper and the

variety C̃4 is smooth. Moreover, the fibres of π(1) have the following structure:
– above C4, C2 and C1, π

(1) is an isomorphism;
– the fibre of π(1) above C0 is P1.

It follows that π(1) is semi-small. By the decomposition theorem,

π
(1)
! (1

C̃
(1)
4

[3]) = IC(1C4).

By proper base change,

IC(1C4)|C4 = 1C4 [3] IC(1C4)|C2 = 1C2 [3]
IC(1C4)|C1 = 1C1 [3] IC(1C4)|C0 = 1C0 [1]⊕ 1C0 [3],

and IC(1C4)|C = 0 for all other strata C.
(c) Next, we show how to compute IC(FC4). The singular variety C4 also admits

a finite double cover:

C̃
(2)
4 :=



((w,X), (α, β)) ∈ Vλ × A2 | X =

(
α
β

)(
α β

)
,
(
α β

)
w = 0

twX = 0, detX = 0



 .

Again, the first two equations imply the second two. This variety is singular
precisely when w, X , and (α, β) are all zero. Consider the pullback:

C̃
(3)
4

C̃
(1)
4 C̃

(2)
4

C4.

π(3)

π(1)

π(2)

Then C̃
(3)
4 is smooth and the projections onto C̃

(2)
4 , C̃

(1)
4 and C4 are all proper.

The fibres of π(3) : C̃
(3)
4 → C4 have the following structure:

– the fibre of π(3) over C4 is the non-split double cover of C4;
– the fibre of π(3) over C2 is the non-split double cover of C2;
– the fibre of π(3) over C1 is isomorphic to C1;
– the fibre of π(3) over C0 is P1.

It follows that π(3) is semi-small and, by the Decomposition Theorem, that:

π
(3)
! (1

C̃
(3)
4

[3]) = IC(1C4)⊕ IC(FC4).
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It now follows that:

IC(FC4)|C4 = FC4 [3] IC(FC4)|C2 = FC2 [3]
IC(FC4)|C1 = 0 IC(FC4)|C0 = 0.

We simply list the other covers needed to calculate P|C in all other cases except
P = E7, following the procedure illustrated above in the cases P = IC(1C4) and
P = IC(FC4).

C̃5 =

{
((w,X), [a : b]) ∈ V × P1 |

(
a b

)
X

(
a
b

)
= 0,

(
−b a

)
w = 0

}

C̃
(1)
6 =

{
((w,X), [a : b]) ∈ V × P1 |

(
a b

)
X = 0

}

C̃
(2)
6 =

{
((w,X), (α, β)) ∈ V × A2 | X =

(
α
β

)(
α β

)}

C̃
(1)
7 =

{
(w,X, [a : b]) ∈ V × P1 |

(
a b

)
X

(
a
b

)
= 0

}

C̃
(2)
7 =

{
((w,X), [a : b : r]) ∈ V × P2 |

(
a b

)
X

(
a
b

)
= r2,

(
−b a

)
w = 0

}

Finally there is the most complex example: the smooth cover Ṽ of C7 = V needed to

understand IC(E7). The construction of the smooth cover Ṽ of V proceeds by first
adjoining a square root of

(−u2x+ 2uvz + v2y)(xy + z2).

This results in a variety which is singular on C4. After blowing up along C4 the result
will still be singular along C3, so a further blow up along C3 is needed. The following

steps construct Ṽ in detail.

(i) Let Ṽ (1) be the blow up V along C4 This equivalent to adding coordinates
[a : b] ∈ P1 and the condition

(
a b

)
Xw = 0,

because the two equations Xw = 0 define C4.

(ii) Let Ṽ (2) be the blow up of C̃
(1)
7 along C3. For this one must add coordinates

[c : d] ∈ P1 with the condition
(
−d c

)
w = 0,

because the equation w = 0 defines C3. The additional equation necessary to
define the blow up is

(
a b

)
X

(
c
d

)
= 0.
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(iii) Next, we replace [a : b] with [a : b : r] and add the equation

(
a b

)
X

(
a
b

)
= r2.

The resulting variety, Ṽ (3) has coordinates:

(w,X, [a : b : r], [c : d])

together with all the above equations. Then Ṽ (3) is a double cover of Ṽ (2) and
is singular precisely when

X

(
a
b

)
= 0 and [a : b] = [c : d].

(iv) We now form the blowup Ṽ of Ṽ (3) along the singular locus. In order to have
homogeneous equations we write our relations in the form

X

(
a
b

)(
c d

)
= 0

(
a b

)( d
−c

)
= 0.

Then Ṽ is formed by introducing coordinates [Y : y], where Y is a 2 by 2 matrix,
and the conditions

X

(
a
b

)(
c d

)
y = Y

(
a b

)( d
−c

)

and (
c
d

)
Y = 0 Trace(Y ) = 0.

Note that [c : d] determines Y up to rescaling.

14.2.4. Cuspidal support decomposition and Fourier transform. — Up to conjuga-

tion, Ĝ = Sp(6) admits three cuspidal Levi subgroups: Ĝ = Sp(6) itself, the group

M̂ = Sp(2)×GL(1)×GL(1) and the torus T̂ = GL(1)×GL(1)×GL(1). Simple ob-
jects in these three subcategories are listed below. This decomposition is responsible
for the choice of symbols L, F and E made in Section 14.2.3.

PerH(V )Ť PerH(V )M̌ PerH(V )Ǧ
IC(1C0)
IC(1C1)
IC(1C2) IC(FC2)
IC(1C3) IC(LC3)
IC(1C4) IC(FC4)
IC(1C5)
IC(1C6) IC(FC6)
IC(1C7) IC(LC7) IC(FC7) IC(EC7)

The Fourier transform respects the cuspidal support decomposition; see Ta-
ble 14.2.2.
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Table 14.2.2. Fourier transform

PerHλ(Vλ)
Ft−→ PerHλ(V

∗
λ )

IC(1C0) 7→ IC(1C∗
0
)

IC(1C1) 7→ IC(1C∗
1
)

IC(1C2) 7→ IC(LC∗
0
)

IC(1C3) 7→ IC(1C∗
3
)

IC(LC3) 7→ IC(1C∗
2
)

IC(1C4) 7→ IC(1C∗
4
)

IC(1C5) 7→ IC(1C∗
5
)

IC(1C6) 7→ IC(LC∗
1
)

IC(1C7) 7→ IC(1C∗
7
)

IC(LC7) 7→ IC(1C∗
6
)

IC(FC2) 7→ IC(FC∗
2
)

IC(FC4) 7→ IC(FC∗
0
)

IC(FC6) 7→ IC(FC∗
6
)

IC(FC7) 7→ IC(FC∗
5
)

IC(EC7) 7→ IC(EC∗
0
)

14.2.5. Equivariant perverse sheaves on the regular conormal bundle. — For each
stratum C, we pick (x, ξ) ∈ T ∗C(V )reg such that the H-orbit T ∗C(V )sreg of (x, ξ) is open
in T ∗Ci(V )reg. Then, we find all equivariant local systems on each T ∗C(V )sreg. The per-
verse extensions of these local systems to the regular conormal bundle T ∗H(V )reg will
be needed when we compute vanishing cycles of perverse sheave on V in Section 14.2.6.
Here we revert to expressing V as a subvariety in ĝ, largely for typographic reasons.

C0: Base point for T ∗C0
(Vλ)sreg:

(x0, ξ0) =




0 0
1 0 0
0 0 0

0 1 0
1 0 0

0 1




The equivariant fundamental group is A(x0,ξ0) = ZHλ(x0, ξ0) = S[2]. Thus,
T ∗C0

(Vλ)sreg carries four local systems. The following table displays how we label
equivariant local systems on T ∗C0

(Vλ)sreg by showing the matching representation
of A(x0,ξ0):

LocHλ(T
∗
C0

(Vλ)sreg) : 1O0 LO0 FO0 EO0

Rep(A(x0,ξ0)) : ++ −− −+ +−
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The map on equivariant fundamental groups A(x0,ξ0) → Ax0 induced from
the projection T ∗C0

(V )sreg → C0 is trivial; on the other hand, the map on
equivariant fundamental groups A(x0,ξ0) → Aξ0 induced from the projection

T ∗C0
(V )sreg → C∗0 = Ct7 is the identity isomorphism.

S[2]

1 = Ax0 A(x0,ξ0) Aξ0

id

id

Pull-back along the bundle map:

PerH(C0) → PerH(T ∗C0
(V )reg)

IC(1C0) 7→ IC(1O0)
IC(LO0)
IC(FO0)
IC(EO0)

C1: Base point for T ∗C1
(Vλ)sreg:

(x1, ξ1) =




1 0
0 0 0
0 0 0

0 1 0
1 0 1

0 0



,

The equivariant fundamental group is A(x1,ξ1) = ZHλ(x1, ξ1) = S[2]. Thus,
T ∗C1

(Vλ)reg carries four local systems. The following table displays how we label
equivariant local systems on T ∗C1

(Vλ)sreg by showing the matching representation
of A(x1,ξ1):

LocHλ(T
∗
C1

(Vλ)sreg) : 1O1 LO1 FO1 EO1

Rep(A(x1,ξ1)) : ++ −− −+ +−
For use below, we remark that LO1 is the local system associated to the double

cover arising from taking
√
detX ′.

The map on equivariant fundamental groups A(x1,ξ1) → Ax1 induced from
the projection T ∗C1

(V )sreg → C1 is trivial; on the other hand, the map on
equivariant fundamental groups A(x1,ξ1) → Aξ1 induced from the projection
T ∗C1

(V )sreg → C∗1 = Ct3 is (s2, s3) 7→ s2s3.

S[2]

1 = Ax1 A(x1,ξ1) Aξ1 = {±1}
id

(s2,s3) 7→s2s3
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Pull-back along the bundle map:

LocH(C1) → LocH(T ∗C1
(V )sreg)

1C1 7→ 1O1

LO1

FO1

EO1

C2: Base point for T ∗C2
(V )sreg:

(x2, ξ2) =




0 0
1 0 0
0 1 0

0 0 0
1 0 0

0 1




The equivariant fundamental group is A(x2,ξ2) = ZHλ((x2, ξ2)) = S[2]. Thus,
T ∗C2

(Vλ)reg carries four local systems.

