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A NOTE ON L-PACKETS AND ABELIAN VARIETIES
OVER LOCAL FIELDS

JEFFREY D. ACHTER AND CLIFTON CUNNINGHAM

A polarized abelian variety (X, λ) of dimension g and good reduction over a
local field K determines an admissible representation of GSpin2g+1(K ). We
show that the restriction of this representation to Spin2g+1(K ) is reducible
if and only if X is isogenous to its twist by the quadratic unramified exten-
sion of K . When g = 1 and K = Q p, we recover the well-known fact that
the admissible GL2(K )-representation attached to an elliptic curve E with
good reduction is reducible upon restriction to SL2(K ) if and only if E has
supersingular reduction.

Introduction

Consider an elliptic curve E/Qp with good reduction. Let πE be the unramified
principal series representation of GL2(Qp) with the same Euler factor as E . Al-
though πE is irreducible, the restriction of πE from GL2(Qp) to its derived group,
SL2(Qp), need not be irreducible. In fact, it is not hard to show that πE |SL2(Qp) is
reducible if and only if the reduction of E is supersingular; see [Anandavardhanan
and Prasad 2006, 2.1], for example.

This note generalizes the observation above, as follows. Let K be a non-
Archimedean local field with finite residue field and let (X, λ) be a polarized
abelian variety over K of dimension g with good reduction. Fix a rational prime `
invertible in the residue field of K . Then the associated Galois representation on the
rational `-adic Tate module of X takes values in GSp(V`X, 〈 · , · 〉λ) ∼= GSp2g(Q`).
The eigenvalues of the image of Frobenius under this unramified representation
determine an irreducible principal series representation πX,λ of GSpin2g+1(K ) with
the same Euler factor as X . Note that the dual group to GSpin2g+1 is GSp2g; note
also that GSpin3

∼= GL2 and GSpin5
∼= GSp4, accidentally. In this note we show

that the restriction of πX,λ from GSpin2g+1(K ) to its derived group Spin2g+1(K )

Achter was partially supported by a grant from the Simons Foundation (204164). Cunningham was
partially supported by NSERC (DG696158) and PIMS.
MSC2010: primary 22E50, 11G10; secondary 11F70, 14K15, 11S37.
Keywords: abelian varieties, good reduction, local fields, L-packets, admissible representations.

395

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.273-2
http://dx.doi.org/10.2140/pjm.2015.273.395


396 JEFFREY D. ACHTER AND CLIFTON CUNNINGHAM

is reducible if and only if X is isogenous to its twist by the quadratic unramified
extension of K .

Furthermore, we identify the Langlands parameter φX,λ for πX,λ and then show
that the corresponding L-packet 5X,λ contains the equivalence class of πX,λ only.
Then we show that we can detect when X is isogenous to its quadratic unramified
twist directly from the local L-packet5der

X,λ determined by transferring the Langlands
parameter φX,λ to the derived group Spin2g+1(K ) of GSpin2g+1(K ).

1. Abelian varieties

In this section, we collect some useful facts about abelian varieties, especially
over finite fields. Many of the attributes discussed here are isogeny invariants.
We write X ∼ Y if X and Y are isogenous abelian varieties, and End0(X) for the
endomorphism algebra End(X)⊗ZQ of X .

1A. Base change of abelian varieties. Let X/Fq be an abelian variety of dimen-
sion g. Associated to it are the characteristic polynomial PX/Fq (T ) and minimal
polynomial MX/Fq (T ) of Frobenius. Then PX/Fq (T ) ∈ Z[T ] is monic of degree 2g,
and MX/Fq (T ) is the radical of PX/Fq (T ).

The isogeny class of X is completely determined by PX/Fq (T ) [Tate 1966]. It is
thus possible to detect from PX/Fq (T ) whether X is simple, but even easier to decide
if X is isotypic, which is to say, isogenous to the self-product of a simple abelian
variety. Indeed, let ZEnd0(X) ⊂ End0(X) be the center of the endomorphism
algebra of X . Then

(1-1) ZEnd0(X) ∼= Q[T ]/(MX/Fq (T )),

and X is isotypic if and only if MX/Fq (T ) is irreducible. While it is possible for a
simple abelian variety to become reducible after extension of scalars of the base
field, isotypicality is preserved by base extension (see [Oort 2008, Claim 10.8], for
example).

For a monic polynomial g(T )=
∏

1≤ j≤N (T − τ j ) and a natural number r , set
g(r)(T )=

∏
1≤ j≤N (T − τ

r
j ). It is not hard to check that

PX/Fqr (T )= P (r)X/Fq
(T ).

Lemma 1.1. Suppose X/Fq is isotypic, and let Fqr /Fq be a finite extension. Let Y
be a simple factor of XFqr . Then there exists some m | r such that

M (r)
X/Fq

(T )= MY/Fqr (T )m and dim ZEnd0(X)= m dim ZEnd0(XFqr ).
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Proof. Write XFqr ∼ Y n with Y simple. Then we have two different factorizations
of PX/Fqr (T ):

PX/Fqr (T )= (M
(r)
X/Fq

(T ))d ,

PX/Fqr (T )= (MY/Fqr (T ))e.