LocHλ(T
∗
C2

(Vλ)sreg) : 1O2 LO2 FO2 EO2

Rep(A(x2,ξ2)) : ++ −− −+ +−
The map on equivariant fundamental groups A(x2,ξ2) → Ax2 induced from

the projection T ∗C2
(V )sreg → C2 is given by projection to the second factor while

the map on equivariant fundamental groups A(x2,ξ2) → Aξ2 induced from the
projection T ∗C2

(V )sreg → C∗2 = Ct6 is projection to the first factor:

S[2]

{±1} = Ax2 A(x2,ξ2) Aξ2 = {±1}
id

s3←[(s2,s3) (s2,s3) 7→s2

Pull-backalong the bundle map:

LocH(C2) → LocH(T ∗C2
(V )sreg)

1C2 7→ 1O2

LO2

FO2

FC2 7→ EO2

C3: Base point for T ∗C3
(V )sreg:

(x3, ξ3) =




0 0
1 0 1
0 1 0

0 0 0
0 0 0

0 1



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The equivariant fundamental group is A(x3,ξ3) = ZHλ((x3, ξ3)) = S[2]. Thus,
T ∗C3

(Vλ)reg carries four local systems.

LocHλ(T
∗
C3

(Vλ)sreg) : 1O3 LO3 FO3 EO3

Rep(A(x3,ξ3)) : ++ −− −+ +−
The map on equivariant fundamental groups A(x3,ξ3) → Ax3 induced from the
projection T ∗C3

(V )sreg → C2 has kernel Z(H), while A(x3,ξ3) → Aξ3 is trivial.

S[2]

{±1} = Ax3 A(x3,ξ3) Aξ3 = 1

id

s2s3←[(s2,s3)

Pull-back along the bundle map:

LocH(C3) → LocH(T ∗C3
(V )sreg)

1C3 7→ 1O3

LC3 7→ LO0

FO0

EO0

C4: Base point for T ∗C4
(Vλ)sreg:

(x4, ξ4) =




1 0
0 0 0
1 1 0

1 0 0
0 −1 1

−1 0




The equivariant fundamental group is A(x4,ξ4) = ZHλ((x4, ξ4)) = Z(Ĝ). Thus,
T ∗C4

(Vλ)reg carries two local systems.

LocHλ(T
∗
C4

(Vλ)sreg) : 1O4 FO4

Rep(A(x4,ξ4)) : + −
The map on equivariant fundamental groups A(x4,ξ4) → Ax4 induced from the
projection T ∗C4

(V )sreg → C4 is the identity isomorphism, while A(x4,ξ4) → Aξ4
is trivial.

Z(Ĝ)

{±1} = Ax4 A(x4,ξ4) Aξ4 = 1

id

id

Pull-back along the bundle map:

LocH(C4) → LocH(T ∗C4
(V )sreg)

1C4 7→ 1O4

FC4 7→ FO4
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C5: Base point for T ∗C5
(Vλ)sreg:

(x5, ξ5) =




0 1
1 1 0
0 0 −1

0 1 −1
0 0 0

0 1




The equivariant fundamental group is A(x5,ξ5) = ZHλ((x5, ξ5)) = Z(Ĝ). Thus,
T ∗C5

(Vλ)reg carries two local systems.

LocHλ(T
∗
C5

(Vλ)sreg) : 1O5 FO5

Rep(A(x5,ξ5)) : + −
The map on equivariant fundamental groups A(x5,ξ5) → Ax5 induced from the
projection T ∗C5

(V )sreg → C5 is trivial, while A(x5,ξ5) → Aξ5 is the identity
isomorphism.

Z(Ĝ)

1 = Ax5 A(x5,ξ5) Aξ5 = {±}
id

id

Pull-back along the bundle map:

LocH(C5) → LocH(T ∗C5
(V )sreg)

1C5 7→ 1O5

FO5

C6: Base point for T ∗C6
(Vλ)sreg:

(x6, ξ6) =




1 0
0 0 1
0 0 0

0 1 0
0 0 1

0 0




The equivariant fundamental group is A(x6,ξ6) = ZHλ((x6, ξ6)) = S[2]. Thus,
T ∗C6

(Vλ)reg carries four local systems.

LocHλ(T
∗
C6

(Vλ)sreg) : 1O6 LO6 FO6 EO6

Rep(A(x6,ξ6)) : ++ −− −+ +−
The map on equivariant fundamental groups A(x6,ξ6) → Ax6 induced from the
projection T ∗C6

(V )sreg → C6 is given by projection to the first factor while
the map on equivariant fundamental groups A(x6,ξ6) → Aξ6 induced from the
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projection T ∗C6
(V )sreg → C∗6 = Ct2 is projection to the second factor:

S[2]

{±1} = Ax6 A(x6,ξ6) Aξ6 = {±1}
id

s2←[(s2,s3) (s2,s3) 7→s3

Pull-back along the bundle map:

LocH(C6) → LocH(T ∗C6
(V )sreg)

1C6 7→ 1O6

LO6

FC6 7→ FO6

EO6

C7: Base point for T ∗C7
(Vλ)sreg:

(x7, ξ7) =




1 0
0 0 1
0 1 0

0 0 0
0 0 1

0 0




The equivariant fundamental group is A(x7,ξ7) = ZHλ((x7, ξ7)) = S[2]. Thus,
T ∗C7

(Vλ)reg carries four local systems.

LocHλ(T
∗
C7

(Vλ)sreg) : 1O7 LO7 FO7 EO7

Rep(A(x7,ξ7)) : ++ −− −+ +−
The map on equivariant fundamental groups A(x7,ξ7) → Ax7 induced from
the projection T ∗C7

(V )sreg → C7 is the identity, while the map on equivariant
fundamental groups A(x7,ξ7) → Aξ7 induced from the projection T ∗C7

(V )sreg →
C∗7 = Ct0 is trivial.

S[2]

Ax7 A(x7,ξ7) Aξ7 = 1

id

id

Pull-back along the bundle map:

LocH(C7) → LocH(T ∗C7
(V )sreg)

1C7 7→ 1O7

LC7 7→ LO7

FC7 7→ FO7

EC7 7→ EO7

14.2.6. Vanishing cycles of perverse sheaves. — Tables 14.2.3 and 14.2.4 record the
functor pEv on simple objects, from two perspectives. In this section we explain some
of the calculations.
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Rows 1–5 and row 11 of Table 14.2.4 follow from Section 13.2.5.
We show how to calculate row 6. First note that it follows from Proposition 6.5.1

that all of pEvC3 IC(1C4),
pEvC5 IC(1C4),

pEvC6 IC(1C4) and pEvC7 IC(1C4) vanish.
We calculate pEvC0 IC(1C4),

pEvC1 IC(1C4),
pEvC2 IC(1C4) and pEvC4 IC(1C4), here.

(a) To calculate pEvC0 IC(1C4), recall the cover π
(1)
4 : C̃

(1)
4 → C4 from Sec-

tion 14.2.3. For reasons explained in Section 8.2.6, we begin by finding the singu-

larities of the composition f ◦(π(1)
4 × id) on C̃

(1)
4 ×C∗0 . The equations that define

C̃
(1)
4 ×C∗0 as a subvariety of V × P1 × V ∗ with coordinates (w,X, [a : b], w′, X ′)

are (
−b a

)
w = 0,

(
a b

)
X = 0,

twX = 0, det(X) = 0

together with the equations that define C∗0 in terms of w′ and X ′. The singu-

larities of f ◦ (π(1)
4 × id) on C̃

(1)
4 ×C∗0 , are found by examining the Jacobian for

the functions taking (w,X, [a : b], w′, X ′) to
(
−b a

)
w,

(
a b

)
X, w′w + trace(X ′X);

this Jacobian is given here:

du dv dx dy dz da db du′ dv′ dx′ dy′ dz′

−b a 0 0 0 v −u 0 0 0 0 0
0 0 −a 0 b −x z 0 0 0 0 0
0 0 0 b a z y 0 0 0 0 0
u′ v′ x′ y′ 2z′ 0 0 u v x y 2z,

where the second and third rows correspond to the function with value
(
a b

)
X .

This system of equations forms an H-bundle over P1, so we can specialize the
[a : b] coordinates to [1 : 0] without loss of generality. Now we can see that if the

rank of this matrix is less than 4 on C̃
(1)
4 × C∗0 then u′ = y′ = 0, which implies

tw′X ′w′ = 0, which contradicts (w′, X ′) ∈ C∗0 . Therefore, f ◦ (π(1)
4 × id) is

smooth on C̃
(1)
4 × C∗0 . Now, by Lemma 6.2.2,

RΦ
f◦(π

(1)
4 ×id)

(1
C̃

(1)
4 ×C

∗
0
) = 0.

By smooth base change, this implies
pEvC0 IC(1C4) = 0.

(b) The argument showing pEvC1 IC(1C4) = 0 is similar to (a) above. To find the

singularities of f ◦ (π(1)
4 × id) on C̃

(1)
4 × C∗1 we simply add the equation that

defines C∗1 to the list of functions in the case above. The Jacobian for the
functions

(
−b a

)
w,

(
a b

)
X, w′w + trace(X ′X), w′ = 0,
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is given here,

du dv dx dy dz da db du′ dv′ dx′ dy′ dz′

−b a 0 0 0 v −u 0 0 0 0 0
0 0 −a 0 b −x z 0 0 0 0 0
0 0 0 b a z y 0 0 0 0 0
u′ v′ x′ y′ 2z′ 0 0 u v x y 2z
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0,

where, as above, rows two and three refer to
(
a b

)
X . Arguing as above, by

setting [a : b] = [1 : 0] we find x = z = u = 0. If the rank of this Jacobian were
less than 6 then u′ = y′ = 0 so twX ′w = 0, which would force the point to be

non-regular in the conormal bundle. It follows that f ◦ (π(1)
4 × id) is smooth on

the regular part of C̃
(1)
4 × C∗1 . Therefore,

pEvC1 IC(1C4) = 0.

(c) The closed equation that cuts out C∗2 is rankX ′ = 1. Thus, to find the singular

locus of f ◦ (π(1)
4 × id) on C̃

(1)
4 × C∗2 we consider the functions

(
−b a

)
w,

(
a b

)
X, w′w + trace(X ′X), detX ′,

and the associated Jacobian, below.

du dv dx dy dz da db du′ dv′ dx′ dy′ dz′

−b a 0 0 0 v −u 0 0 0 0 0
0 0 −a 0 b −x z 0 0 0 0 0
0 0 0 b a z y 0 0 0 0 0
u′ v′ x′ y′ 2z′ 0 0 u v x y 2z
0 0 0 0 0 0 0 0 0 y′ x′ 2z′

If the rank of this Jacobian is not maximal, then u′ = y′ = 0, which implies
tw′X ′w′ = 0 which contradicts (w′, X ′) ∈ C∗2 . Thus, f ◦ (π(1)

4 × id) is smooth

on C̃
(1)
4 × C∗2 . It follows that

pEvC2 IC(1C4) = 0.

(d) The closure of C4 × C∗4 is cut out by the equations

xu+ zv = 0, , zu+ yv = 0, u′
2
x′ + 2u′v′z′ + v′

2
y′.

We wish to find the restriction of

f = xx′ + 2zz′ + yy′ + uu′ + vv′

to C4×C∗4 in local coordinates. Localize away from u = 0, and v′ = 0 and note
that this implies that y 6= 0 on C4 ×C∗4 ; note also that (x4, ξ4) lies in this open
subvariety. Then

z =
−v
u
y, x =

−vz
u

=
v2

u2
y, y′ = −

(
u′

v′

)2

x′ − 2
v′

u′
z′
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so we may rewrite

f = xx′ + 2zz′ + yy′ + uu′ + vv′

=
( v
u

)2
yx′ − 2

v

u
yz′ − y

(
u′

v′

)2

x′ + 2
v′

u′
z + uu′ + vv′

= y

((v
u

)2
−
(
u′

v′

)2

x′ − 2

(
v

u
+
u′

v′

)
z′

)
+ uu′ + vv′

=
1

u2v′2
(uu′ + vv′)

(
(vv′ − uu′)x′y − 2uv′z′y + u2v′

2
)

This gives us f expressed in the form cXY where c is non-vanishing and non-
singular, X and Y are both non-singular on C4 ×C∗4 (for X this is because the
differential of u′ is non-zero for Y it is because the differential of z′ is non-zero).
It follows from Corollary 6.2.6 that the vanishing cycles functor evaluates to a
constant sheaf, so

pEvC4 IC(1C4) = IC(1O4).

This completes the calculations needed for row 6 of Table 14.2.4.
We show how to compute row 12. As recalled in Section 8.2.6, pEvC IC(FC4) = 0

unless C ⊂ C4, and pEvC4 IC(FC4) = IC(FO4); see Section 14.2.5. So here we

determine pEvCi IC(FC4) for i = 0, 1, 2. Recall the cover π
(3)
4 : C̃

(3)
4 → C4 from

Section 14.2.3. As above, we begin by finding the singularities of the composition

f ◦ (π(3)
4 × id) on C̃

(3)
4 × C∗i . The equations that define C̃

(3)
4 × C∗i as a subvariety of

V × A2 × P1 × V ∗ with coordinates (w,X,A,B, [a : b], w′, X ′) are

(
a b

)(A
B

)
= 0,

(
a b

)
X = 0,

(
−b a

)
w = 0, X =

(
A B

)(A
B

)
,

(
−B A

)
w = 0, twX = 0, det(X) = 0,

together with the equations that define C∗i in terms of w′ and X ′. The conormal
bundle to this variety is generated by the differentials of the functions

(
a b

)(A
B

)
,

(
−b a

)
w,

together with the equations that define C∗i . We find the singular locus of f ◦(π(3)
4 × id)

on C̃
(3)
4 × C∗i by checking the rank of the Jacobian of these functions. This will

determine the support of the sheaf

(158) RΦ
f◦(π

(3)
4 ×id)

(1
C̃

(3)
4 ×C

∗
i

).

If f ◦ (π(3)
4 × id) is smooth on C̃

(3)
4 × C∗i or if the restriction of this sheaf to the

preimage of (C4 × C∗i )reg under π
(3)
4 × id is 0, then EvCi FC4 = 0. However, if the

restriction of (158) to the preimage of (C4 × C∗i )reg under π
(3)
4 × id is not 0, then

to determine pEvCi IC(FC4) we must calculate the pushforward of this restriction
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along the proper morphism π
(3)
4 × id (and in principle eliminate any contribution

from pEvCi(1C4), however in each of the following three cases there is none). We now
show the remaining calculations for row 12.

(e) To find the support of (158) when Ci = C2, we consider the differentials of the
following functions.

(
−b a

)
w,

(
a b

)(A
B

)
, w′w +Tr(X ′X), detX ′.

This gives the following Jacobian, in which we hide x, y and z since we have
x = −A2, z = AB and y = B2. In this table the rows are the differentials of
the above functions, in that order, and to save space, we set A′ := −Ax′ +Bz′

and B′ :=Az′ +By′:

du dv dA dB da db du′ dv′ dx′ dy′ dz′

−b a 0 0 v −u 0 0 0 0 0
0 0 a b A B 0 0 0 0 0
u′ v′ 2A′ 2B′ 0 0 u v −A2 B2 2AB
0 0 0 0 0 0 0 0 y′ x′ 2z′

Again we observe that this system of equations is an H-bundle over P1 and
therefore we can set [a : b] = [1 : 0] without loss of generality. If we do this we
find v = x = z = A = 0. Moreover, if we suppose that the rank is not maximal,
then u′ = 0 by inspecting the first four columns and y′ = 0 by inspecting the
fourth column. This implies tw′X ′w′ = 0 with contradicts (w′, X ′) ∈ C∗2 . Thus,

the singular locus of f ◦ (π(3)
4 × id) on C̃

(3)
4 × C∗2 is empty. It follows that

pEvC2 IC(F4) = 0.

(f) To find the support of (158) when Ci = C1, we consider the differentials of the
following functions.

(
−b a

)
w,

(
a b

)(A
B

)
, trace(X ′X).

In this case we have u′ = v′ = 0, so they may be omitted, and so the relevant
Jacobian is:

du dv dA dB da db dx′ dy′ dz′

−b a 0 0 v −u 0 0 0
0 0 a b A B 0 0 0
0 0 2A′ 2B′ 0 0 −A2 B2 2AB,

where, as above, we set A′ := −Ax′ +Bz′ and B′ :=Az′ +By′. On C̃
(3)
4 × C∗1

we find that the singular locus of f ◦ (π(3)
4 × id) is cut out by

A = B = 0,
(
−b a

)
w = 0.

This is already sufficient to conclude that pEvC1 IC(FC4) 6= 0. Since we only
need to compute the vanishing cycles (158) over the regular part of the conormal
bundle, we may assume w 6= 0. We claim that local coordinates for the regular
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part of the conormal bundle are given by (X ′, w). Indeed, the coordinate [a : b]
is determined by w and all other coordinates are zero on the singular locus. It
follows from this that the map from the singular locus to T ∗C(Vλ)reg is one-to-
one. Moreover, we are free to localize away from the exceptional divisor of the
blowup and thus essentially ignore [a : b] while computing the vanishing cycles.
Doing this, we can give new coordinates for our variety by setting(

A
B

)
= cw

for some new coordinate c. That is, on this open we have local coordinates
u, v, c, x′, y′, z′, with no relations, and we wish to compute

RΦc2(−u2x′+2uvz′+v2z′)(1).

The function −u2x′ + 2uvz′ + v2z′ is smooth and non-vanishing on the regular
part of the conormal bundle, so by setting h = −u2x′ + 2uvz′ + v2z′, we
may consider the smooth map on our open subvariety induced from the map
A6 → A2 given on coordinates by (u, v, c, x′, y′, z′) 7→ (c, h). By smooth base
change RΦc2(−u2x′+2uvz′+v2z′)(1) is the pullback of RΦc2h(1). It follows from
Lemma 6.2.4 that RΦc2h(1) is the skyscraper sheaf on c = 0 associated to the
cover arising from taking the square root of h. Pulling this back, we have the
same. This is the cover associated to the sheaf FO1 in Section 14.2.5, so

pEvC1 IC(FC4) = IC(FO1).

(g) To find the support of (158) when Ci = C0, we consider the differentials of the
following functions.

(
−b a

)
w,

(
a b

)(A
B

)
, w′w +Tr(X ′X).

This determines the following Jacobian, in which we again use the notation
A′ := −Ax′ +Bz′ and B′ :=Az′ +By′:

du dv dA dB da db du′ dv′ dx′ dy′ dz′

−b a 0 0 v −u 0 0 0 0 0
0 0 a b A B 0 0 0 0 0
u′ v′ 2A′ 2B′ 0 0 u v −A2 B2 2AB.

The singular locus of f ◦ (π(3)
4 × id) on C̃

(3)
4 × C∗0 is

u = v = A = B = 0,
(
a b

)
w′ = 0.

Note, this is already sufficient to conclude that pEvC1 IC(FC4) 6= 0. We may
assume w′ 6= 0, since we only need to compute (158) the vanishing cycles over
the regular part of the conormal bundle. Local coordinates for the conormal
bundle are now given by (w′, X ′). Since [a : b] is determined by w′, and all
other coordinates are zero, it follows that the map from the singular locus to
T ∗C(V )reg is one-to-one. In the following, wherever we write (a, b) you should
interpret this as either (1, b) or (a, 1) as though we were working in one of the
two charts for P1.
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We pick new local coordinates in a neighbourhood of the singular locus:
these will be [a : b], c, d,X ′, w′ with the change of coordinates given by (A,B) =
c(−b, a) and (u, v) = d(a, b). The function ww′ + trace(XX ′) may now be
re-written in the form

d
(
a b

)
w′ + c2

(
−b a

)
X ′
(
−b
a

)
.