Since MY/Fqr (T ) is irreducible (and all polynomials considered here are monic),
there exists some integer m such that

M (r)
X/Fq

(T )= MY/Fqr (T )m .

Note that

m =
deg MX/Fq (T )
deg MY/Fqr (T )

= [ZEnd0(X) : ZEnd0(XFqr )].

Let τ be a root of MX/Fq (T ). Then τ r is a root of M (r)
X/Fq

(T ), and thus of MY/Fq (T );
and the inclusion of fields ZEnd0(XFqr )⊆ ZEnd0(X) is isomorphic to the inclusion
of fields Q(τ r ) ⊆ Q(τ ), under (1-1). In particular, m = [Q(τ ) : Q(τ r )]. Since τ
satisfies the equation Sr

− τ r over Q(τ r ), its degree over Q(τ r ) divides r . �

1B. Even abelian varieties. Call an abelian variety X/Fq even if its characteristic
polynomial is even:

PX/Fq (T )= PX/Fq (−T ).

If X is simple, then it admits a unique nontrivial quadratic twist X ′/Fq . For an
arbitrary X/Fq , let X ′/Fq be the quadratic twist associated to the cocycle

Gal(Fq)→ Aut(X), Frq 7→ [−1]

corresponding to a nontrivial quadratic twist of all simple factors of X .
For future use, we record the following elementary observation:

Lemma 1.2. Let X/Fq be an abelian variety. Then X is even if and only if X and
X ′ are isogenous.

Proof. Use the (canonical, given our construction) isomorphism XFq2
∼= X ′Fq2 to

identify V`X and V`X ′. Then one knows (see [Serre and Tate 1968, p. 506], for
example) that ρX ′/Fq (Frq)=−ρX/Fq (Frq), and thus that

PX ′/Fq (T )= PX/Fq (−T ).

The asserted equivalence now follows from Tate’s theorem [1966, Theorem 1]. �

To a large extent, evenness of X is captured by the behavior of the center of
End0(X) upon quadratic base extension.

Lemma 1.3. If X/Fq is even, then

dim ZEnd0(X)= 2 dim ZEnd0(XFq2 ).
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Proof. Suppose X/Fq is even. Then the multiset {τ1, . . . , τ2g} of eigenvalues of
Frobenius of X is stable under multiplication by −1, and in particular the set of
distinct eigenvalues of Frobenius is stable under multiplication by −1. Moreover,
this action has no fixed points; and thus {τ 2

1 , . . . , τ
2
2g}, the set of eigenvalues of

X/Fq2 , has half as many distinct elements as the original set. The claim now follows
from characterization (1-1) of ZEnd0(X). �

The converse is almost true.

Proposition 1.4. Suppose X is isotypic. Then X is even if and only if

dim ZEnd0(X)= 2 dim ZEnd0(XFq2 ).

Proof. Suppose dim ZEnd0(X)= 2 dim ZEnd0(XFq2 ) and let Y be a simple factor
of XFq2 . By Lemma 1.1,

(1-2) M (2)
X/Fq

(T )= MY/Fq2 (T )
2.

Factor the minimal polynomials of X and Y as

MX/Fq (T )=
∏

1≤ j≤2h

(T − τ j ),

MY/Fq2 (T )=
∏

1≤ j≤h

(T −β j ).

By (1-2), we may order the roots of MX/Fq (T ) so that, for each 1≤ j ≤ h, we have

τ 2
j = τ

2
h+ j = β j ,

so that τh+ j = ±τ j . In fact, τh+ j = −τ j ; for otherwise, MX/Fq (T ) would have
a repeated root, which contradicts the known semisimplicity of Frobenius. Now,
PX/Fq (T )= MX/Fq (T )

d for some d . The multiset of eigenvalues of Frobenius of X
is thus stable under multiplication by −1, and X/Fq is even. �

Note that evenness is an assertion about the multiset of eigenvalues of Frobe-
nius, while the calculation of dim ZEnd0(XFqe ) only detects the set of eigenvalues.
Consequently, if one drops the isotypicality assumption in Proposition 1.4, it is
easy to write down examples of abelian varieties which are not even but satisfy the
criterion on dimensions of centers of endomorphism rings.

Example 1.5. Let E/Fq be an ordinary elliptic curve; then E is not isogenous to
E ′ over Fq but End0(E) ∼= End0(E ′) ∼= L , a quadratic imaginary field. Set X =
E × E × E ′. Then X is not even, since X ′ ∼= E ′× E ′× E , but ZEnd0(X) ∼= L× L
while ZEnd0(XFq2 )

∼= L . Therefore, X/Fq satisfies the dimension criterion of
Proposition 1.4 but is not even.
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Example 1.6. Consider a supersingular elliptic curve E/Fq , where q is an odd
power of the prime p. Then End0(E) ∼= Q(

√
−p), while End0(EFq2 ) is the quater-

nion algebra ramified at p and∞. In particular, ZEnd0(E) is a quadratic imaginary
field, while ZEnd0(EFq2 )

∼= Q. Therefore, E/Fq is even.

Example 1.7. In contrast, if X/Fq is an absolutely simple ordinary abelian variety,
then End0(X)=End0(XFq2 ). (This is a consequence of Theorem 7.2 of [Waterhouse
1969], which unfortunately omits the necessary hypothesis of absolute simplicity.)

Example 1.8. Now consider an arbitrary abelian variety X/Fq and its preferred
quadratic twist X ′. Then the sum X × X ′ is visibly isomorphic to its own quadratic
twist, and thus even.

Example 1.9. Let X/Fq be an abelian variety of dimension g. Suppose there is an
integer N ≥ 3, relatively prime to q , such that X [N ](Fq) ∼= (Z/N )2g . Then X is not
even. Indeed, if an abelian variety Y over a field k has maximal k-rational N -torsion
for N ≥ 3 and N is invertible in k, then End0(Y ) ∼= End0(Yk̄) [Silverberg 1992,
Theorem 2.4]. By the criterion of Lemma 1.3, if X/Fq satisfies the hypotheses of
the present lemma, then X cannot be even.

1C. Abelian varieties over local fields. Now let K be a local field with residue
field Fq and let X/K be an abelian variety with good reduction X0/Fq . As in 1B,
we define a canonical quadratic twist X ′ of X , associated to the unique nontrivial
character

Gal(K/K )→ Gal(K unram/K )→ {[±1]} ⊂ Aut(X).

Proposition 1.10. Let X/K be an abelian variety with good reduction X0/Fq . The
following are equivalent:

(a) X and X ′ are isogenous;

(b) X0/Fq and X ′0/Fq are isogenous;

(c) X0/Fq is even.

Proof. By hypothesis, X spreads out to an abelian scheme X/OK (its Néron model)
with special fiber X0/Fq ; the automorphism [−1] ∈ End(X) extends to an automor-
phism of X and the corresponding twist X′ has generic and special fibers X ′ and
(X0)

′/Fq , respectively. This compatibility explains the equivalence of (a) and (b);
the equivalence of (b) and (c) is Lemma 1.2. �

Call X/K even if X has good reduction and satisfies any of the equivalent
statements in Proposition 1.10.
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2. L-packets attached to abelian varieties

2A. Polarizations. Let X/k be an abelian variety over an arbitrary field k. Let λ
be a polarization on X , i.e., a symmetric isogeny X → X̂ which arises from an
ample line bundle on X . Fix a rational prime ` invertible in k. The polarization λ on
X induces a nondegenerate skew-symmetric pairing 〈 · , · 〉λ on the Tate module T`X
and on the rational Tate module V`X . Let GSp(V`X, 〈 · , · 〉λ) be the group of sym-
plectic similitudes of V`X with respect to this pairing; note that GSp(V`X, 〈 · , · 〉λ)
comes with a representation rλ,` : GSp(V`X, 〈 · , · 〉λ) ↪→ GL(V`X). Let ρX,` :

Gal(k) → GL(V`X) be the representation on the rational Tate module and let
ρλ,` : Gal(k)→ GSp(V`X, 〈 · , · 〉λ) be the continuous homomorphism such that
ρX,` = rλ,` ◦ ρλ,`.

(2-1)

Gal(k̄/k)
ρX,` //

ρX,λ,` ((

GL(V`X)

GSp(V`X, 〈 · , · 〉λ)

rλ,`

66

2B. Admissible representations attached to abelian varieties with good reduction.
Let K be a local field. Fix a rational prime ` invertible in the residue field of K ,
and thus in K . It will be comforting, though not even remotely necessary, to fix an
isomorphism Q`

∼= C. We will indicate the corresponding complex-valued versions
of ρX,`, ρλ,`, and rλ,` from Section 2A by eliding the subscript `.

In the rest of the paper we will commonly employ the notation G := GSpin2g+1;
note that the dual group to G is Ǧ = GSp2g. The derived group Gder = Spin2g+1,
which is semisimple and simply connected, will play a role below, as will its dual
Ǧad = PGSp2g, which is of adjoint type.

Proposition 2.1. Let X/K be an abelian variety of dimension g with good reduction
and let λ be a polarization on X. There is an irreducible unramified principal series
representation πX,λ of GSpin2g+1(K ), unique up to equivalence, such that

L(z, ρX )= L(z, πX,λ, rλ).

Moreover, | |−1/2
K ⊗πX,λ is unitary.

Proof. This is a very small and well-known part of the local Langlands correspon-
dence for G =GSpin2g+1 over K which, in this case, matches unramified principal
series representations of G(K ) = GSpin2g+1(K ) with unramified Langlands pa-
rameters taking values in Ǧ(C) = GSp2g(C). For completeness and to introduce
notation for later use, we include the details here.

We begin by describing L(z, ρX ). By [Serre and Tate 1968], the Galois represen-
tation ρX,` is unramified and the characteristic polynomial of ρX,`(Frq) has rational
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coefficients. Accordingly, the Euler factor for ρX,` takes the form

L(s, ρX )=
(qs)2g

PX0/Fq (qs)
.