The functions h =
(
a b

)
w′ and g =

(
−b a

)
X ′
(
−b
a

)
are smooth (on the

regular part of the conormal bundle). We may thus consider the map to A4

induced by:
([a : b], c, d,X ′, w′) 7→ (c, d, h, g)

The map ww′ + trace(XX ′) is simply the pullback of dh + c2g. Thus, if
we can compute RΦdh+c2g(1) on A4, by smooth base change this will give
us RΦw′w+trace(X′X)(1) over the regular part of the conormal bundle. By
Proposition 6.2.5, we see that RΦdf+c2g(1) is the skyscraper sheaf over d =
h = c = 0 associated to the cover coming from adjoining the square root of

g. Pulling this back to C̃
(3)
4 × C∗0 and identifying the singular locus with the

regular part of the conormal, we conclude that
pEvC0 IC(FC4) = IC(FO0)

by comparing the covers associated to the local systems in Section 14.2.5.
(h) The computations for pEvC4 IC(FC4) are essentially the same as those for

pEvC4 IC(1C4). While working on the cover one has x = A2, y = B2, z = AB,
the result is that one finds

f = xx′ + 2zz′ + yy′ + uu′ + vv′

=
1

u2v′2
(uu′ + vv′)

(
(vv′ − uu′)x′B2 − 2uv′z′B2 + u2v′

2
)
.

Taking the proper pushforward we obtain a direct sum of two sheaves, however
as pEvC4 IC(1C4) was the constant sheaf, we realize pEvC4 IC(FC4) will be the
non-trivial factor.

pEvC4 IC(FC4) = IC(FO4).

14.2.7. Normalization of Ev and the twisting local system. — Using Table 14.2.4 we
find our second case when the equivariant local system T is non-trivial:

T = 1

♯
O0
⊕ 1♯O1

⊕ L♯O2
⊕ 1♯O3

⊕ 1♯O4
⊕ 1♯O5

⊕ L♯O6
⊕ 1♯O7

.

We use T in Table 14.5.7 to calculate pNEv : PerHλ(Vλ) → PerHλ(T
∗
Hλ

(Vλ)reg);
compare with Table 14.2.4

14.2.8. Vanishing cycles and the Fourier transform. — Compare Table 14.2.6 with
the Fourier transform from Section 14.2.4 to confirm (141) in this example.

14.2.9. Arthur sheaves. — Arthur perverse sheaves in PerHλ(Vλ), decomposed into
pure packet sheaves and coronal perverse sheaves, are displayed in Table 14.2.7.
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Table 14.2.3. p
Ev : PerHλ(Vλ) → PerHλ(T

∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 14. See also
Table 14.2.4.

PerH(V )
p
Ev−→ PerH(T ∗H(V )reg)

IC(1C0) 7→ IC(1O0)

IC(1C1) 7→ IC(1O1)

IC(1C2) 7→ IC(LO2)⊕ IC(LO0)

IC(1C3) 7→ IC(1O3)

IC(LC3) 7→ IC(LO3)⊕ IC(1O2)

IC(1C4) 7→ IC(1O4)

IC(1C5) 7→ IC(1O5)

IC(1C6) 7→ IC(LO6)⊕ IC(LO1)

IC(1C7) 7→ IC(1O7)

IC(LC7) 7→ IC(LO7)⊕ IC(1O6)

IC(FC2) 7→ IC(FO2)

IC(FC4) 7→ IC(FO4)⊕ IC(FO1)⊕ IC(FO0)

IC(FC6) 7→ IC(EO6)

IC(FC7) 7→ IC(FO7)⊕ IC(FO5)⊕ IC(FO3)

IC(EC7) 7→ IC(EO7)⊕ IC(FO6)⊕ IC(EO5)⊕ IC(EO4)

⊕ IC(FO3)⊕ IC(EO2)⊕ IC(FO1)⊕ IC(EO0)

14.3. ABV-packets. —

14.3.1. Admissible representations versus perverse sheaves. — Using Vogan’s bijec-

tion between PerHλ(Vλ)
simple

/iso and Πpure,λ(G/F ) as discussed in Section 8.3.1, we now

match the 8 Langlands parameters from Section 14.1.1 with the 8 strata from Sec-
tion 14.2.1 and the 15 admissible representations from Section 14.1.2 with the 15
perverse sheaves from Section 14.2.3; see Table 14.3.1.

14.3.2. ABV-packets. — Using the bijection from Section 14.3.1 and the calcula-
tion of the functor Ev from Section 14.2.6, we now easily find the ABV-packets
ΠABV

pure,φ(G/F ) for Langlands parameters φ with infinitesimal parameter λ :WF → LG,

using Section 8.3.2. We record the stable distributions ηNEvψ arising from ABV-packets
through our calculations in Table 14.3.2. We will examine the invariant distributions
ηNEvψ,s, later.

14.3.3. Kazhdan-Lusztig conjecture. — Using the bijection of Section 14.1.4, we
compare the multiplicity matrix from Section 14.1.3 with the normalised geometric
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Table 14.2.4. Evs : PerHλ(Vλ) → LocHλ(T
∗
Hλ

(Vλ)sreg) on simple objects;
see also Table 14.2.5. Here we use the notation Evsi := EvsCi .

P Evs0 P Evs1 P Evs2 P Evs3 P Evs4 P Evs5 P Evs6 P Evs7 P

IC(1C0) ++ 0 0 0 0 0 0 0

IC(1C1) 0 ++ 0 0 0 0 0 0

IC(1C2) −− 0 −− 0 0 0 0 0

IC(1C3) 0 0 0 ++ 0 0 0 0

IC(LC3) 0 0 ++ −− 0 0 0 0

IC(1C4) 0 0 0 0 + 0 0 0

IC(1C5) 0 0 0 0 0 + 0 0

IC(1C6) 0 −− 0 0 0 0 −− 0

IC(1C7) 0 0 0 0 0 0 0 ++

IC(LC7) 0 0 0 0 0 0 ++ −−

IC(FC2) 0 0 −+ 0 0 0 0 0

IC(FC4) −+ −+ 0 0 − 0 0 0

IC(FC6) 0 0 0 0 0 0 +− 0

IC(FC7) 0 0 0 −+ 0 − 0 −+

IC(EC7) +− −+ +− −+ − − −+ +−

multiplicity matrix from Section 14.2.3. Since tmrep = m′geo, this confirms the
Kazhdan-Lusztig conjecture in this example.

14.3.4. Aubert duality and Fourier transform. — To verify (150), use Vogan’s bi-
jection from Section 14.3.1 to compare Aubert duality from Section 14.1.5 with the
Fourier transform from Section 14.2.4.

14.3.5. Normalisation. — To verify (152), compare the twisting characters χψ of Aψ
from Section 14.1.5 with the restriction Tψ to T ∗Cψ(V )reg of the T from Section 14.2.8.

In both cases the character is trivial except on Aψ2 and Aψ6 , where it is the character
(−−), using notation from Section 14.1.4. Using this notation, here is another
perspective on T , where for each C ⊆ V we display the corresponding character
of Amic

C . As a provocation, we also display the parity of the eccentricities of the orbits
C.

C0 C1 C2 C3 C4 C5 C6 C7

TC ++ ++ −− ++ + + −− ++
(−1)eC 1 1 −1 1 1 1 −1 1

14.3.6. ABV-packets that are not Arthur packets. — We conclude Section 14.3 by
drawing attention to the two ABV-packets ΠABV

pure,φ1
(G/F ) and ΠABV

pure,φ3
(G/F ) that

are not Arthur packets, as φ1 and φ3 are not of Arthur type. While the following two
admissible homomorphisms LF × SL(2,C)→ LG are not Arthur parameters because
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Table 14.2.5. p
NEv : PerHλ(Vλ)→ PerHλ(T

∗
Hλ

(Vλ)reg) on simple objects,
for λ : WF →

LG given at the beginning of Section 14. See also
Table 14.5.7

PerH(V )
p
NEv−→ PerH(T ∗H(V )reg)

IC(1C0) 7→ IC(1O0)

IC(1C1) 7→ IC(1O1)

IC(1C2) 7→ IC(1O2)⊕ IC(LO0)

IC(1C3) 7→ IC(1O3)

IC(LC3) 7→ IC(LO3)⊕ IC(LO2)

IC(1C4) 7→ IC(1O4)

IC(1C5) 7→ IC(1O5)

IC(1C6) 7→ IC(1O6)⊕ IC(LO1)

IC(1C7) 7→ IC(1O7)

IC(LC7) 7→ IC(LO7)⊕ IC(LO6)

IC(FC2) 7→ IC(EO2)

IC(FC4) 7→ IC(FO4)⊕ IC(FO1)⊕ IC(FO0)

IC(FC6) 7→ IC(FO6)

IC(FC7) 7→ IC(FO7)⊕ IC(FO5)⊕ IC(FO3)

IC(EC7) 7→ IC(EO7)⊕ IC(EO6)⊕ IC(EO5)⊕ IC(EO4)

⊕ IC(FO3)⊕ IC(FO2)⊕ IC(FO1)⊕ IC(EO0)

they are not bounded on WF ,

ψ1(w, x, y) := ν2(y)⊕ (ν22 (dw)⊗ ν2(x)),
ψ3(w, x, y) := ν2(x) ⊕ (ν22 (dw)⊗ ν2(y)),

they do behave like Arthur parameters in other regards, as we now explain. First
φψ1 = φ1 and φψ3 = φ3. We note too that ψ3 is the Aubert dual of ψ1. Let us define

Πpure,ψ1(G/F ) :=ΠABV
pure,φ1

(G/F ) and Πpure,ψ3(G/F ) :=ΠABV
pure,φ3

(G/F ).