Let {τ1, . . . , τ2g} be the (complex) roots of PX0/Fq (T ). Also by [Serre and Tate
1968], the `-adic realization ρX,`(Frq) ∈GL(V`X) of the Frobenius endomorphism
of X is semisimple of weight 1, so each eigenvalue satisfies |τ j | =

√
q. Label

the roots in such a way that, for each 1 ≤ j ≤ g, we have τg+ j = qτ−1
j ; and

τ j =
√

qe2π iθ j , where 1> θ1 ≥ θ2 ≥ · · · ≥ θg ≥ 0.
Let T be a K -split maximal torus in G; let Ť be the dual torus. Then the Lie

algebra of the torus Ť (C) may be identified with X∗(T )⊗C through the function

exp : X∗(T )⊗C→ Ť (C)

defined by α̌(exp(x))= e2π i〈α̌,x〉 for each root α̌ for Ǧ with respect to Ť . The Lie
algebra of the compact part of Ť (C), denoted by Ť (C)u below, is then identified
with X∗(T )⊗R under exp. We pick a basis {e0, . . . , eg} for X∗(T ) that identifies
e0 with the similitude character for Ǧ and write { f0, . . . , fg} for the dual basis for
X∗(T ) ∼= X∗(Ť ). Set θ0 := 0 and set θ :=

∑g
j=0 θ j e j ; note that θ ∈ X∗(T )⊗R, so

exp(θ) lies in Ť (C)u. Then ρX,λ(Frq)=
√

q exp(θ).
Let WK be the Weil group for K . The L-group for T is LT = Ť (C)×WK since

T is K -split. Consider the Langlands parameter

φ :WK →
LT

defined by φ(Frq) = ρX,λ(Frq) =
√

q exp(θ)× Frq . Let χ : T (K )→ C× be the
quasicharacter of T (K ) matching φ under the local Langlands correspondence
for algebraic tori [Yu 2009]. The character χu

:= | |
−1/2
K ⊗ χ corresponds to the

unramified Langlands parameter

φu
:WK →

LT

defined by φu(Frq)= exp(θ)×Frq .
Now pick a Borel subgroup B ⊂ G over K with reductive quotient T and set

πX,λ := IndG(K )
B(K ) χ.

Then πX,λ is an irreducible, unramified principal series representation of G(K ).
In the same way, the unitary character χu

: K×→ C× determines the irreducible
principal series representation

πu
X,λ := IndG(K )

B(K ) χ
u.
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This admissible representation πu
X,λ is unitary and enjoys

πu
X,λ = | |

−1/2
K ⊗πX,λ,

as promised.
Having identified the irreducible principal series representation πX,λ of G(K )

attached to (X, λ), we turn to the L function L(s, πX,λ, rλ). For this it will be helpful
to go back and say a few words about the representation rλ,` :GSp(V`X, 〈 · , · 〉λ) ↪→
GL(V`X).

Let S be a maximal torus in GSp(V`X, 〈 · , · 〉λ) containing ρX,`(Frq) and let S′

be a maximal torus in GL(V`X) containing rλ,`(S). Let F` be the splitting extension
of S′ in Q`; observe that this contains the splitting extension of PX0/Fq (T ) ∈Q[T ]
in Q`. Passing from Q` to F`, we may choose bases { f0, f1, f2, . . . , fg} for X∗(S)
and { f ′1, f ′2, . . . , f ′2g} for X∗(S′) such that the map X∗(S′)� X∗(S) induced by
the representation rλ,` is given, for j = 1, . . . , g, by

(2-2) X∗(S′)→ X∗(S), f ′j 7→ f j , f ′g+ j 7→ f0− fg− j+1.

Note that this determines a basis for V`X ⊗Q`
F`.

Passing from F` to C, we have now identified a basis for V`X ⊗Q`
C which

defines

GSp(V`X ⊗Q`
C, 〈 · , · 〉λ)

∼= GSp2g(C)= Ǧ(C)

inducing S⊗Q`
C ∼= Ť and also gives

GL(V`X ⊗Q`
C) ∼= GL2g(C).

Now (2-1) extends to

(2-3)

Gal(K/K )
ρX //

ρX,λ %%

GL2g(C)

Ǧ(C)

rλ

::

It follows immediately that

L(s, πX,λ, rλ)=
2g∏

i=1

1
1− τi q−s =

2g∏
i=1

qs

qs − τi
=

(qs)2g

PX0/Fq (qs)
= L(s, ρX ),

concluding the proof of Proposition 2.1. �
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2C. R-groups. The irreducible representation πX,λ of G(K ) in Proposition 2.1
is obtained by parabolic induction from an unramified quasicharacter of a split
maximal torus T (K ). In Section 2E we will use the restriction of this represen-
tation to the derived group Gder(K )= Spin2g+1(K ) of G(K )= GSpin2g+1(K ) to
study X . While the resulting representation of Gder(K ) is again an unramified
principal series representation, it need not be irreducible; in fact, we will glean
information about X from the components of this representation of Gder(K ). With
this application in mind, here we review some basic facts about reducible principal
series representations of Gder(K ).