Then Πpure,ψ1(G/F ) and Πpure,ψ3(G/F ) define the following pseudo-Arthur packets
for G1 and G:

Πψ1(G(F )) := {π(φ1), π(φ6,+)},
Πψ3(G(F )) := {π(φ3,+), π(φ3,−)},

and
Πψ1(G1(F )) := {π(φ4,−), π(φ7,+−)},
Πψ3(G1(F )) := {π(φ7,−+), π(φ7,+−)}.
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Table 14.2.6. Comparing this table with Table 14.2.2 verifies (141) in
this example. Recall the notation Oi :=T ∗

Ci
(V )sreg and that L♮

Oi
denotes

the extension by zero of L♮
Oi

from T ∗
Ci
(V )sreg to T ∗

H(V )sreg.

PerH(V )
NEvs
−→ LocH(T ∗

H(V )sreg)
a∗−→ LocH(T ∗

H(V ∗)sreg)
Evs

∗

←− PerH(V ∗)

IC(1C0) 7→ 1

♮
O0

7→ 1

♮
O∗

0
← [ IC(1C∗

0
)

IC(1C1) 7→ 1

♮
O1

7→ 1

♮
O∗

1
← [ IC(1C∗

1
)

IC(1C2) 7→ 1

♮
O2
⊕ L♮

O0
7→ 1

♮
O∗

2
⊕ L♮

O∗
0

← [ IC(LC∗
0
)

IC(1C3) 7→ 1

♮
O3

7→ 1

♮
O∗

3
← [ IC(1C∗

3
)

IC(LC3) 7→ L♮
O3
⊕ L♮

O2
7→ L♮

O∗
3
⊕ L♮

O∗
2

← [ IC(1C∗
2
)

IC(1C4) 7→ 1

♮
O4

7→ 1

♮
O∗

4
← [ IC(1C∗

4
)

IC(1C5) 7→ 1

♮
O5

7→ 1

♮
O∗

5
← [ IC(1C∗

5
)

IC(1C6) 7→ 1

♮
O6
⊕ L♮

O1
7→ 1

♮
O∗

6
⊕♮ L♮

O∗
1

← [ IC(LC∗
1
)

IC(1C7) 7→ 1

♮
O7

7→ 1

♮
O∗

7
← [ IC(1C∗

7
)

IC(LC7) 7→ L♮
O7
⊕ L♮

O6
7→ ♮LO∗

7
⊕ L♮

O∗
6

← [ IC(1C∗
6
)

IC(FC2) 7→ E♮
O2

7→ E♮
O∗

2
← [ IC(FC∗

2
)

IC(FC4) 7→ F♮
O4
⊕ F♮

O1
⊕ F♮

O0
7→ F♮

O∗
4
⊕ F♮

O∗
1
⊕ FO∗

0
← [ IC(FC∗

0
)

IC(FC6) 7→ F♮
O6

7→ F♮
O∗

6
← [ IC(FC∗

6
)

IC(FC7) 7→ F♮
O7
⊕ F♮

O5
⊕ F♮

O3
7→ F♮

O∗
7
⊕ F♮

O∗
5
⊕ F♮

O∗
3
← [ IC(FC∗

5
)

IC(EC7) 7→ E♮
O7
⊕ E♮

O6
⊕ E♮

O5
7→ E♮

O∗
7
⊕ E♮

O∗
6
⊕ E♮

O∗
5

← [ IC(EC∗
0
)

⊕ E♮
O4
⊕ F♮

O3
⊕ ⊕ E♮

O∗
4
⊕ F♮

O∗
3
⊕

F♮
O2
⊕ F♮

O1
⊕ E♮

O0
F♮

O∗
2
⊕F♮

O∗
1
⊕ E♮

O∗
0

Table 14.2.7. Arthur sheaves

Arthur pure packet coronal

sheaves sheaves sheaves

AC0 IC(1C0) ⊕ IC(1C2)⊕ IC(FC4)⊕ IC(EC7)

AC1 IC(1C1) ⊕ IC(1C6)⊕ IC(FC4)⊕ IC(EC7)

AC2 IC(1C2)⊕ IC(FC2) ⊕ IC(LC3)⊕ IC(EC7)

AC3 IC(1C3)⊕ IC(LC3) ⊕ IC(FC7)⊕ IC(EC7)

AC4 IC(1C4)⊕ IC(FC4) ⊕ IC(EC7)

AC5 IC(1C5) ⊕ IC(FC7)⊕ IC(EC7)

AC6 IC(1C6)⊕ IC(FC6) ⊕ IC(LC7)⊕ IC(EC7)

AC7 IC(1C7)⊕ IC(LC7)⊕ IC(FC7)⊕ IC(EC7)
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Table 14.3.1. Bijection between equivalence classes of irreducible ad-
missible representations of pure rational forms of SO(7) and isomorphism
classes of simple perverse sheaves on Vλ

PerHλ(Vλ)
simple

/iso Πpure,λ(G/F )

IC(1C0) [π(φ0), 0]

IC(1C1) [π(φ1), 0]

IC(1C2) [π(φ2,+), 0]

IC(1C3) [π(φ3,+), 0]

IC(LC3) [π(φ3,−), 0]
IC(1C4) [π(φ4,+), 0)]

IC(1C5) [π(φ5), 0]

IC(1C6) [π(φ6,+), 0]

IC(1C7) [π(φ7,++), 0]

IC(LC7) [π(φ7,−−), 0]
IC(F2) [π(φ2,−), 1]
IC(F4) [π(φ4,−), 1]
IC(F6) [π(φ6,−), 1]
IC(F7) [π(φ7,−+), 1]

IC(E7) [π(φ7,+−), 1]

Table 14.3.2. Stable virtual representations arising from ABV-packets

ABV- pure L-packet coronal

packets representations representations

ηNEv

ψ0
+π(φ0) +π(φ2,+) + π(φ4,−) + π(φ7,+−)

ηNEv

φ1
+π(φ1) +π(φ4,−) + π(φ6,+) + π(φ7,+−)

ηNEv

ψ2
+π(φ2,+)− π(φ2,−) −π(φ3,−) + π(φ7,+−)

ηNEv

φ3
+π(φ3,+) + π(φ3,−) −π(φ7,−+)− π(φ7,+−)

ηNEv

ψ4
+π(φ4,+)− π(φ4,−) −π(φ7,+−)

ηNEv

ψ5
+π(φ5) +π(φ7,−+) + π(φ7,+−)

ηNEv

ψ6
+π(φ6,+)− π(φ6,−) −π(φ7,−−) + π(φ7,+−)

ηNEv

ψ7
+π(φ7,++) + π(φ7,−−)− π(φ7,−+)− π(φ7,+−)
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Aubert duality defines a bijection between Πψ3(G(F )) and Πψ1(G(F )) and between
Πψ3(G1(F )) and Πψ1(G1(F )). Moreover, it follows from the Kazhdan-Lusztig conjec-
ture, which we have already established for this example in Section 14.3.3, that the
associated distributions

ΘGψ1
:= traceπ(φ1) + traceπ(φ6,+)

ΘGψ3
:= traceπ(φ3,+) + traceπ(φ3,−)

and
ΘG1

ψ1
:= − (− traceπ(φ4,−)− traceπ(φ7,+−))

ΘG1

ψ3
:= − (+ traceπ(φ7,−+) + traceπ(φ7,+−))

are stable. Moreover, using the characters of microlocal fundamental groups arising
from our calculation of the functor EvC1 and EvC3 we may define ΘGψ1,s

, ΘG1

ψ1,s
, ΘGψ1,s

and ΘGψ1,s
. It follows from Section 14.1.6 that these distributions coincide with the

endoscopic transfer of stable distributions from an elliptic endoscopic group G′; those
stable distributions onG′(F ) also arise from ABV-packets that are not Arthur packets.
In these regards, the pseudo-Arthur packets Πψ1(G(F )), Πψ1(G1(F )), Πψ3(G(F )),
and Πψ3(G1(F )) behave like Arthur packets.

14.4. Endoscopy and equivariant restriction of perverse sheaves. — In this
section we will calculate both sides of (154) for G = SO(7) and the elliptic endoscopic
G′ = SO(5)×SO(3), which already appeared in Section 14.1.6. This will illustrate how
the Langlands-Shelstad lift of Θψ′ on G′(F ) to Θψ,s on G(F ) is related to equivariant
restriction of perverse sheaves from V to the Vogan variety V ′ forG′; see Section 14.1.6
for ψ′.

The endoscopic datum for G′ includes s ∈ H given by

s :=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



.

Note that

ZĜ(s) =








A 0 B
0 E 0
C 0 D


 |

(
A B
C D

)
∈ Sp(4), E ∈ Sp(2)




∼= Sp(4)× Sp(4),

so Ĝ′ = ZĜ(s).

14.4.1. Endoscopic Vogan variety. — The infinitesimal parameter λ : WF → LG

factors through ǫ : LG
′ →֒ LG to define λ′ :WF → LG

′
by

λ′(w) =







|w|3/2 0 0 0

0 |w|1/2 0 0

0 0 |w|−1/2 0

0 0 0 |w|−3/2


 ,

(
|w|1/2 0

0 |w|−1/2

)

 .
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To simplify notation below, let us set G(1) := SO(3) and G(2) := SO(5) and define

λ(1) :WF → LG
(1)

and λ(2) :WF → LG
(2)

accordingly. Also set

H(1) :=ZĜ(1)(λ
(1)) and H(2) :=ZĜ(2)(λ

(2))

and V (1) :=Vλ(1) and V (2) :=Vλ(2) . Then,

H ′ = H(1) ×H(2) and V ′ = V (2) × V (2),

with the action ofH(1) on V (1) given in Section 10 and the action ofH(2) on V (2) given
in Section 12. It follows that, with reference to Sections 10 and 12, V ′ is stratified
into eight H ′-orbits:

Cux × Cy Cx × Cy Cu × Cy C0 × Cy
Cux × C0 Cx × C0 Cu × C0 C0 × C0.