As in the proof of Proposition 2.1, let B be a Borel subgroup of G with reductive
quotient T , a split maximal torus in G. Set Bder=Gder∩B. This is a Borel subgroup
of Gder with reductive quotient Tder= T ∩Gder, a split maximal torus in Gder. Let σ
be a character of Tder(K ). The component structure of the admissible representation
IndGder(K )

Bder(K ) σ is governed by the commuting algebra End(IndGder(K )
Bder(K ) σ), which, in

turn, is given by the group algebra C[R(σ )], where R(σ ) is the Knapp–Stein R-
group; see [Keys 1982, Introduction] for a summary and references to original
sources, including [Silberger 1979].

The Knapp–Stein R-group R(σ ) is determined as follows, as explained in [Keys
1982, §3]. Let R be the root system for G with respect to T and let W be the
corresponding Weyl group for G. The root system for Gder may be identified
with R; see Table 1. Set Wσ = {w ∈ W | wσ = σ }. For each root α ∈ R, let σα
be the restriction of σ to the rank-1 subtorus Tα ⊆ T . Consider the root system
Rσ = {α ∈ R | σα = 1}. Then R(σ )= {w ∈Wσ |w(Rσ )= Rσ }. The exact sequence

1→W ◦σ →Wσ → R(σ )→ 1

determines R(σ ), with W ◦σ := {wα |α ∈ Rσ }, the Weyl group of the root system Rσ ;
see [Keys 1982, §3].

We will need the following alternate characterization of R(σ ). Let s ∈ Ťad(C) be
the semisimple element of Ǧad(C) corresponding to the character σ of Tder(K ). By
Proposition 4 of [Steinberg 1974, §3.5] (see also [Humphreys 1995, §2.2, Theorem]),
ZǦad(C)(s) is a reductive group with root system Řs := {α̌ ∈ Ř | α̌(s) = 1}. The
bijection between R and Ř which comes with the root datum for G restricts to a
bijection between Rσ and Řs . Moreover, by that same Proposition 4, the component
group of the reductive group ZǦad(C)

(s) is Ws/W ◦s , where W ◦s is the Weyl group
for the root system Řs and Ws = {w ∈W |w(s)= s}:

1→W ◦s →Ws→ π0(ZǦad(C)
(s))→ 1.

Here we have identified the Weyl group W for R with the Weyl group for Ř. Under
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that identification, Ws =Wσ and W ◦σ =W ◦s , so

R(σ ) ∼= π0(ZǦad(C)
(s)),

canonically,

2D. Component group calculations. Now we calculate the group π0(ZǦad(C)
(s)).

Proposition 2.2. Suppose t ∈ GSp2g(C) is semisimple and all eigenvalues have
complex modulus 1. Let s ∈ PGSp2g(C) be the image of t under GSp2g(C)→

PGSp2g(C). Then, if and only if the characteristic polynomial of rλ(t) is even,

π0(ZPGSp2g(C)
(s)) ∼= Z/2Z;

otherwise, π0(ZPGSp2g(C)
(s)) is trivial.

Proof. Using the notation in the proof of Proposition 2.1, pick x ∈ X∗(T )⊗R with
exp(x) = t ; of course, x is not uniquely determined by t , as the kernel of exp :
X∗(T )⊗R→ Ť (C) is the weight lattice for T , which, in this case, is the character
lattice X∗(T ) itself; see Table 1. Let v ∈ X∗(Tder)⊗R be the image of x under the
map X∗(T )⊗R→ X∗(Tder)⊗R induced from X∗(T )→ X∗(Tder); see Table 1.
Note that exp(v) = s, where now exp refers to the map exp : X∗(Tder)→ Ť (C)
defined as above. Using this map we may identify Lie Ťad(C) with X∗(Tder)⊗C;
under this identification, the Lie algebra of the compact subtorus of Ťad(C) may be
identified with X∗(Tder)⊗R, henceforth denoted by V .

Let Rder be the root system for Gder and let 〈Rder〉 be the lattice generated by
Rder. By [Reeder 2010, §2.2],

(2-4) π0(ZǦad(C)
(s)) ∼=

{
γ ∈ X∗(Tder)/〈Rder〉 | γ (v)= v

}
,

for a canonical action of X∗(Tder)/〈Rder〉 on V , which we will use to calculate
π0(ZǦad(C)

(s)). Even before describing this action, however, we remark that (2-4),
together with the calculation of X∗(Tder)/〈Rder〉 in Table 1, already gives us good
information about π0(ZǦad(C)

(s)): this component group is trivial or Z/2Z, and in
particular, abelian.

In order to describe the action of X∗(Tder)/〈Rder〉 on V and calculate the right-
hand side of (2-4), we must introduce yet more notation. Adapting [Bourbaki
1968, VI, §2], let Waff := 〈Rder〉 o W be the affine Weyl group for Ǧad and let
Wext := X∗(Tder)oW be the extended affine Weyl group for Ǧad. (Here we use the
coincidence of the weight lattice for Gder with the character lattice for Gder.) Then
Wext is a semidirect product of the Coxeter group Waff by X∗(Tder)/〈Rder〉.