For all H ′-orbits C′ ⊂ V ′, the microlocal fundamental group Amic
C′ is canonically

isomorphic to the centre Z(Ĝ′) = Z(Ĝ(2)) × Z(Ĝ(1)), because we have chosen G′

so that the unramified infinitesimal parameter λ′ is regular semisimple at Fr. Con-

sequently, the image of Z(Ĝ′) under ǫ : Ĝ′ →֒ Ĝ is the group S[2] introduced in
Section 14.1.4.

14.4.2. Restriction. — We now describe the restriction functor DH(V ) → DH′(V ′)
on simple perverse sheaves, after passing to Grothendieck groups.

res : PerH(V ) −→ KPerH′(V ′)
IC(1C0) 7→ IC(1C0 ⊠ 1C0)[0]
IC(1C1) 7→ IC(1Cu ⊠ 1C0)[1]
IC(1C2) 7→ IC(1Cx ⊠ 1C0)[1]⊕ IC(1C0 ⊠ 1Cy )[1]⊕ IC(1C0 ⊠ 1C0)[1]
IC(1C3) 7→ IC(1Cx ⊠ 1Cy )[1]
IC(LC3) 7→ IC(LCx ⊠ ECy)[1]⊕ IC(1C0 ⊠ 1C0)[1]
IC(1C4) 7→ IC(1Cx ⊠ 1C0)[2]⊕ IC(1Cu ⊠ 1Cy )[1]
IC(1C5) 7→ IC(1Cu ⊠ 1Cy)[2]⊕ IC(1Cx ⊠ 1Cy )[2]⊕ IC(1C0 ⊠ 1Cy)[2]

⊕ IC(LCx ⊠ ECy)[2]⊕ IC(1C0 ⊠ 1C0)[2]
IC(1C6) 7→ IC(1Cux ⊠ 1C0)[2]⊕ IC(1Cu ⊠ 1Cy )[2]⊕ IC(1Cu ⊠ 1C0)[2]
IC(1C7) 7→ IC(1Cux ⊠ 1Cy )[2]
IC(LC7) 7→ IC(LCux ⊠ ECy)[2]⊕ IC(1Cu ⊠ 1C0)[2]

and

IC(FC2) 7→ IC(LCx ⊠ 1C0)[1]⊕ IC(1C0 ⊠ ECy)[1]
IC(FC4) 7→ IC(1Cu ⊠ ECy )[1]⊕ IC(LCx ⊠ 1C0)[2]
IC(FC6) 7→ IC(LCux ⊠ 1C0)[2]⊕ IC(1Cu ⊠ ECy)[2]
IC(FC7) 7→ IC(LCux ⊠ 1Cy )[2]⊕ IC(LCx ⊠ 1Cy )[2]⊕ IC(LCx ⊠ 1C0)[4]

⊕ IC(1C0 ⊠ ECy)[4]
IC(EC7) 7→ IC(LCux ⊠ ECy )[2]⊕ IC(LCx ⊠ ECy)[2]

14.4.3. Restriction and vanishing cycles. — Although the inclusion V ′ →֒ V induces
a map of conormal bundles ǫ : T ∗H′(V ′) →֒ T ∗H(V ), this does not restrict to a map of
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regular conormal bundles. Instead, we have

T ∗C0
(V )reg ∩ T ∗H′(V ′)reg = T ∗C0×C0

(V ′)reg
T ∗C1

(V )reg ∩ T ∗H′(V ′)reg = T ∗Cu×C0
(V ′)reg

T ∗C2
(V )reg ∩ T ∗H′(V ′)reg = T ∗C0×Cy

(V ′)reg
T ∗C3

(V )reg ∩ T ∗H′(V ′)reg = T ∗Cx×Cy (V
′)reg

T ∗C4
(V )reg ∩ T ∗H′(V ′)reg = ∅

T ∗C5
(V )reg ∩ T ∗H′(V ′)reg = ∅

T ∗C6
(V )reg ∩ T ∗H′(V ′)reg = T ∗Cux×C0

(V ′)reg
T ∗C7

(V )reg ∩ T ∗H′(V ′)reg = T ∗Cux×Cy (V
′)reg

Thus, the hypothesis for (153) is met only for (x′, ξ′) ∈ T ∗H′(V ′)reg from the list of
regular conormal bundles appearing on the right-hand side of these equations.

We now prove a few more interesting cases of (153).

The case P = IC(EC7). — From Section 14.4.2 we see that, in the Grothendieck group
of PerH′(T ∗H′(V ′)reg),

pEv
′ (IC(EC7)|V ′)

≡ pEv
′
(
IC(LCux ⊠ ECy )⊕ IC(LCx ⊠ ECy )

)

=
(
pEv

(2) IC(LCux)⊠ pEv
(1) IC(ECy )

)
⊕
(
pEv

(2) IC(LCx)⊠ pEv
(1) IC(ECy )

)

=
(
(IC(LOux)⊕ IC(LOu))⊠ (IC(EOy )⊕ IC(EO0))

)

⊕
(
(IC(LOx)⊕ IC(LO0))⊠ (IC(EOy )⊕ IC(EO0))

)

= IC(LOux ⊠ EOy )⊕ IC(LOux ⊠ EO0)⊕ IC(LOu ⊠ EOy )
⊕ IC(LOu ⊠ EO0)⊕ IC(LOx ⊠ EOy)⊕ IC(LOx ⊠ EO0)
⊕ IC(LO0 ⊠ EOy)⊕ IC(LO0 ⊠ EO0).

On the other hand, recall from Section 14.2.7 that
pEv IC(EC7) = IC(EO7)⊕ IC(EO6)⊕ IC(EO5)⊕ IC(EO4)

⊕IC(FO3)⊕ IC(FO2)⊕ IC(FO1)⊕ IC(EO0).

We can now easily calculate both sides of (153) on all six components of T ∗H(V )reg ∩
T ∗H′(V ′)reg.

(C0 × C0). If (x′, ξ′) ∈ T ∗C0×C0
(V ′)reg then (x, ξ) ∈ T ∗C0

(V )reg. In this case the left-
hand side of (153) is

(−1)dim(C0×C0) tracea′s
(
pEv
′ IC(EC7)|V ′

)
(x′,ξ′)

= (−1)0 trace(+1,−1) IC(LO0 ⊠ EO0)
= (−−)(+1,−1)
= −1,

while the right-hand side of (153) is

(−1)dimC0 traceas (
pEv IC(EC7))(x,ξ)

= (−1)dimC0 traceas IC(EO0)
= trace(+1,−1) IC(EO0)
= (+−)(+1,−1)
= −1.
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This confirms (153) on T ∗C0×C0
(V ′)reg.

(Cu × C0). If (x′, ξ′) ∈ T ∗Cu×C0
(V ′)reg then (x, ξ) ∈ T ∗C1

(V )reg. In this case the left-
hand side of (153) is

(−1)dim(Cu×C0) tracea′s
(
pEv
′ IC(EC7)|V ′

)
(x′,ξ′)

= (−1)1 trace(+1,−1) IC(LOu ⊠ EO0)
= −(−−)(+1,−1)
= +1,

while the right-hand side of (153) is

(−1)dimC1 traceas (
pEv IC(EC7))(x,ξ)

= (−1)dimC1 traceas IC(FO1)
= (−1)2 trace(+1,−1) IC(FO1)
= (−+)(+1,−1)
= +1.

This confirms (153) on T ∗Cu×C0
(V ′)reg.

(C0 × Cy). If (x′, ξ′) ∈ T ∗C0×Cy
(V ′)reg then (x, ξ) ∈ T ∗C2

(V )reg. In this case the left-

hand side of (153) is

(−1)dim(C0×Cy) tracea′s
(
pEv
′ IC(EC7)|V ′

)
(x′,ξ′)

= (−1)1 trace(+1,−1) IC(LO0 ⊠ EOy )
= −(−−)(+1,−1)
= +1,

while the right-hand side of (153) is

(−1)dimC2 traceas (
pEv IC(EC7))(x,ξ)

= (−1)dimC2 traceas IC(FO2)
= (−1)2 trace(+1,−1) IC(FO2)
= (−+)(+1,−1)
= +1.

This confirms (153) on T ∗C0×Cy
(V ′)reg.

(Cx × Cy). If (x′, ξ′) ∈ T ∗Cx×Cy(V ′)reg then (x, ξ) ∈ T ∗C3
(V )reg. In this case the left-

hand side of (153) is

(−1)dim(Cx×Cy) tracea′s
(
pEv
′ IC(EC7)|V ′

)
(x′,ξ′)

= (−1)2 trace(+1,−1) IC(LOx ⊠ EOy)
= (−−)(+1,−1)
= −1,

while the right-hand side of (153) is

(−1)dimC3 traceas (
pEv IC(EC7))(x,ξ)

= (−1)dimC3 traceas IC(FO3)
= (−1)3 trace(+1,−1) IC(FO3)
= −(−+)(+1,−1)
= −1.
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This confirms (153) on T ∗Cx×Cy (V
′)reg.

(Cux × C0). If (x′, ξ′) ∈ T ∗Cux×C0
(V ′)reg then (x, ξ) ∈ T ∗C6

(V )reg. In this case the
left-hand side of (153) is

(−1)dim(Cux×C0) tracea′s
(
pEv
′ IC(EC7)|V ′

)
(x′,ξ′)

= (−1)2 trace(+1,−1) IC(LOux ⊠ EO0)
= (−−)(+1,−1)
= −1,

while the right-hand side of (153) is

(−1)dimC6 traceas (
pEv IC(EC7))(x,ξ)

= (−1)dimC6 traceas IC(EO6)
= (−1)4 trace(+1,−1) IC(EO6)
= (+−)(+1,−1)
= −1.

This confirms (153) on T ∗Cux×C0
(V ′)reg.

(Cux × Cy). If (x′, ξ′) ∈ T ∗Cux×Cy(V
′)reg then (x, ξ) ∈ T ∗C7

(V )reg. In this case the

left-hand side of (153) is

(−1)dim(Cux×Cy) tracea′s
(
pEv
′ IC(EC7)|V ′

)
(x′,ξ′)

= (−1)3 trace(+1,−1) IC(LOux ⊠ EOy )
= −(−−)(+1,−1)
= +1,

while the right-hand side of (153) is

(−1)dimC7 traceas (
pEv IC(EC7))(x,ξ)

= (−1)dimC7 traceas IC(EO7)
= (−1)5 trace(+1,−1) IC(EO7)
= −(+−)(+1,−1)
= +1.

This confirms (153) on T ∗Cux×Cy (V
′)reg.

This confirms (154) for P = IC(EC7).

The case P = IC(FC4). — Then from Section 14.4.2 we see that, in the Grothendieck
group of PerH′(T ∗H′ (V ′)reg),

pEv
′ (IC(FC4)|V ′)

≡ pEv
′
(
IC(1Cu ⊠ ECy )[1]⊕ IC(LCx ⊠ 1C0)

)

=
(
pEv

(2) IC(1Cu)⊠ pEv
(1) IC(ECy )

)
⊕
(
pEv

(2) IC(LCx)⊠ pEv
(1) IC(1C0)

)

=
(
IC(1Ou)⊠ (IC(EOy )⊕ IC(EO0))

)
⊕ ((IC(LOx)⊕ IC(LO0))⊠ IC(1O0))

= IC(1Ou ⊠ EOy)⊕ IC(1Ou ⊠ EO0)⊕ IC(LOx ⊠ LO0)⊕ IC(LO0 ⊠ 1O0).

On the other hand, recall from Section 14.2.7 that

pEv IC(FC4) = IC(FO4)⊕ IC(FO1)⊕ IC(FO0).



190 C. CUNNINGHAM, A. FIORI, J. MRACEK, A. MOUSSAOUI & B. XU

We can now easily calculate both sides of (153) on all six components of T ∗H(V )reg ∩
T ∗H′(V ′)reg.

(C0 × C0). If (x′, ξ′) ∈ T ∗C0×C0
(V ′)reg then the left-hand side of (153) is

(−1)dim(C0×C0) tracea′s
(
pEv
′ IC(FC4)|V ′

)
(x′,ξ′)

= (−1)0 trace(+1,−1) IC(LO0 ⊠ 1O0)
= (−+)(+1,−1)
= +1,

while the right-hand side of (153) is

(−1)dimC0 traceas (
pEv IC(FC4))(x,ξ)

= (−1)dimC0 traceas IC(FO0)
= trace(+1,−1) IC(FO0)
= (−+)(+1,−1)
= +1.

This confirms (153) on T ∗C0×C0
(V ′)reg for P = IC(FC4).

(Cu × C0). If (x′, ξ′) ∈ T ∗Cu×C0
(V ′)reg then (x, ξ) ∈ T ∗C1

(V )reg. In this case the left-
hand side of (153) is

(−1)dim(Cu×C0) tracea′s
(
pEv
′ IC(FC4)|V ′

)
(x′,ξ′)

= (−1)1 trace(+1,−1) IC(1Ou ⊠ EO0)
= −(+−)(+1,−1)
= +1,

while the right-hand side of (153) is

(−1)dimC1 traceas (
pEv IC(FC4))(x,ξ)

= (−1)dimC1 traceas IC(FO1)
= (−1)2 trace(+1,−1) IC(FO1)
= (−+)(+1,−1)
= +1.

This confirms (153) on T ∗Cu×C0
(V ′)reg for P = IC(FC4).

(C0 × Cy). If (x′, ξ′) ∈ T ∗C0×Cy
(V ′)reg then (x, ξ) ∈ T ∗C2

(V )reg. In this case the left-

hand side of (153) is

(−1)dim(C0×Cy) tracea′s
(
pEv
′ IC(FC4)|V ′

)
(x′,ξ′)

= (−1)1 trace(+1,−1) 0
= 0,

while the right-hand side of (153) is

(−1)dimC2 traceas (
pEv IC(FC4))(x,ξ)

= (−1)dimC2 traceas 0
= 0.

This confirms (153) on T ∗C0×Cy
(V ′)reg for P = IC(FC4).
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(Cx × Cy). If (x′, ξ′) ∈ T ∗Cx×Cy(V ′)reg then (x, ξ) ∈ T ∗C3
(V )reg. In this case the left-

hand side of (153) is

(−1)dim(Cx×Cy) tracea′s
(
pEv
′ IC(FC4)|V ′

)
(x′,ξ′)

= (−1)2 trace(+1,−1) 0
= 0,

while the right-hand side of (153) is

(−1)dimC3 traceas (
pEv IC(FC4))(x,ξ)

= (−1)dimC3 traceas 0
= 0.

This confirms (153) on T ∗Cx×Cy (V
′)reg for P = IC(FC4).

(Cux × C0). If (x′, ξ′) ∈ T ∗Cux×C0
(V ′)reg then (x, ξ) ∈ T ∗C6

(V )reg. In this case the
left-hand side of (153) is

(−1)dim(Cux×C0) tracea′s
(
pEv
′ IC(FC4)|V ′

)
(x′,ξ′)

= (−1)2 trace(+1,−1) 0
= 0,

while the right-hand side of (153) is

(−1)dimC6 traceas (
pEv IC(FC4))(x,ξ)

= (−1)dimC6 traceas 0
= 0.

This confirms (153) on T ∗Cux×C0
(V ′)reg for P = IC(FC4).

(Cux × Cy). If (x′, ξ′) ∈ T ∗Cux×Cy(V
′)reg then (x, ξ) ∈ T ∗C7

(V )reg. In this case the

left-hand side of (153) is

(−1)dim(Cux×Cy) tracea′s
(
pEv
′ IC(EC7)|V ′

)
(x′,ξ′)

= (−1)3 trace(+1,−1) 0
= 0,

while the right-hand side of (153) is

(−1)dimC7 traceas (
pEv IC(FC4))(x,ξ)

= (−1)dimC7 traceas 0
= 0.

This confirms (153) on T ∗Cux×Cy (V
′)reg for P = IC(FC4).

This confirms (154) for P = IC(FC4).
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14.5. Tables for the SO(7) example. — Here we gather together all the main
results of the calculations performed in Section 14.

Table 14.5.1. Arthur packets for representations of G(F ) and G1(F )
with infinitesimal parameter λ. For typographic reasons, here we use the
abbreviated notation πi := π(φi), π±

i := π(φi,±) and π±±

i :=π(φi,±±).

Πφi(G(F )) Πψi(G(F )) Πφi(G1(F )) Πψi(G1(F ))

{π0} {π0, π−2 } ∅ {π−4 , π+−
7 }

{π1} undefined ∅ undefined

{π+
2 } {π+

2 , π
−
3 } {π−2 } {π−2 , π+−

7 }
{π+

3 , π
−
3 } undefined ∅ undefined

{π+
4 } {π+

4 } {π−4 } {π−4 , π+−
7 }

{π5} {π5} ∅ {π−+7 , π+−
7 }

{π+
6 } {π+

6 , π
−−
7 } {π−6 } {π+−

7 }
{π++

7 , π−−7 } {π++
7 , π−−7 } {π−+7 , π+−

7 } {π−+7 , π+−
7 }

Table 14.5.2. ABV-packets for representations of G(F ) and G1(F ) with
infinitesimal parameter λ. Comparing this table with Table 14.5 shows
that all Arthur packets for admissible representations with infinitesimal
parameter λ are recovered from ABV-packets. Again we use the abbrevi-
ated notation πi :=π(φi), π±

i := π(φi, π) and π±±

i := π(φi,±±).

Πφi(G(F )) ΠABV
φi

(G(F )) Πφi(G1(F )) ΠABV
φi

(G1(F ))

{π0} {π0, π−2 } ∅ {π−4 , π(φ+−7 }
{π1} {π1, π+

6 } ∅ {π−4 , π+−
7 }

{π+
2 } {π+

2 , π
−
3 } {π−2 } {π−2 , π+−

7 }
{π+

3 , π
−
3 } {π+

3 , π
−
3 } ∅ {π−+7 , π+−

7 }
{π+

4 } {π+
4 } {π−4 } {π−4 , π+−

7 }
{π5} {π5} ∅ {φ−+7 , π+−

7 }
{π+

6 } {π+
6 , π

−−
7 } {π−6 } {φ+−7 }

{π++
7 , π−−7 } {π++

7 , π−−7 } {π−+7 , π+−
7 } {π−+7 , π+−

7 }
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Table 14.5.3. Pure Arthur packets, decomposed into pure L-packets
Πpure,φ(G/F ) and the remaining coronal representations. The notation
[π, δ] is explained in Section 2.7 and recalled in Section 8.1.2. For
typographic reasons, here we use the abbreviated notation πi := π(φi),
π±

i := π(φi, π) and π±±

i := π(φi,±±).

pure Arthur packet pure L-packet coronal representations

Πpure,ψ0(G/F ) [π0, 0], [π+
2 , 0], [π−

4 , 1], [π+−

7 , 1]

Πpure,ψ2(G/F ) [π+
2 , 0], [π−

2 , 1], [π−

3 , 0], [π+−

7 , 1]

Πpure,ψ4(G/F ) [π+
4 , 0], [π−

4 , 1], [π+−

7 , 1]

Πpure,ψ5(G/F ) [π5, 0], [π−+
7 , 1], [π+−

7 , 1]

Πpure,ψ6(G/F ) [π+
6 , 0], [π−

6 , 1], [π−−

7 , 0], [π+−

7 , 1]

Πpure,ψ7(G/F ) [π++
7 , 0], [π−−

7 , 0], [π−+
7 , 1], [π+−

7 , 1]

Table 14.5.4. ABV-packets ΠABV
pure,φ(G/F ), decomposed into pure L-

packets Πpure,φ(G/F ) and the remaining coronal representations. Com-
paring this table with Table 14.5 verifies Conjecture 1(a) in this case.
The same comparison shows that not all ABV-packets are pure Arthur
packets. The notation [π, δ] is explained in Section 2.7 and recalled in
Section 8.1.2. For typographic reasons, we use the abbreviated notation
πi := π(φi), π±

i :=π(φi, π) and π±±

i := π(φi,±±).