(2-5) 1→Waff→Wext→ X∗(Tder)/〈Rder〉 → 1.

The quotient X∗(Tder)/〈Rder〉 coincides with the fundamental group π1(Ǧad) of Ǧad



A NOTE ON L -PACKETS AND ABELIAN VARIETIES OVER LOCAL FIELDS 405

Semisimple,
simply connected Type: Bg Adjoint

Gder= Spin2g+1

Tder=G
g
m

Z(Gder)=µ2

�

�

�

G= GSpin2g+1

T =G
g+1
m

Z(G)=Gm

�

�

�

Gad= SO2g+1

Tad=G
g
m

Z(Gad)= 1

X∗(Tder)=〈e1, . . . ,eg〉 0←[ e0 X∗(T )=〈e0,e1, . . . ,eg〉 � X∗(Tad)=〈α1, . . . ,αg〉

Rder := R(Gder,Tder)

=〈α1, . . . ,αg〉

R := R(G,T )
=〈α1, . . . ,αg〉

Rad := R(Gad,Tad)

=〈α1, . . . ,αg〉

α1= e1− e2
α2= e2− e3

...

αg−1= eg−1− eg
αg = eg

α1= e1− e2
α2= e2− e3

...

αg−1= eg−1− eg
αg = eg

X∗(Tder)/〈Rder〉=Z/2Z

weight lattice=X∗(Tder)

X∗(T )/〈R〉=Z

weight lattice= X∗(T )

X∗(Tad)=〈Rad〉

X∗(Tad)

weight lattice
=Z/2Z

Semisimple,Adjoint Type: Cg simply connected

Ǧad=PGSp2g

Ťad=G
g
m

Z(Ǧad)= 1

�

�

�

Ǧ=GSp2g

Ť =G
g+1
m

Z(Ǧ)=Gm

�

�

�

Ǧder=Sp2g

Ťder=G
g
m

Z(Ǧder)=µ2

X∗(Ťad)=〈α̌1, . . . , α̌g〉 � X∗(Ť )=〈 f0, f1, . . . , fg〉 f0 7→ 0 X∗(Ťder)=〈 f1, . . . , fg〉

Řad := R(Ǧad, Ťad)

=〈α̌1, . . . , α̌g〉

Ř := R(Ǧ, Ť )
=〈α̌1, . . . , α̌g〉

Řder := R(Ǧder, Ťder)

=〈α̌′1, . . . , α̌
′
g〉

α̌1= f1− f2
α̌2= f2− f3

...

α̌g−1= fg−1− fg
α̌g = 2 fg − f0

α̌′1= f1− f2
α̌′2= f2− f3

...

α̌′g−1= fg−1− fg

α̌′g = 2 fg

X∗(Ťad)=〈Řad〉

X∗(Ťad)

weight lattice
=Z/2Z

X∗(Ť )/〈Ř〉=Z

weight lattice=〈Ř〉

X∗(Ťder)/〈Řder〉=Z/2Z

weight lattice=X∗(Ťder)

Table 1. Based root data for GSpin2g+1, Spin2g+1 and SO2g+1.

(see [Steinberg 1968, p. 45] for a table of these finite abelian groups by type). By
[Bourbaki 1968, VI, §2.4, Corollary], the minuscule coweights for Ǧad determine a
set of representatives for X∗(Tder)/〈Rder〉. The basis in Table 1 for the root system
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Řad determines the alcove

C := {v ∈ V | 〈α̌i , v〉> 0, 0≤ i ≤ n}

in V , where α̌0 is the affine root for which 1− α̌0 is the longest root with respect
to the given basis for Řad; see [Bourbaki 1968, VI, §2.3]. The closure C of C is
a fundamental domain for the action of Waff on V . The affine Weyl group Waff

acts freely and transitively on the set of alcoves in V . The extended affine Weyl
group Wext acts transitively on the set of alcoves, but generally not freely. Since
minuscule coweights for Ǧad determine a set of representatives for X∗(Tder)/〈Rder〉,
and since each such coweight may be identified with a vertex of C (not all vertices
arise this way), we have

(2-6) {w ∈Wext |w(C)= C} ∼= X∗(Tder)/〈Rder〉,

canonically. This describes the action of X∗(Tder)/〈Rder〉 on V .
The calculation of {γ ∈ X∗(Tder)/〈Rder〉 | γ (v)= v} now follows easily. Let

{$1, . . . ,$g}

be the basis of weights for X∗(Tder) dual to the basis Řad = {α̌1, . . . , α̌g} for
X∗(Ťad)= X∗(Tder); set $0 = 0. The closure C of the alcove C is the convex hull
of the vertices {v0, v1, . . . , vg} defined by v j = (1/b j )$ j , where b0=1 and the other
integers b j are determined by the longest root in Řad according to α̌ =

∑g
j=1 b j α̌ j .