ABV-packet pure L-packet coronal representations

ΠABV
pure,φ0

(G/F ) [π0, 0] [π+
2 , 0], [π−

4 , 1], [π+−

7 , 1]

ΠABV
pure,φ1

(G/F ) [π(φ1), 0] [π−

4 , 1], [π+
6 , 0], [π+−

7 , 1]

ΠABV
pure,φ2

(G/F ) [π+
2 , 0], [π−

2 , 1] [π−

3 , 0], [π+−

7 , 1]

ΠABV
pure,φ3

(G/F ) [π+
3 , 0], [π−

3 , 0] [π−+
7 , 1], [π+−

7 , 1]

ΠABV
pure,φ4

(G/F ) [π+
4 , 0], [π−

4 , 1] [π+−

7 , 1]

ΠABV
pure,φ5

(G/F ) [π5, 0] [π−+
7 , 1], [π+−

7 , 1]

ΠABV
pure,φ6

(G/F ) [π+
6 , 0], [π−

6 , 1] [π−−

7 , 0], [π+−

7 , 1]

ΠABV
pure,φ7

(G/F ) [π++
7 , 0], [π−−

7 , 0], [π−+
7 , 1], [π+−

7 , 1]
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Table 14.5.5. Multiplicities of admissible representations in standard
modules. We use the abbreviated notation πi :=π(φi), π±

i := π(φi, π) and
π±±

i := π(φi,±±) and we also set Mi :=M(φi), M±

i := π(φi, π) and
M±±

i := π(φi,±±).

G π0 π1 π+
2 π++

3 π−−

3 π+
4 π5 π+

6 π++
7 π−−

7 π−

2 π−

4 π−

6 π−+
7 π+−

7

M0 1 1 1 1 1 2 2 1 1 1 0 0 0 0 0

M1 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0

M+
2 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0

M++
3 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0

M−−

3 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0

M+
4 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

M5 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

M+
6 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

M++
7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

M−−

7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

M−

2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

M−

4 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

M−

6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

M−+
7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

M+−

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 14.5.6. The normalised geometric multiplicity matrix. The table
records the multiplicity of LC in L′♯

C′ |C . Comparing this table with
Table 14.5 verifies the Kazhdan-Lusztig conjecture in this case; see also
Table 14.2.1. Recall the notation L♯ :=IC(LC)[−dimC].

1C0
1C1

1C2
1C3

LC3
1C4

1C5
1C6

1C7
LC7

FC2
FC4

FC6
FC7

EC7

1

♯
C0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

♯
C1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1

♯
C2

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1

♯
C3

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

L♯C3
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1

♯
C4

2 1 1 0 0 1 0 0 0 0 0 0 0 0 0

1

♯
C5

2 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1

♯
C6

1 1 1 0 0 1 0 1 0 0 0 0 0 0 0

1

♯
C7

1 1 1 1 0 1 1 1 1 0 0 0 0 0 0

L♯C7
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0

F♯C2
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

F♯C4
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

F♯C6
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

F♯C7
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

E♯
C7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Table 14.5.7. NEvs : PerHλ(Vλ)→ LocHλ(T
∗
Hλ

(Vλ)sreg) on simple objects.
See also Table 14.2.5. Here we use the notation NEvsi := NEvsCi .

P NEvs0 P NEvs1 P NEvs2 P NEvs3 P NEvs4 P NEvs5 P NEvs6 P NEvs7 P

IC(1C0
) ++ 0 0 0 0 0 0 0

IC(1C1
) 0 ++ 0 0 0 0 0 0

IC(1C2
) −− 0 ++ 0 0 0 0 0

IC(1C3
) 0 0 0 ++ 0 0 0 0

IC(LC3
) 0 0 −− −− 0 0 0 0

IC(1C4
) 0 0 0 0 + 0 0 0

IC(1C5
) 0 0 0 0 0 + 0 0

IC(1C6
) 0 −− 0 0 0 0 ++ 0

IC(1C7
) 0 0 0 0 0 0 0 ++

IC(LC7
) 0 0 0 0 0 0 −− −−

IC(FC2
) 0 0 +− 0 0 0 0 0

IC(FC4
) −+ −+ 0 0 − 0 0 0

IC(FC6
) 0 0 0 0 0 0 −+ 0

IC(FC7
) 0 0 0 −+ 0 − 0 −+

IC(EC7
) +− −+ −+ −+ − − +− +−

Table 14.5.8. The characters 〈 · , π〉ψ of Aψ. Comparing this table with
Table 14.5.7 verifies Conjecture 1 in this example.

π 〈 · , π〉ψ0
〈 · , π〉ψ2

〈 · , π〉ψ4
〈 · , π〉ψ5

〈 · , π〉ψ6
〈 · , π〉ψ7

π(φ0) ++ 0 0 0 0 0

π(φ2,+) −− ++ 0 0 0 0

π(φ3,−) 0 −− 0 0 0 0

π(φ4,+) 0 0 + 0 0 0

π(φ5) 0 0 0 + 0 0

π(φ6,+) 0 0 0 0 ++ 0

π(φ7,++) 0 0 0 0 0 ++

π(φ7,−−) 0 0 0 0 −− −−
π(φ2,−) 0 +− 0 0 0 0

π(φ4,−) −+ 0 − 0 0 0

π(φ6,−) 0 0 0 0 −+ 0

π(φ7,−+) 0 0 0 − 0 −+
π(φ7,+−) +− −+ − − +− +−
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Index

AC , equivariant fundamental group of C, 29

Aλ, component group for λ, 21

Aφ, component group for φ, 12

Aψ, component group for ψ, 12

AT∗
C
(Vλ)sreg

, equivariant fundamental group

of T ∗
C(Vλ)sreg, 40

C, orbit in Vλ, 29

C∗, dual orbit, 39

Cψ , orbit attached to an Arthur parameter,
36

Gλ, 33

Hλ, 21

Jλ, 33

Kλ, 21

Mλ, 31, 34

P (LG), set of Langlands parameters, 12

Pλ(
LG), 21

Q(LG), set of Arthur parameters, 12

R(LG), 21

T ∗
C(Vλ)reg, 36

T ∗
C(Vλ)sreg, 40

T ∗
Hλ

(Vλ)reg, 36

T ∗
Hλ

(Vλ)sreg, 40

V ∗
λ , dual Vogan variety, 39

Vλ = Vλ(
LG), Vogan variety for λ, 22

X(LG), 24
tVλ, transposed Vogan variety, 37

Ev, 53

EvC , 52

Evψ , 66

Evs, 66

EvsC , 65

KΠpure(G/F ), 19

ΛC , 58

NEv, 67

NEvC , 67

NEvψ , 68

NEvsC , 67

PerHλ(Vλ), 29

Per
Ĝ
(Xλ(

LG), 28

Φ(G/F ), 12

Φλ(G/F ), 21

ΠABV
pure,C(G/F ), ABV-packet, 68

ΠABV
pure,φ(G/F ), 68

Πψ(Gδ(F ), δ), 19

Πpure,ψ(G/F ), pure Arthur packet, 19

Πpure,φ(G/F ), pure Langlands packet, 14

Ψ(G/F ), 12

χP , 30

L, local system, 29

δP , 30
ηGψ , 14

ηEvψ,s, 70, 72

ηEvψ , 69, 72

ηNEvC,s, 72

ηNEv
ψ,s

, 69

ηNEvψ , 69, 72

ηδψ , 20

ηψ , 19
λφ, infinitesimal parameter of φ, 21

λψ , infinitesimal parameter of ψ, 36

λnr :WF → LGλ, 33
〈 · , · 〉, 71
Aψ , 71

Bψ, 71
Cψ , coronal perverse sheaf, 72
Lπ,δ, 69
P(π, δ), 30
Sψ,sc, 16

T , 66
TC , 66
Tψ, 66
kλ, 22
pEv, 65
p
EvC , 65
φ : LF → LG, Langlands parameter, 12
πP , 30

Ĉ, 39
ξψ, 37, 40

aψ , 20
e(P), 71
eC , 58
fλ, 32
g, 58

rλ : LGλ → LG, 33
sλ, hyperbolic part of fλ, 32
tλ, elliptic part of fλ, 32
xφ ∈ Vλ, 22
xψ ∈ Vλ, 40

yψ, 40
eC , 66
ABV-packet, ΠABV

pure,C(G/F ), 68

Arthur parameters for G, 12

component group for λ, Aλ, 21
component group for φ, Aφ, 12
component group for ψ, Aψ, 12
coronal perverse sheaf, Cψ , 72
dual orbit, C∗, 39

eccentricity, eC , 58
elliptic part, 31
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equivariant fundamental group of C, AC , 29
equivariant perverse sheaves, 28, 29
equivariant pullback, 26
hyperbolic part, 31
infinitesimal parameter, 20, 21
infinitesimal parameter of ψ, λψ , 36
isomorphism class of representations of a pure

rational form, 14
Langlands parameter, φ : LF → LG, 12

Langlands parameters, 12
Langlands parameters of Arthur type, 13
microlocal vanishing cycles functor, Ev, 53
nearby cycles functor, 45

normalised microlocal vanishing cycles func-
tor, NEv, 67

orbit of Arthur type, Cψ , 36
parameter variety, 24
pure Arthur packet, Πpure,ψ(G/F ), 19
pure Langlands packet, Πpure,φ(G/F ), 14
pure packet perverse sheaf, Bψ , 71
regular conormal, 36
strongly regular conormal, 40

transposed orbit, 39
transposed Vogan variety, tVλ, 37
unramification, 33
vanishing cycles functor, 45
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