In the case at hand, the longest root is α̌ = 2α̌1 + 2α̌2 + · · · + 2α̌g−1 + α̌g, so
b1 = 2, . . . , bg−1 = 2, bg = 1. Note that exactly two vertices in {v0, v1, . . . , vg} are
hyperspecial: v0 and vg. Since Wext acts transitively on the alcoves in V and since
exp : V → Ťad(C) is Wext-invariant, we may now suppose v ∈ C . Express v ∈ V in
the basis of weights for X∗(Tder):

(2-7) v =

g∑
j=1

x j$ j ;

note that the coefficients in this expansion are precisely the root values x j = α̌ j (v).
Then v∈C exactly means x j ≥0. Set b0=1 and define x0≥0 so that

∑
j=0 b j x j =1;

in other words,

v =

g∑
j=0

x j$ j , x0+ 2x1+ · · ·+ 2xg−1+ xg = 1.

Under the isomorphism (2-6), the nontrivial element of X∗(Tder)/〈Rder〉 corresponds
to ρ ∈ Wext defined by v j 7→ vg− j for j = 0, . . . , g. In terms of the fundamental
weights {$0,$1, . . . ,$g}, this affine transformation is defined by $ j 7→ $g− j

for j = 0, . . . , g. Thus, {γ ∈ X∗(Tder)/〈Rder〉 | γ (v)= v} is nontrivial if and only
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if ρ(v)= v, which is to say,

(2-8) x j ≥ 0, j = 1, . . . , g

and
x1+ · · ·+ xg−1+ xg =

1
2 ,

x j = xg− j , j = 1, . . . , g− 1.

It only remains to translate the conditions above into conditions on the eigenvalues
of t ∈ G(C). To do that we pass from root values x j = 〈α̌ j , x〉 to character values
y j := 〈 f j , x〉. Again using Table 1, we see that these conditions are equivalent to

(2-9) y1 ≥ y2 ≥ · · · ≥ yg ≥
1
2 y0

and
y1+ yg =

1
2 + y0,

y j − y j+1 = yg− j − yg− j+1, j = 1, . . . , g− 1.

When combined, these last two conditions take a very simple form:

(2-10) y0− y j =
1
2
+ yg− j+1, j = 1, . . . , g− 1.

Finally, we calculate the characteristic polynomial of rλ(t). Observe that rλ(t)=
rλ(exp(x)) = exp(drλ(x)), where drλ : X∗(T )→ X∗(G2g

m ) is given by (2-2). Set
t j = e2π iy j for j = 0, . . . , g. Then constraint (2-10) is equivalent to

(2-11) t0t−1
j =−tg− j+1, j = 1, . . . , g− 1.

The characteristic polynomial of rλ(t) is

(2-12) Prλ(t)(T ) :=
g∏

j=1

(T − t j )

g∏
j=1

(T − t0t−1
j ).

When combined with (2-11), it is clear that Prλ(t)(T ) is even:

Prλ(t)(T )=
g∏

j=1

(T − t j )

g∏
j=1

(T + tg− j+1), (2-11)

=

g∏
j=1

(T − t j )

g∏
i=1

(T + ti ), j 7→ g− j + 1

=

g∏
j=1

(T 2
− t2

j ).

We have now seen that if π0(ZPGSp2g(C)
(s)) is nontrivial, then Prλ(t)(T ) is even.

To see the converse, suppose Prλ(t)(T ) (2-12) is even. Without loss of generality,
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we may assume the similitude factor t0 is trivial. Then, after relabeling if necessary,
the symplectic characteristic polynomial Prλ(t)(T ) is even if and only if it takes the
form Prλ(t)(T ) =

∏g
j=1(T

2
− r2

j ), with r−1
j = −rσ( j) for some permutation σ of

{1, . . . , g}. Since the roots are the eigenvalues of t , which are unitary by hypothesis,
we can order them by angular components, as in (2-9), while replacing σ with the
permutation j 7→ g− j + 1, thus bringing us back to (2-10). This concludes the
proof of Proposition 2.2. �

2E. Restriction to the derived group. In this section we show how to recognize
when X/K is even through a simple property of the admissible representation πX,λ

of G(K ).

Theorem 2.3. Let X/K be an abelian variety of dimension g with good reduction
and let λ be a polarization on X. The restriction of πX,λ from GSpin2g+1(K ) to
Spin2g+1(K ) is reducible if and only if X is even.

Proof. With reference to notation from the proof of Proposition 2.1, set t = exp(θ)
and let s ∈ Ťad be the image of t under Ť→ Ťad. The restriction of πX,λ from G(K )
to Gder(K ) decomposes into irreducible representations indexed by the component
group π0(ZǦad(C)

(s)). Indeed, the irreducible representations of Gder(K ) that arise
in this way are precisely the irreducible representations appearing in IndGder(K )

Bder(K )χder,
where Bder(K ) is a Borel subgroup containing Tder(K ) and χder is the unramified
quasicharacter of Tder(K ) corresponding to tad ∈ Ť ad(C). The R-group for this
unramified principal series representation is π0(ZǦad

(s)). By Proposition 2.2, this
group is either trivial or a group of order 2, so either πX,λ|Gder(K ) is irreducible or
contains two irreducible admissible representations; also by Proposition 2.2, the
latter case occurs if and only if the characteristic polynomial PX0/Fq (T ) is even, in
which case X/K itself is even (Proposition 1.10). �

2F. L-packet interpretation. In this section we show how to recognize even abelian
varieties over local fields through associated L-packets.

As discussed in Section 2A, every polarized abelian variety (X, λ) over K
determines an `-adic Galois representation ρX,λ,` :Gal(K/K )→GSp(V`X, 〈 · , · 〉λ).
Let W ′K be the Weil–Deligne group for K [Tate 1979, §4.1]. Let φX,λ,` : W ′K →
Gal(K/K )→GSp(V`X, 〈 · , · 〉λ) be the Weil–Deligne homomorphism obtained by
applying [Deligne 1973, Theorem 8.2] to ρX,λ,`. We note that LG = Ǧ(C)oWK =

GSp2g(C)×WK . Let

φX,λ :W ′K → Gal(K/K )→ LG

be the admissible homomorphism determined by φX,λ,` and the basis for V`X⊗Q`
C

identified in the proof of Proposition 2.1. The equivalence class of the admissible
homomorphism φX,λ is the Langlands parameter for the polarized abelian variety
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(X, λ) over K . We remark that this recipe is valid for all polarized abelian varieties
over K , not just those of good reduction. But here we are interested in the case
when X has good reduction, in which case ρX,λ is unramified in the strongest sense:
the local monodromy operator for the Langlands parameter φX,λ is trivial (φX,λ

factors through W ′K →WK ) and φX,λ is trivial on the inertia subgroup IK of WK .
Although the full local Langlands correspondence for G = GSpin2g+1 is not

yet known, the part which pertains to unramified principal series representations
is, allowing us to consider the L-packet 5X,λ for the Langlands parameter φX,λ.
Indeed, we have seen that this L-packet contains the equivalence class of πX,λ,
only.

Theorem 2.3 shows that we can detect when X is K -isogenous to its twist over
the quadratic unramified extension of K by restricting πX,λ from G(K ) to Gder(K ).
On the Langlands parameter side, this restriction corresponds to post-composing
φX,λ with LG→ LGad. Let φder

X,λ be the Langlands parameter for Gder/K defined
by the diagram below and let 5der

X,λ be the corresponding L-packet.

(2-13)

W ′K
φX,λ //

φder
X,λ ""

LG

}}}}
LGad

Corollary 2.4. Let X/K be an abelian variety of dimension g with good reduc-
tion and let λ be a polarization on X. The L-packet 5der

X,λ for Spin2g+1(K ) has
cardinality 2 exactly when X is even; otherwise, it has cardinality 1.

Proof. This follows directly from the fact that the R-group for any representation
in the restriction of πX,λ to Gder(K ) coincides with the Langlands component
group attached to φder

X,λ. (See [Ban and Goldberg 2012] for more instances of this
coincidence.) Namely, equivalence classes of representations that live in 5der

X,λ are
parametrized by irreducible representations of the group

Sφder
X,λ
:= ZǦad

(φder
X,λ)/ZǦad

(φder
X,λ)

0 (ZǦad)
WK .

Since Gder is K -split, the action of WK on Ǧad is trivial, and since φder
X,λ is unramified,

ZǦad
(φder

X,λ)= ZǦad
(tad), where tad = φ

der
X,λ(Frq); thus,

Sφder
X,λ
= π0(ZǦad

(tad)),

which is precisely the R-group for πX,λ|Gder(K ) calculated in Theorem 2.3. �
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3. Concluding remarks

It is natural to ask how the story above extends to include abelian varieties X over
local fields which do not necessarily have good reduction, keeping track of the
relation between the `-adic Tate module T`X and the associated Weil–Deligne
representations, generalizing [Rohrlich 1994], and the corresponding L-packets.
For this it would be helpful to know the full local Langlands correspondence
for GSpin2g+1(K ), not just the part which pertains to unramified principal series
representations. Since the full local Langlands correspondence for GSpin2g+1(K )
is almost certainly within reach by an adaptation of Arthur’s work [2013] on the
endoscopic classification of representations, following [Arthur 2004], we have, for
the moment, postponed looking into such questions until Arthur’s ideas have been
adapted to general spin groups.

At the heart of this note we have used a very simple instance of what is, according
to a conjecture of Arthur [1989], a very general phenomenon: the coincidence of
Knapp–Stein R-groups with the component groups attached to Langlands parame-
ters, sometimes known as Arthur R-groups, as in [Ban and Zhang 2005]. While
most known cases of this coincidence appear or are summarized in [Ban and
Goldberg 2012], as remarked at the end of the introduction to that paper, there is
work remaining for general spin groups.

When some of these missing pieces are available, we intend to use the local results
in this note to explore the connection between abelian varieties over number fields
and global L-packets of automorphic representations of spin groups and general
spin groups, generalizing the results of [Anandavardhanan and Prasad 2006, §2].
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